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We investigate full quantum mechanical evolution of two electrons nonlinearly coupled to quantum
phonons and simulate the dynamical response of the system subject to a short spatially uniform optical
pulse that couples to dipole-active vibrational modes. Nonlinear electron-phonon coupling can either soften
or stiffen the phonon frequency in the presence of electron density. In the former case, an external optical
pulse tuned just below the phonon frequency generates attraction between electrons and leads to a long-
lived bound state even after the optical pulse is switched off. It originates from a dynamical modification of
the self-trapping potential that induces a metastable state. By increasing the pulse frequency, the attractive
electron-electron interaction changes to repulsive. Two sequential optical pulses with different frequencies
can switch between attractive and repulsive interaction. Finally, we show that the pulse-induced binding of
electrons is shown to be efficient also for weakly dispersive optical phonons, in the presence anharmonic
phonon spectrum and in two dimensions.
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Research in the field of driven quantummaterials is at the
forefront of modern solid-state physics. The development
of new laser sources opened a new chapter in the field [1]
where we can selectively excite collective degrees of
freedom, like lattice, magnetic, and electronic excitations,
to generate new emergent states of matter [2–4]. Among
the most prominent examples are optical manipulation
of magnetic order [5–8], light-induced nonequilibrium
metal-insulator transitions [9–13], and optically enhanced
transient states displaying superconducting signatures
[2,14–23].
Modifying superconducting transition temperature by

external stimulus was first shown using microwave radi-
ation, now known as the Wyatt-Dayem effect [24–26].
More recently, it has been suggested that the selective
excitation of a system could dramatically enhance the effect
on the electronic system with nonlinear lattice couplings. A
classic example includes a nonlinear coupling between
optically excited infrared active mode inducing a Raman
mode distortion [12,27–29] with modified electronic prop-
erties. The idea was applied to cuprate superconductors
[30], metal-insulator transition in manganites [9,31] and
paraelectric-ferroelectric transition in SrTiO3 [32,33]. An
even more interesting class of scenarios explores the role
of quantum mechanical fluctuations on pairing from non-
linear phononics [34]. We expect nonlinear electron-
phonon coupling in crystals where light ions are symmet-
rically intercalated between heavy ions [35] like in organic
crystals TMTSF2-PF6 [36] or TTF-TCNQ [37,38]. Recent

experimental realization of strong nonlinear electron-
phonon coupling was reported in one dimensional
ET-F2TCNQ and identified by the presence of strong
second harmonics [39,40]. In equilibrium, the nonlinear
electron-phonon (EP) coupling leads to light polarons [35]
and even more significantly to strongly bound light
bipolarons [41]. Out of equilibrium, the squeezed elec-
tronic states due to nonlinear electron-lattice coupling can
induce attraction between charge carriers inducing either
superconducting [42] or insulator-metal transition [43,44].
The second class of ideas is based on the parametric
resonance effect, where the interplay of driving and lattice
nonlinearities leads to enhanced electron-phonon interac-
tion and pairing [18]. However, other studies point out the
competition between pairing, heating, or phonon-induced
disorder and, depending on the approximation employed,
one or another could prevail [45,46]. Therefore, obtaining
exact results for a driven system to understand the com-
petition and gauge which approximations are appropriate
for these highly excited correlated states would be highly
valuable.
In this Letter, we provide an exact time evolution of a

two-electron system coupled nonlinearly to lattice distor-
tions and driven by an external laser pulse, which homoge-
neously excites dipolar active lattice modes. We show that
electronic binding can be dramatically enhanced or reduced
depending on the pulse protocol. The electron binding (or
repulsion) remains enhanced due to modified bipolaronic
self-trapping leading to a long-lived (metastable) state even
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after the pulse has been switched off. We show that the
binding takes place only for negative values of nonlinear
electron-lattice couplings (frequency softening), which is in
contrast with previously applied approximation predicting
a sign independent binding [18,42,44,46]. Finally, we show
that the metastable state slowly decays if Einstein phonons
acquire a finite bandwidth, still, the binding remains
elevated in comparison to its value before the application
of the pulse.
The model under the consideration is given by

