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We show that the unsteadiness of turbulence has a drastic effect on turbulence parameters and in particle
cluster formation. To this end we use direct numerical simulations of particle laden flows with a steady
forcing that generates an unsteady large-scale flow. Particle clustering correlates with the instantaneous
Taylor-based flow Reynolds number, and anticorrelates with its instantaneous turbulent energy dissipation
constant. A dimensional argument for these correlations is presented. In natural flows, unsteadiness can
result in extreme particle clustering, which is stronger than the clustering expected from averaged inertial
turbulence effects.
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One of the most counterintuitive effects of turbulence is
that,whena fluid is loadedwith inertial particles, the flowcan
segregate the particles instead of mixing them [1,2]. This
phenomenon, which results in the formation of clusters with
enhanced particle density, is relevant involcanic clouds [3,4],
to explain cloud formation [5] and electrification [6], in other
geophysical and natural contexts [7], and for industrial
applications. In homogeneous and isotropic turbulence,
two mechanisms govern the formation of clusters: particles
with small inertia are expelled out of vortices [8], while
particles with large inertia accumulate near points with zero
net forces [9].
Turbulence is an out-of-equilibrium phenomenon that is

often studied in the statistical steady state, i.e., when
external forces and dissipation balance in such a way
that the system has well defined time averages. However,
in many natural and industrial systems this is not the
case. Out-of-equilibrium systems can fluctuate randomly
between two or more states, in such a way that time
averages never converge [10]. Unsteadiness affects energy
dissipation rates and the flow spectral properties [11]. This
in turn has an effect in the mixing and transport of particles.
As an example, it has been reported that motile particles
such as phytoplankton can change their direction of
migration in response to overturning events associated to
the turbulent flow in which they move [12].
What is the effect of unsteadiness in passive particles’

cluster formation? And is the formation and evolution of
clusters in realistic flows driven by turbulence, by the
flow unsteadiness, or by a combination of both? Here, we
show that the naturally occurring modulation of out-of-
equilibrium systems in time has a drastic effect on
turbulence parameters and in particle cluster formation.

Moreover, we show that clustering correlates with a small
time delay with the instantaneous Taylor-based Reynolds
number of the flow, and anticorrelates with its instanta-
neous turbulent energy dissipation rate. Hysteresis is
present in this process, indicating the particles preserve a
memory of previous states. We present a dimensional
argument that considers this phenomenon as a change in
the particles’ effective inertia (measured by the Stokes
number) depending on the flow state. This result allows for
estimation of turbulent parameters from particles measure-
ments, and indicates that flow unsteadiness must be
considered in the study of many multiphase flows.
We performed direct numerical simulations (DNSs) of

the incompressible Navier-Stokes equation

∂tuþ u · ∇u ¼ −∇pþ ν∇2uþ F; ð1Þ

where u is the solenoidal fluid velocity field (∇ · u ¼ 0),
p is the pressure per unit mass density, ν is the kinematic
viscosity, and F is an external volumetric mechanical
forcing. Equations are written in dimensionless units
based on a unit length L0 and a unit velocity U0, and
solved in a three-dimensional 2πL0-periodic cubic box
with a parallel pseudospectral method using the GHOST

code [13,14]. Spatial resolutions of N3 ¼ 5123, 7683, and
10243 grid points were used, yielding increasingly larger
Reynolds numbers with kinematic viscosities respectively
of ν512 ¼ 1.1 × 10−3L0U0, ν768 ¼ 6.7 × 10−4L0U0, and
ν1024 ¼ 4.6 × 10−4L0U0. The external forcing F generates
large-scale periodic counter-rotating columns (in the
following abbreviated as CRCs). It was used before to
study unsteadiness in [15], and is given by
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F ¼ F0½sinðxÞ cosðyÞx̂ − cosðxÞ sinðyÞŷ�: ð2Þ
This forcing corresponds to an array of four counter-
rotating vortices in the xy plane, with translational sym-
metry in z. The first columnar vortex occupies the volume
½0; πL0Þ × ½0; πL0Þ × ½0; 2πL0Þ, and is separated from the
others by two vertical shear layers in the middle of the
domain, aligned respectively with the xy and xz planes.
We also performed DNSs of homogeneous and isotropic

