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Investigating how classical systems may manifest dynamics analogous to those of quantum systems is a
broad subject of fundamental interest. Walking droplets, which self-propel through a resonant interaction
with their own wave field, provide a unique macroscopic realization of wave-particle duality that exhibits
behaviors previously thought exclusive to quantum particles. Despite significant efforts, elucidating the
precise origin and form of the wave-mediated forces responsible for the walker’s quantumlike behavior
remained elusive. Here, we demonstrate that, owing to wave interference, the force responsible for orbital
quantization originates from waves excited near stationary points on the walker’s past trajectory. Moreover,
we derive a minimal model with the essential ingredients to capture quantized orbital dynamics, including
quasiperiodic and chaotic orbits. Notably, this minimal model provides an explicit distinction between local
forces, which account for the walker’s preferred speed and wave-induced added mass, and spatiotemporal
nonlocal forces responsible for quantization. The quantization mechanism revealed here is generic, and will
thus play a role in other hydrodynamic quantum analogs.
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Fluid dynamics has a history of introducing influential,
cross-disciplinary concepts, like solitons [1,2], as well as
offering valuable insights into otherwise relatively inac-
cessible physical phenomena, including the Aharonov-
Bohm effect [3], superradiance [4,5], black holes [6],
and the Casimir effect [7]. Hydrodynamic quantum analogs
(HQAs) focus on investigating the extent to which pilot-
wave hydrodynamics [8] may exhibit behaviors previously
deemed peculiar to the quantum realm [9]. Multiple
classical pilot-wave systems are being developed [10–13],
motivated by the discovery of droplets that spontaneously
walk along the surface of a vibrating fluid bath [Fig. 1(a)]
[14]. Acting as a self-propelled wave source guided by its
own “pilot” wave field [8,15], the droplet excites at each
bounce a spatiotemporally decaying Faraday wave [16],
with wavelength λF, whose longevity and spatial extent
increase with the bath’s driving acceleration γ [17]. When γ
exceeds a critical walking threshold, γW , the droplet
starts to land on the slope of the wave field generated at
prior bounces, experiencing a wave-induced horizontal
force at the point of impact that propels it forward
[18,19]. A key feature of the system is its “memory,”
quantified by the characteristic wave decay time [17]. As γ
increases toward the Faraday threshold [20], the waves
excited at each bounce decay more slowly and so the
droplet’s past significantly influences its evolution. By
virtue of the coupling with their underlying wave field,
walking droplets, or “walkers,” exhibit numerous HQAs,
including orbital quantization [21–23], single particle
diffraction and interference [24–28], tunneling [29–31],
wavelike statistics [32,33] and superposition of states

[34,35], Friedel oscillations [36], collective spin order
[37], and double quantization in a harmonic well [38–40].
A crucial unresolved question is elucidating the

precise origin and form of the spatiotemporal nonlocal
forces that underlie the walkers’ quantization. We provide
an answer within the context of the HQA of orbital
quantization [21–23], which leverages the mathematical
equivalence between the Lorentz force qðv × BÞ, acting on
a charge q moving with velocity v in a magnetic field B,
and the Coriolis force 2mðv ×ΩÞ, acting on a mass m
moving with velocity v in a frame rotating at constant
angular velocity Ω. Classically, a charge in a magnetic
field and a mass in a rotating frame lead to circular orbits,
whose radius varies continuously with the magnitude
of the force field rðBÞ ¼ mv=qB and rðΩÞ ¼ v=2Ω,
respectively. In contrast, a quantum particle in a magnetic
field exhibits quantized orbits in which the allowed
radii take values in a discrete set rn ≈ ðnþ 1=2ÞλdB=2π
(n ¼ 0; 1; 2;…), where λdB is the particle’s de Broglie
wavelength [41]. At sufficiently high memory, an analo-
gous orbital quantization occurs for a walking droplet
in a rotating frame. Owing to the influence of its pilot-
wave field, the droplet’s orbital radius is equivalently
discretized with preferred radii rn ≈ ðnþ 3=4ÞλF=2
(n ¼ 0; 1; 2;…) [21,23].
Progress has been made toward understanding the