H0 ¼ −tel
X

hi;ji;s
ðc†i;scj;s þ H:c:Þ þ g2

X

j

n̂jða†j þ ajÞ2

þ ω0

X

j

a†jaj þ U
X

j

ni;↑ni;↓; ð1Þ

where hi; ji represents summation over nearest neighbors,
c†j;s and a†j are electron and phonon creation operators at

site j and spin s, respectively, n̂j ¼
P

s c
†
j;scj;s represents

the electron density operator, tel the nearest-neighbor
electron hopping amplitude, and ω0 denotes the Einstein
phonon frequency. From here and on we set tel ¼ 1. The
second term in Eq. (1) represents a quadratic EP coupling,
see the Supplemental Material [47] for physical realiza-
tions. The last term represents the on-site Coulomb
repulsion.
Since the studied Hamiltonian exists in infinitely dimen-

sional Hilbert space one needs to single out a subspace that
is relevant for the studied problem. Here, we focus on the
dynamics of electrons thus the relevant subspace contains
states where multiple phononic excitations may exist in the
close proximity of electrons. More distant (in real space)
phonon excitations are discarded since they do not influ-
ence the distribution of electrons. In order to construct such
subspace we have used a numerical method described in
detail in Refs. [48–53] as well as in the Supplemental
Material [47]. The method contains a single parameter Nh
that determines the maximal distance between electrons as
well as the maximal number of phonon excitations.
In the first part we present results for the one-

dimensional (1D) case. We excite the system by driving an
infrared active mode HðtÞ ¼ H0 þ VðtÞPjða†j þ ajÞ
with a classical uniform ac fieldVðtÞ¼ApsinðωdtÞexp½−ðt−
t0Þ2=2σ2� that couples uniformly to all lattice displacements
and time propagate the full problem using the standard
Lanczos procedure [54]. Our first observable is the time
evolution of the density-density operator

ĝðjÞ ¼
X

i

n̂i;↑n̂iþj;↓; gðj; tÞ ¼ hĝðjÞit; ð2Þ

where we use the following notation hÂit ¼ hψðtÞjÂjψðtÞi.
In the case of two electrons with the opposite spins,
the operator ĝðjÞ is a projector which singles out states for

which the distance between both electrons equals j and
the average distance between electrons can be obtained as
d̄ðtÞ ¼ P

j jjjgðj; tÞ.
In Fig. 1(a) we present gðj; t ¼ 0Þ in the initial ground

state of the system using a small Coulomb repulsion U ¼
0.5 that overcomes a weak phonon-mediated attraction.
Functional dependence of gðj; t ¼ 0Þ is consistent with two
electrons at an average distance d̄ðt ¼ 0Þ ∼ 6.5 as also seen
from Fig. 1(d). Switching on the pulse VðtÞ with a
characteristic frequency ωd=ω0 ¼ 0.9 and different ampli-
tudes Ap causes the increase of the total and kinetic
energies, E and Ekin, respectively, and a slight decrease
of EP coupling energy Eg2, see Fig. 1(b). For definitions see
the caption of Fig. 1. The increase of E is predominantly
due to the increase of the total number of phonon quanta
Npho, shown in Fig. 1(c). The most notable effect of the

FIG. 1. Different expectation values for 1D system: (a) the
density-density correlation function in the ground state gðj;t¼0Þ
and time-averaged ḡðjÞ in the time interval [45–150] after the
pulse VðtÞ with amplitude Ap ¼ 0.06, σ ¼ 15, t0 ¼ 30, and
frequency ωd=ω0 ¼ 0.9; (b) the total energy EðtÞ ¼ hHit, the
kinetic energy EkinðtÞ ¼ hHkinit and EP coupling energy
Eg2ðtÞ ¼ hHg2it where Hkin and Hg2 represent the first and the
second term in Eq. (1), respectively; (c) the total number of
phonon excitations Npho ¼ hPj a