turbulence (HIT) with random forcing, to compare against
the CRC runs, following the same procedures used for the
CRC forcing and usingN3 ¼ 7683 and 10243 grid points. In
these simulations the flow was sustained using a forcing
with fixed amplitude and randomphases,whichwere slowly
evolved in time with a correlation time of 0.5 large-
scale eddy turnover times to prevent the development of a
mean flow. The forcing was applied at the lowest wave
numbers, resulting in an integral length scale L ≈ 1.1L0.
The kinematic viscosities were ν768 ¼ 3.1 × 10−4L0U0 and
ν1024 ¼ 2.1 × 10−4L0U0. A DNS similar to HIT, but with
time dependent forcing amplitude to synthetically generate
unsteadiness, is discussed in [16]. All simulations have
κη > 1, where κ ¼ N=3 is the largest resolvedwave number,
η ¼ ðν3=εÞ1=4 is the dissipation scale, and ε is the energy
dissipation rate.
In all simulationswe integrated a simplemodel of oneway

coupled and heavy point particles with equation of motion

ẋp ¼ vðtÞ; v̇ ¼ 1

τp
½uðxp; tÞ − vðtÞ�; ð3Þ

where uðxp; tÞ is the fluid velocity at the particle position xp

at time t, and vðtÞ and τp are respectively the particle velocity
and the particle Stokes time. In each run different sets of
particles were added, each with 106 particles and with
different values of τp. The Stokes (St) numbers of these sets,
St ¼ τp=τη (where τη ¼ ðν=εÞ1=2 is the Kolmogorov dis-
sipation time of the flow), were St ¼ 3 and 8 for all flows and
all spatial resolutions considered. A third set with St ¼ 14

was also evolved only in the simulations with 10243 grid
points. For the CRC runs, τη and St are the time average over
very long times.
The overall dynamics of the flows is as follows. While

the HIT simulations display fluctuations in global quan-
tities with a correlation time proportional to the integral
turnover time, the CRC runs display distinct dynamics.
Large excursions in the energy dissipation and other global
quantities are observed, resulting from the flow transition-
ing from two states: one in which the large-scale columns
can be clearly recognized (e.g., by direct inspection of the
instantaneous spatial distribution of particles), and one in
which the columns become unstable and the system dis-
plays a more homogeneous state. A movie of this time
evolution can be seen in [16].
An out-of-equilibrium dissipation law has been reported

in a variety of unsteady turbulent flows [17,18], such that

Cε ∼
ffiffiffiffiffiffiffiffi

Re0
p
Rλ

; ð4Þ

where Re0 ¼ u0l0=ν is a global Reynolds number based on
the initial rms flow velocity u0 and the initial integral length
scale l0, and Rλ ¼ uðtÞλðtÞ=ν is the local-in-time Reynolds
number based on the instantaneous Taylor length scale λðtÞ
and rms turbulent velocity uðtÞ. Cε is given by the energy
dissipation rate as εðtÞ ¼ Cεu3ðtÞ=LðtÞ, where LðtÞ is the
instantaneous flow integral scale. For a turbulent steady
state (e.g., in HIT) this relation reduces to the well-known
dissipation law ε ¼ Cεu3=L that states that the energy
dissipation rate is governed by the large-scale energy flux
toward smaller scales. In this sense, in unsteady flows CεðtÞ
provides a measure of temporal scale-by-scale energy
imbalance.
In Fig. 1 we see that the CRC flows display excursions

compatible with Eq. (4) as Cε is inversely proportional to
Rλ. In the inset we show Cε compensated by the square root
of the reference Reynolds number Re0; note how all curves
from flows with different viscosities collapse. For a given
viscosity (e.g., for N3 ¼ 5123) Rλ and Cε change in time by
factors of 2, with a typical timescale of the excursions of
10hTi to 20hTi, where hTi is the mean large-scale eddy
turnover time (see details below). These excursions, as
well as their characteristic timescale, are much larger than
those associated to the fluctuations in simulations of HIT
(which take place in timescales of the order of the turnover
time). In spite of these differences, the instantaneous energy
spectrum of the CRC simulations still displays Kolmogorov
scaling (not shown).
We want to know if these excursions in the dissipation

and in the Taylor-based Reynolds number, similar to those
reported in other unsteady turbulent flows [15,17,18], affect
particle cluster formation and time evolution. To estimate

FIG. 1. Instantaneous value of Cε as a function of Rλ for the
CRC flow at three different spatial resolutions. Each resolution
corresponds to a different viscosity and to a different averaged
Reynolds number. Inset: Cε compensated by