walker’s orbital quantization [21,23,33,40,42–46]. Fort
et al. [21] proposed the notion of a “virtual walker”
diametrically opposite the walker’s position to interpret
their experimental observations. Oza et al. [23] later
showed that the discrete orbital radii observed in
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experiments [21,22] correspond to stable circular solutions
of the walker’s equation of motion [19]. Liu et. al. [46]
recently rationalized the stability of circular solutions in
terms of the mean wave field produced by the drop.
We here demonstrate that the walker’s orbital quantiza-

tion is caused by exponentially small wave-mediated forces
arising from waves excited at stationary points of the
distance function to the droplet’s past locations [Fig. 1(c)].
We calculate analytically the quantizing force resulting
from constructive interference, which gives rise to a
sinusoidal potential in the radial direction that restricts
the allowed radii. Waves excited at other past locations
interfere destructively at the droplet’s position [Fig. 1(d)],
and may thus be safely neglected. By adding the quantizing
force to the so-called “boost” force [47], which accounts for
the wave force due to the recent past [Fig. 1(e)], we develop
a minimal quantization model that captures the walker’s
orbital dynamics [Fig. 1(f)].
Stroboscopic model.—Consider the dynamics of a

walker in a fluid bath subjected simultaneously to vertical
oscillations with forcing acceleration γ sinð2πftÞ, and
constant rotation around the vertical axis with angular
frequency Ω. The centrifugal force on the droplet is
balanced by the lateral force resulting from bouncing on
the parabolic surface of the bath, and so both effects may be
excluded [21,22]. In the frame of reference rotating with the
bath, the dimensionless equation of motion for the droplet
position xðtÞ is then

κx00 þ x0 ¼ x0 ×Ωþ FW; ð1Þ

where the characteristic scales for space, time, and bath
rotation rate are 1=kF ¼ λF=2π, TM, and D=2m, respec-
tively. Here, κ ¼ m=DTM is the dimensionless mass, D is
the drag coefficient accounting for viscous dissipation

during flight and impact with the bath, TM ¼ Td=ð1 −
γ=γFÞ is the wave-decay time, or memory time, Td is the
wave-decay time in the absence of vibration [18], and γF is
the Faraday threshold, beyond which standing waves
spontaneously arise in the bath [20].
The walker is propelled by the horizontal wave force FW ,

exerted when the droplet lands on the slope of the under-
lying wave field [19]. At each bounce, the droplet excites a
zeroth-order Bessel function with wave number kF and
decay time TM [18]. By noting that the droplet bouncing
occurs on a timescale 2=f, much shorter than that
of the horizontal walking dynamics TM, Oza et al. [19]
proposed to approximate the droplet as a continuous wave
source. The wave force may thus be computed by an
integral over the gradient of the waves produced in the
walker’s past,

FW ¼ β

Z
∞

0

J1(jdðsÞj)
dðsÞ
jdðsÞj e

−s ds; ð2Þ

where β ¼ mgA sinðϕÞ k2FfT2
M=2D is a dimensionless

force coefficient, A is the wave amplitude, ϕ is the impact
phase, and dðsÞ ¼ xðtÞ − xðt − sÞ [19]. The integro-
differential equation of motion (1) and (2) is the so-called
“stroboscopic” model [19].
Minimal quantization model (MQM).—We compute an

approximation to FW that captures explicitly the quanti-
zing force on the droplet due to the waves excited in the
vicinity of stationary points, which interfere constructively
at the droplet’s location. Stationary points are extrema
of the distance function to the droplet’s past positions,
dðsÞ ¼ jdðsÞj, satisfying d0ðsjÞ ¼ 0. To proceed, we make
the assumptions that the orbits are large and quasicircular,
and only distant stationary points dðsjÞ ≫ 1 are significant.
The condition on the distance allows us to approximate the
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FIG. 1. (a) Oblique view of a walking droplet, or walker, self-propelled by its wave field as seen in experiments. (b)–(e) Top view of
the wave field of a walker (green disk) traveling clockwise along a circular orbit of radius r with orbital frequency ω in a bath rotating
counterclockwise with angular frequency Ω. The full wave field in (b) is generated by the waves excited by the drop at each bounce
along its past trajectory. We can thus decompose the wave field [shown in (b)] according to wave contributions [shown in (c)–(e)]
produced by the walker along different portions of the past trajectory (highlighted in bright green). Waves excited in the vicinity of
stationary points interfere constructively at the droplet’s location (c), causing orbital quantization, while those produced elsewhere
interfere destructively at the droplet’s location (d), except for the waves excited in the walker’s recent past (e). (f) Quasicircular orbit
illustrating the emergence of stationary points at different locations. The pilot-wave force FW is approximated by the sum of nonlocal
forces FQ emanating from stationary points (blue) and a local boost force FB. Stationary points near the droplet (red) may be neglected
on account of the wave force being small. (Photo copyright: Abel J. Abraham).
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Bessel kernel as J1(dðsÞ) ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=πdðsÞp