†
jajit at different pulse ampli-

tudes Ap; (d) the average particle distance d̄; (e) the density-
density correlation function gðj; tÞ; (f) the number of phonons as
a function of the interelectron distance γðj; tÞ; in (e) and (f) we
used Ap ¼ 0.06 and the shape of the pulse VðtÞ is depicted with a
blue line, while its vertical scale is in arbitrary units. In all figures,
the driving frequency is ωd=ω0 ¼ 0.9 and the electron-phonon
coupling is g2 ¼ −0.12.
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pulse is a substantial decrease of the average distance d̄
between electrons, seen in Fig. 1(d). While the increase of
Npho with increasing Ap up to Ap ¼ 0.08 is monotonous,
the decrease of d̄ is not and the largest drop is achieved
around Ap ∼ 0.06� 0.02. The nonmonotonous behavior
originates from the competition between the heating effects
and the pairing [45]. In Fig. 1(e) the time evolution of the
gðj; tÞ under the influence of the optical pulse is presented
as a density plot conjointly with the time evolution of the
pulse, VðtÞ. We observe a distinct increase of the double
occupancy, given by gð0; tÞ that peaks around t ∼ 40. The
increased double occupancy persists even long after the
pulse has been switched off, creating a very long-lived
(metastable) state, which for the case of Einstein phonons
persists almost undistorted up to the largest times used in
our calculation. This is consistent also with a time-averaged
ḡðjÞ as seen in Fig. 1(a) displaying a peak at j ¼ 0 in a
sharp contrast with its value in the ground state gðj; 0Þ.
These observations are in a stark contrast to the Floquet-
type scenario analyzed in Ref. [18], where the attractive
interaction is induced only during the pulse and in the
following we will show that it originates from photo-
modified self-trapping.
Now, we will explore how the long-lived state emerges

due to the substantial absorption of the total energy
predominantly stored in the increased number of phonon
excitations. It is thus worthwhile determining the distribu-
tion of the number of phonons as a function of the relative
distance between the electrons j. It is measured via the time
evolution of γðj; tÞ ¼ hγ̂ðjÞit, where

γ̂ðjÞ ¼ ĝðjÞ
X

l

a†l al; ð3Þ

describes the total number of phonons in states where the
distance between electrons equals j. As it is shown in
Fig. 1(f), most of the excess phonon excitations are
absorbed by doubly occupied states, i.e., j ¼ 0, and those
where electrons are in close proximity. It seems as if the
excess phonon excitations represent the glue that at least for
the given driving frequency ωd=ω0 ¼ 0.9 provides a self-
trapped attractive potential.
Searching further for the origin of the optically induced

electron-electron potential we realize that it can only
originate from the nonlinear electron-phonon interaction
term in Eq. (1), i.e., from the termHg2¼g2

P
j n̂jða†jþajÞ2.

We define an effective potential by projecting Hg2 on a
subspace with a specified distance between electrons:

v̂ðjÞ ¼ ĝðjÞHg2; ð4Þ

which yields the time evolution of the effective potential
vðj; tÞ ¼ hv̂ðjÞit. This definition is further justified by the
sum rule that gives the total interacting energy

P
j vðj; tÞ ¼

Eg2ðtÞ shown in Fig. 1(b).

Motivated by previous Floquet analysis [18] and a driven
atomic limit analysis, see Supplemental Material [47],
predicting attractive (repulsive) electronic interaction for
driving below (above) lattice frequency, we present vðj; tÞ
for two distinct driving frequencies leading to attractive
ωd=ω0 ¼ 0.9 and repulsive ωd=ω0 ¼ 1.1 interaction for
g2 ¼ −0.12, see Figs. 2(a) and 2(b). When ωd=ω0 ¼ 0.9
the pulse generates a pronounced peak located at j ¼ 0,
signaling the attractive effective potential that is most
negative for the doubly occupied site. This is also presented
in Fig. 2(c) where we show time averaged v̄ðjÞ. In contrast,
at ωd=ω0 ¼ 1.1, two minima appear around j� 10 that are
further apart than the shallow minima in the ground state at
t ¼ 0, most clearly observed in Fig. 2(c). This is consistent
with repulsive interaction considering that our computa-
tions are performed on a finite–size system. In Fig. 2(d) we
further investigate the dependence of the effective potential
on ωd. We present time-averaged v̄ðjÞ computed using
different driving frequencies ωd. While the strongest
attractive interaction is observed around ωd=ω0 ¼ 0.9,
with increasing ωd the minimum at j ¼ 0 splits into two
separate minima, consistent with the onset of a repulsive
interaction. Around ωd=ω0 ¼ 1.1 the separation of the
local minima reaches its largest value jjj ∼ 10. With further
increase of ωd the depth of the local minima diminishes and
merges with the background. The presence of the minima
after the pulse is in a clear distinction with the Floquet
analysis, where the response is present only during the