ffiffiffiffiffiffiffiffi

Re0
p

as a function
of Rλ.
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the amount of clustering in the different simulations we
calculated the three-dimensional Voronoı tessellation of
the particles as a function of time. Voronoı diagrams have
proven to be a powerful tool to study particle clustering
[19,20]. The Voronoï cell associated to a given particle at a
certain time is defined as the set of points closer to that
particle than to any other particle. The volumes of the
Voronoı cells V were normalized by the mean volume of all
cells hVi, to define normalized volumes V ¼ V=hVi.
Figure 2 shows the time-averaged probability density
functions (PDFs) of the normalized volumes, compared
against the PDF resulting from a random Poisson process
(herein RPP, corresponding to a homogeneous distribution
of particles [21]), which is shown as a reference. The
stronger the tails of the PDFs compared against the RPP
(i.e., the excess of probability for small V corresponding to
an excess of small volumes, or for large V corresponding to
large voids), and the larger the standard deviation of the
PDFs, σV compared to the RPP (which has a standard
deviation of σRPP ≈ 0.42), the stronger the clustering.
Positions of the maxima also change as variables in the
PDFs are normalized to obtain mean volumes occupied per
particle.
As shown in Fig. 2, the CRC runs present stronger

clustering than HIT, when comparing cases with the same
Stokes number. As St increases (at fixed spatial resolution)
clustering diminishes, indicating that particles with more
inertia cluster less both in CRC and HIT flows (results
presented here are for St≳ 1, as for St → 0 and → ∞
particles do not cluster; note that in the CRC flow for St ¼
14 clustering is similar to St ¼ 8 and less than for 3).
Differences between the CRC flow and HIT could in
principle be associated with the presence of a large-scale
flow in the CRC runs, but this is not sufficient to explain
the observed enhancement in clustering. In other turbulent
flowswith a steady large-scale circulation, particle clustering
was observed to be closer to that of HIT [22]. The reason for

the stronger clustering here becomes more clear when
inspecting the instantaneous PDFs of V. Note that all
PDFs in Fig. 2 are averaged over a time window of
≈5hTi, using 106 Voronoï volumes in each snapshot with
a cadence of at least 0.04hTi. But while the PDFs ofV inHIT
are stationary, the PDFs in the CRC runs are not (see a movie
with the PDFs as a function of time in [16]).
The instantaneous PDFs of the CRC flow vary signifi-

cantly in time, and the time-averaged PDFs showed in
Fig. 2 alone are not representative of the actual level of
particle clustering. To study how particle clustering is
affected by the flow unsteadiness, we calculated the time
evolution of Cε, ε, Rλ, and the standard deviation of the
Voronoï volumes, σV . Results are shown in Fig. 3. Particles
are injected when the flows are already in a fully developed
turbulent regime, at a time arbitrarily labeled as t ¼ 0, and
at random positions in space (note that at t ¼ 0, σV ¼ σRPP
in all cases). After a short transient, particles form clusters
as indicated by σV > σRPP. It has been reported before [15]
that this flow displays irregular behavior of large-scale
quantities. Our results for Cε and Rλ are compatible with
this observation: both quantities display large excursions
with a characteristic timescale much larger than the integral
turnover time. Fluctuations in Cε have a correlation time
between 10hTi to 20hTi, and result in fluctuations of the
flow dissipation rate ε with a similar characteristic time.
More surprising are the fluctuations in σV , which can vary
between ≈2.5 to values larger than 6, indicating strong
variations in the level of particle clustering as the flow
evolves.
Comparing the four quantities in Fig. 3 we see that when

Cε and ε display a local minimum, Rλ and σV display local
maxima (i.e., turbulence becomes stronger and particles
cluster more). To quantify the correlation between cluster-
ing and Rλ, the cross-correlation function fcorr of σV and Rλ

is shown in an inset in Fig. 3, for the simulation with 5125

grid points as this simulation has the longest integration in
time. The maximum cross-correlation is reached for time
increments jτj=hTi≲ 1 (negative increments are associated
to particles clustering during the growth of Rλ). Similar
results are obtained when the cross-correlation is computed
with Cε. Thus, Cε or Rλ and σV are correlated with a time
lag that is proportional to the large-scale eddy turnover
time. The existence of this time lag suggests that the
response of the particles to changes in flow properties may
display hysteresis.
Figure 4 shows σV as a function of Rλ in CRC runs, for

particles with St ¼ 3 and 8, and for different viscosities and
spatial resolutions. Time intervals with increasing Rλ are
marked with solid lines, while intervals with decreasing Rλ

are indicated with dashed lines. The figure indicates a
Reynolds number dependence, and further confirms the
correlation between these quantities and the existence of a
time lag with a hysteresis cycle superposed over the strong
fluctuations.