sin½dðsÞ − π=4�,
and so transform (2) into an expression amenable to the
stationary phase method [48,49]. The wave force may thus
be approximated by FW ≈ FQ þ FB, where

FQ ¼ Im

"
βe−i

π
4

X
j

Z
sjþδj

sj−δj

ffiffiffiffiffiffiffiffiffiffiffiffi
2

πdðsÞ

s
dðsÞ
dðsÞ e

idðsÞ−s ds

#
ð3Þ

is the contribution from the stationary points, and FB is the
contribution from the end of the integration interval, which
corresponds to thewalker’smost recent path.Here, δj satisfies
0 < δj ¼ O(1=

ffiffiffiffiffiffiffiffiffiffiffi
dðsjÞ

p
) ≪ 1 and denotes the width of the

region that leads to constructive interference at the droplet’s
current location. The sum is over all stationary points with
d00ðsjÞ < 0 [local maxima of dðsÞ], which tend to be
diametrically opposite the droplet in a quasicircular orbit
[Fig. 1(f)]. Stationarypointswithd00ðsjÞ > 0 [localminimaof
dðsÞ], which tend to be near the droplet, may be safely
neglected since J1ðdÞ → 0 as d → 0.
Relevant points to the stationary phase method, or

extrema of the imaginary phase idðsÞ, coincide with
the physical stationary points on the orbits. To improve
the approximation at high memory, we use the more general
complex phase ΨðsÞ ¼ idðsÞ − s, and apply the saddle-
point method [48,49], which picks up the contribution
from saddle points in the complex plane zj, satisfying
Ψ0ðzjÞ ¼ 0. Notably, we only have access to the orbits xðtÞ
for real t. To circumvent this, we assume that the saddle
points zj are close to the stationary points sj, which allows
us to complexify dðsÞ by expanding near the stationary
points, dðzÞ ≈ dðsjÞ þ 1

2
d00ðsjÞðz − sjÞ2. At this point all

that remains is to perform the saddle-point calculation (see
Supplemental Material [50]), which yields

FQ ¼
X
j

�
Ar;j cosφj þ At;j sin φj

�
e−sj ; ð4Þ

where φj ¼ dðsjÞ − 1
2
Kj, and the force components are

Ar;j ¼ −2βBj

�
dðsjÞ þ

1

2
K2

jx
00ðt − sjÞ

�
;

At;j ¼ 2βBjKjx0ðt − sjÞ; ð5Þ

where Ar;j is a predominantly radial component, and At;j is
a purely tangential component. Here, Kj ¼ jd00ðsjÞj−1,
and Bj ¼ ðdðsjÞ þ 1

2
KjÞ−3=2

ffiffiffiffiffiffi
Kj

p
.

To complete a minimal model for the walker’s orbital
dynamics, we complement (4) with the end point contri-
bution to the wave force due to the recent history [Fig. 1(e)]
in accordance with the standard practice of stationary
phase-type approximations. This contribution was com-
puted by Bush et al. [47] in the weak acceleration limit,
x0 ¼ x0ðϵtÞ, for ϵ ≪ 1,