FIG. 2. (a) and (b) Magnitude of the effective potential jvðj; tÞj
computed with two distinct driving frequencies ωd=ω0 ¼ 0.9 and
1.1, respectively. Note that the sign of vðj; tÞ is strictly negative
since g2 ¼ −0.12; (c) the effective potential in the ground state,
vðj; 0Þ, and time-averaged v̄ðjÞ for two distinct ωd. Time
averages were performed in the same interval as in Fig. 1(a);
(d) time-averaged v̄ðjÞ for different ωd. We have used the pulse
amplitude Ap ¼ 0.06 while the other parameters are identical to
those used in Fig. 1.
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pulse. The dynamics of vðjÞ shows that this interaction
originates from the dynamical modification of the trapping
potential leading to a long-lived state.
To obtain a deeper insight into this phenomenon we

compute the time-averaged ḡðjÞ and the time-averaged γ̄ðjÞ
and perform a scan over ωd at g2 ¼ −0.12, see Figs 3(a)
and 3(b), respectively. For ωd=ω0 ≲ 0.8 and ωd=ω0 ≳ 1.3,
ḡðjÞ resembles its value in the ground state before the pulse
has been switched on. This is consistent with the lack of the
absorbed energy from the pulse as seen in Fig. 3(b) where
we observe only a tiny amount of excess phonon excita-
tions in the same ωd regime. Near ωd=ω0 ∼ 0.9, ḡðjÞ shows
a pronounced maximum due to an increased weight of
doubly occupied states (j ¼ 0) consistent with an attractive
electron-electron interaction. With increasing ωd the attrac-
tive nature of interactions switches towards a repulsive one
as the maximum of ḡðjÞ moves towards larger values of j.
At ωd=ω0 ∼ 1.1 the maximal value of ḡðjÞ appears around
j ∼�10 that exceeds its average value in the ground state
signaling a strengthening of the repulsive interaction.
The evolution of ḡðjÞ caused by changing driving

frequencies ωd is closely followed by the evolution of
the absorbed phonon excitation distributions, γ̄ðjÞ, shown
in Fig. 3(b). It is crucial to stress that time averages are
performed in the regime where the optical pulse VðtÞ that
couples to all oscillators has been switched off. When
the pulse is off-resonance, i.e., when ωd=ω0 ≫ 1 or
ωd=ω0 ≪ 1, the system does not absorb much energy;
consequently, γ̄ðjÞ ∼ 0 and ḡðjÞ remains close to its ground

state value. It is worth pointing out that the maximum in
the absorbed energy, presented in Fig. 3(b), appears at
ωd=ω0 ∼ 0.96 which is just above the value ωd=ω0 ∼ 0.9
where maximal attractive interaction is observed. All
this analysis shows that exactly at the resonance the
heating effect dominates, but slightly below (above) the
binding (repulsion) can win and remarkably leads to a
very long-lived state due to the self-trapping mechanism.
Remarkably, we observe that the self-trapping potential can
be reversed by two successive optical pulses which can
switch between attractive and repulsive electron-electron
interactions, see Supplemental Material [47].
In Figs. 3(c) and 3(d) we show results for positive