FIG. 2. Probability density functions (PDFs) of the normalized
Vonoroı volumes V ¼ V=hVi of inertial particles for CRC and
HIT simulations, for (a) N3 ¼ 7683, and (b) N3 ¼ 10243. For
CRC forcing, the PDFs are time-averaged over long times. A
random Poisson process (RPP) is indicated by the dashed line.
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As previously mentioned, this level of particle clustering
and its fluctuations are stronger than in HIT. Figure 5
compares the PDFs of σV for CRC forcing and for HIT, in
the case with N3 ¼ 7683 and St ¼ 8. The two flows display
distinct values of σV . In HIT σV takes values between 0.5
and 1.8, while in the CRC flow values go from 0.5 to 7.4,
reaching its maximum value around≈4.5. Not only is σV on
average significantly larger in the CRC flow (i.e., particles
cluster more), but the dispersion in the values of σV is also
much larger, including instances (albeit less probable) in
which the clustering is similar to that found in HIT, as the
ones captured by the left tail of the PDF. The dispersion in
σV , and the correlation with Rλ, confirm that the extreme
clustering observed in this flow is associated to its unsteady
dynamics (see also [16]).
How does the out-of-equilibrium dynamics of the flow

affect the particle behavior? We can consider first the
situation in which turbulence is in a scale-by-scale steady
state. Under these conditions, Re0 ¼ u0l0=ν ≈ uL=ν (where
u ¼ huðtÞi is the time average of the rms flow velocity, and
L ¼ hLðtÞi is the averaged flow integral scale). The energy
dissipation rate is also ε ≈ u3=L. For a small spherical

particle we can write the Stokes time as τp ¼ 2a2ρp=
ð9ρfνÞ (where a is the particle radius, ρp is the particle
density, and ρf is the fluid density). Then St ¼ τp=τη ¼
ð2=9Þðρp=ρfÞða=LÞ2Re3=20 . Thus, the Stokes number of
the particles (and as a result, the sensitivity of the particles
to flow fluctuations at different scales) is fixed given a
particle radius, a mass density ratio, and a flow Reynolds
number. However, when scale-by-scale steadiness is broken,
we must use ε ¼ CεU3=L, which using Eq. (4) results in
St ∼ ð2=9Þðρp=ρfÞða=LÞ2Re7=40 =R1=2

λ . The sensitivity of the

FIG. 3. Time series of (a) Cε, (b) ε, (c) Rλ, and (d) σV for
CRC runs with St ¼ 3 and 8. Time is normalized by the mean
turnover time hTi, and σRPP is indicated by the dotted gray line in
panel (d). Inset: cross-correlation of σV and Rλ as a function of the
time lag τ.

FIG. 4. Standard deviation of the Voronoı volumes, σV , as a
function of Rλ for CRC runs, differentiating branches in which Rλ

increases (solid lines) and decreases (dashed lines), for (a) St ¼ 3,
and (b) 8. Red arrows indicate the direction of time evolution.

FIG. 5. PDFs of σV for HIT and CRC runs with N3 ¼ 7683 and
for particles with St ¼ 8. Note the larger values of σV (i.e.,
enhanced clustering) in the CRC run, as well as the larger
dispersion.
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particles to flow fluctuations thus changes depending on the
instantaneous dissipation (or the Taylor-based Reynolds
number). Equivalently, we could interpret this expression
as the effective ratio of the particle size to the flow scale being
replaced by a=ðLR1=4

λ Þ: the integral scale of the flow “seen”
by the particle depends onRλ. Perhaps counterintuitively, for
larger Rλ the particles become more sensitive to the larger
scale eddies, which results in stronger clustering, as can be
seen in the movie in [16]. When Rλ is smaller (Cε larger) the
effective Stokes number of the particles is larger and the
spatial distribution of particles is more homogeneous, with
clustering closer to that observed in inertial clustering inHIT.
When Rλ is larger (Cε smaller), St is smaller, and particles
accumulate outside the large-scale columnar vortices in a
phenomenon reminiscent of turbophoresis (i.e., expelled
from the vortices [8]), resulting in extreme clusterization.
As discussed previously, this argument can hold for St larger
than 1 but in its vicinity, as considered in our simulations.
Natural flows are unsteady: volcanic and other sources of

particulate material pulsate and oscillate in time, convection
in clouds is inhomogeneous, and atmospheric turbulence in
general is bursty [23]. The results presented here show that
flow unsteadiness, which in this case occurs naturally as a
steady forcing is used, can drastically enhance particle
clustering, well above what previous studies have reported
for steady state homogeneous and isotropic turbulence.
Thus this effect, which has been neglected so far, can
change estimations of clustering and particle aggregation
for many systems. As an example, estimations of collision
frequencies between particles are proportional to n2 ∼ V−2

(where n is the particle density), and changes in the volume
per particleV affect the number of collisions. The results also
open the door to the estimation of instantaneous turbulence
parameters from direct observations of particle aggregation
(albeit taking into account that the dependence on Re0 could
be different for different flows), and can be useful for the
study of other out-of-equilibrium unsteady systems.
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