FB ¼ Cðjx0jÞx0 þ κ

�
x00 −

d
dt

ðγBðjx0jÞx0Þ
�
; ð6Þ

where CðuÞ ¼ ðβ=u2Þð1 − pÞ, and γBðuÞ ¼ 1þ 1
2
ðβ=κÞp3,

with p ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
. The first term in (6) combined with

the friction term in (1) gives a Rayleigh-like drag term that
selects a preferred walking speed, u0 ¼ ð−1þ 2β −ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4β

p Þ1=2= ffiffiffi
2

p
. The second term is the inertial force

due to the wave-induced added mass ðγB − 1Þκ, which
tends to enlarge the orbits. This wave force is referred to as
the boost contribution, as γB resembles the Lorentz boost
factor for a relativistic particle [47].
By approximating the stroboscopic wave force (2)

to leading order, FW ≈ FB þ FQ, we thus obtain
the MQM,

κx00 þ x0 ¼ x0 ×Ωþ FB þ FQ; ð7Þ

which contains the minimal ingredients necessary to
capture the walker’s quantized orbital dynamics.
Notably, the MQM provides a clear distinction between
the local force FB, which depends on variables at the
walker’s current position, and spatiotemporal nonlocal
forces FQ, which originate at past locations and are
responsible for quantization. Note that the MQM may be
seen as an example of “asymptotics beyond all orders” [51]
since FQ is exponentially smaller than FB, yet is solely
responsible for the walker’s orbital quantization. We dis-
cuss limitations of our asymptotic approximations in
Supplemental Material [50].
Mechanism for orbital quantization.—The wave-

mediated quantizing force (4) makes the mechanism
responsible for orbital quantization apparent. Any generic
curved trajectory has stationary points, which generate a
beam [Fig. 1(c)] that tends to drive the walker into a
quasicircular orbit. In this quasicircular orbit [Fig. 1(f)], the
walker and relevant stationary points are approximately
diametrically opposite. The tangential component of (4),
At;j sinφj, weakly perturbs the walker’s orbital speed from
u0 due to being relatively small compared to the boost force
that acts in the same direction. The radial component of (4),
Ar;j cosφj, generates an effective potential that pushes the
walker toward the minima of sinφj, which correspond to
the preferred radii rn observed in experiments. For circu-
lar orbits φj ≈ 2r, which leads to rn ≈ ðnþ 3=4ÞλF=2
ðn ¼ 0; 1; 2;…Þ.
Circular orbits.—To investigate quantitatively the cir-

cular orbits admitted by the MQM, we look for solutions
to (7) of the form xðtÞ ¼ rðcos ωt; sin ωtÞ, which results in
the following system of algebraic equations,

−κγBðuÞrω2 ¼ Ωuþ NðωÞe−π=jωjAr cosφ;

½1 − CðuÞ�u ¼ NðωÞe−π=jωjAt sinφ; ð8Þ
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where r, ω, and u ¼ rω are the walker’s orbital radius,
frequency, and velocity, respectively. Note that all local
maxima of dðsÞ are diametrically opposite the walker for
circular orbits, thus Ar;j, At;j, and φj are the same for each
term in (4), namely Ar ¼ −2βðu2 þ 1Þðu2 þ 1=2Þ−3=2,
At ¼ −2βuðu2 þ 1=2Þ−3=2, and φ ¼ 2rð1 − 1=2u2Þ. The
factor NðωÞ ¼ 1=ð1 − e−2π=jωjÞ, which arises from sum-
ming over all stationary points, provides a measure of how
many points are important. For the remainder of this Letter,
κ and β are chosen according to experiments with 20 cSt
silicon oil, vibrating frequency f ¼ 80 Hz, and drop radius
0.4 mm [52].
We solve the system (8) numerically for ðr;ω;ΩÞ and

compare in Fig. 2 the resulting orbital radii rðΩÞ with those
from the equivalent analysis performed with the strobo-
scopic model [23]. Excellent agreement is observed across
memories γ=γF, even for the smallest radii where the
asymptotic analysis used to derive the MQM is expected
to break down. As the memory increases, minor discrep-
ancies arise for small orbits [Figs. 2(c) and 2(d)]. We

observe analogous quantitative agreement for the orbital
frequency ωðΩÞ.
Orbital dynamics and stability.—To demonstrate that the