g2 ¼ 0.12. Absorption of energy from the pulse appears at
higher ωd then in the case when g2 < 0, which is consistent
with the increase of the phonon frequency in the presence
of finite electron density for g2>0. In contrast to the g2 < 0
case, the absorption of energy always leads to repulsive
interaction. The observation contrasts with previous analy-
sis [18,42,44,46] based on the atomic limit or perturbative
arguments, which predicted sign-independent pairing.
Suppose this observation survives beyond the dilute limit.
In that case, it poses a strong constraint on materials where
we can expect light-induced long-lived attractive interac-
tion due to the nonlinear electron-lattice couplings.
Now, we address how robust is the metastable state

to various perturbations. In Supplemental Material [47], we
show the resilience to the presence of the linear EP
coupling term, phonon dispersion, anharmonic effects,
and next-nearest-neigbor hopping term. An important
remaining question is whether the optically induced attrac-
tion survives in higher dimensions and we will demonstrate
it for the two-dimensional (2D) case of Eq. (1). The model
can describe nonlinear coupling to phonon modes that are
perpendicular to the plane. The system is defined on an
infinite 2D plane, taking into account translational sym-
metry while the maximal distance between electrons is
given by Nh and the maximal number of phonons in the
system is Nh − 1 [48,49].
Figure 4(a) shows the ground state density-density

correlation function gðx; y; t ¼ 0Þ, where gðx; y; tÞ ¼P
x0;y0 hn̂ðx0;y0Þ;↑n̂ðx0þx;y0þyÞ;↓it at g2 ¼ −0.12. Because of

the presence of nonzero U ¼ 0.5 there is a shallow local
minimum at the center, presenting the doubly occupied site;
x ¼ y ¼ 0. Note also that gðx; y; tÞ is normalized, i.e.,P

x;y gðx; y; tÞ ¼ 1, it therefore represents the probability
for a state where the relative position of the electrons is
given by ðx; yÞ. In Fig. 4(b) we present time-averaged
ḡðx; yÞ after driving. The size of the bipolaron as a result of
driving shrinks while the probability for double occupation
increases. This is more quantitatively shown in Fig. 4(c)
where the average distance d̄ðtÞ shows a substantial
decrease during as well as after the driving.
In conclusion, we have performed numerically exact

time evolution of a bipolaron problem coupled by a

FIG. 3. (a) and (c) The time–averaged density-density corre-
lation function ḡðjÞ computed using different driving frequencies
ωd for g2 ¼ −0.12 and 0.12, respectively; (b) and (d) Time-
averaged phonon distribution function γ̄ðjÞ. In all cases the time
averages were performed in the same interval as in Figs. 1(a) and
2(d). We have used the pulse amplitude Ap ¼ 0.06 while the rest
of parameters are identical to those used in Fig. 1.
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nonlinear electron-phonon interaction. When the electron-
lattice interaction leads to phonon softening g2 < 0, a
properly tuned uniform optical pulse that couples to
dipole-active lattice vibrations may optically induce either
attractive or repulsive interaction between electrons. Here
the primary mechanism originates from strong dependence
of the effective phonon frequency on the local density of
electrons [42] so that an appropriately tuned pulse excites
phonons corresponding to specific configurations of elec-
trons. In one dimension the strongest attractive interaction
appears when pulses are tuned slightly below the Einstein
phonon frequency ω0. This suggests that a softening of the
lattice vibration due to an increased electron density and
double occupancy plays an essential role in the appearance
of the attractive potential between electrons. In contrast, a
driving frequency slightly exceedingω0 generates repulsive
interaction. In both cases, the effects of optically induced
interactions persist long after the pulse has been switched
off. Since the energy of the phonon subsystem depends on
the density of electrons, both subsystems build an effective
trap potential that mutually stabilizes the spatial configu-
rations of electrons and phonons. We have demonstrated
that optically induced interaction survives under various
perturbations of the original Hamiltonian, such as the
introduction of weakly dispersive phonons, anharmonic
effects on phonon frequency spectrum, and the introduction
of the liner EP coupling. The mechanism is stable also in

two and possibly also in higher dimensions. An important
future problem is extending the bipolaron problem to finite
doping to understand if we can induce coherence between
these highly excited composite particles and to explore the
experimental consequences of such states.
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