MQM leads to the same stable orbits as the full strobo-
scopic model, we simulate numerically (7) and examine the
emergent dynamics. Following [52], for a given memory
γ=γF, we initialize the walker along a circular orbit with
radius r, orbital frequency ω, and bath frequency Ω defined
by (8). We truncate the sum over stationary points in the
quantizing force once subsequent partial sums agree
within 0.1%.
A typical stable circular orbit produced by the MQM is

presented in Fig. 3(a). Even though the orbit is relatively
small, r=λF ¼ Oð1Þ, the MQM and stroboscopic forces are
nearly identical (Supplemental Material, Video 1 [50]). Not
all circular orbit solutions are stable; walker’s initialized in
orbits larger or smaller than the preferred orbits will either
jump-up or jump-down in radius to reach the closest stable
orbit [Figs. 3(b) and 3(c)]. Moreover, as the memory
increases, circular solutions become unstable to lateral
oscillations leading to a range of exotic orbits [52].
Most of the previously reported exotic orbits are also
captured by the MQM [Figs. 3(d)–3(f)], for which the
MQM and stroboscopic forces coincide in an average sense
(Supplemental Material, Video 2 [50]). We were unable to
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FIG. 2. Orbital solutions to the MQM and stroboscopic model. Memory increases from left to right, with (a) γ=γF ¼ 0.922,
(b) γ=γF ¼ 0.954, (c) γ=γF ¼ 0.971, and (d) γ=γF ¼ 0.985. Excellent agreement is observed except for a few small discrepancies shown
with insets in (c),(d), which have a negligible effect in the orbital quantization. Black dashed lines correspond to rn ¼ ðnþ 3=4ÞλF=2.
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find the relatively infrequent orbits that either wobble and
spontaneously leap to a new location, or are quasiperiodic
with high curvature segments where the asymptotics of the
MQM break down. Notably, the MQM allows us to
rationalize wobbling orbits as radial oscillations in the
beamlike potential created by the stationary points
[Fig. 1(c)]. Stable orbits produced by the minimal and
stroboscopic models are compared across orbital radii and
bath rotation rates at intermediate memory (Fig. 4). Both
models agree well; only minor differences are observed in
the amplitude of the radial oscillations of some wobbling
orbits.
Chaotic orbits.—In the high memory regime, the

walker’s motion becomes chaotic [Fig. 5(a)], yet orbital
quantization emerges in a statistical sense [22,52]. A
histogram of the instantaneous radius of curvature reveals
a chaotic switching between preferred radii coinciding with
those observed for circular orbits [Fig. 5(b)]. The MQM
captures well the statistical quantization for low bath
rotation frequency, where larger orbits are more frequent
[Fig. 5(c)]. In this regime, the route to chaos may thus be
rationalized through the appearance of numerous stationary
points that exert forces on the walker in different directions,
destabilizing the circular orbit solutions and so inducing
transitions between the preferred radii (Supplemental
Material, Video 3 [50]). The disagreement for high bath
rotation frequency is a consequence of small orbits at high
memory being in a regime inaccessible to our asymptotic
approximations (see Supplemental Material [50]).
Discussion.—Through an asymptotic reduction of the

stroboscopic model [19], we have identified the precise
origin and form of the spatiotemporal nonlocal forces
responsible for the walker’s orbital quantization. We
demonstrated that the quantizing force arises from con-
structive interference of waves excited by the droplet at
stationary points along its past trajectory. This insight has
allowed us to derive a minimal quantization model that
explicitly distinguishes between spatiotemporal local and
nonlocal forces, the latter being responsible for quantiza-
tion. Our work thus reveals how wave-mediated nonlocal

effects may lead to quantumlike behaviors in HQAs [9].
The generic nature of the quantizing mechanism described
here invites a reexamination of other analogs with com-
parable orbital dynamics [38–40] and walkers departing
from straight-line motion [53–57]. Moreover, the concept
of stationary points readily extends to problems involving
the interaction of multiple walkers [37,56–58], where
additional stationary points emerge in the distance func-
tions from each walker to the past locations of all other
walkers, and entirely new pilot-wave systems inspired by
walking droplets, including those realized with stratified
flows [10], canoes [11], capillary surfers [12], and acous-
tically forced bubbles [13].
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