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Programmable photonic circuits (PPCs) have garnered substantial interest for their potential in
facilitating deep learning accelerations and universal quantum computations. Although photonic
computation using PPCs offers ultrafast operation, energy-efficient matrix calculations, and room-
temperature quantum states, its poor scalability hinders integration. This challenge arises from the
temporally one-shot operation of propagating light in conventional PPCs, resulting in a light-speed increase
in device footprints. Here we propose the concept of programmable photonic time circuits, utilizing time-
cycle-based computations analogous to gate cycling in the von Neumann architecture and quantum
computation. Our building block is a reconfigurable SU(2) time gate, consisting of two resonators with
tunable resonances, and coupled via time-coded dual-channel gauge fields. We demonstrate universal
UðNÞ operations with high fidelity using an assembly of the SU(2) time gates, substantially improving
scalability fromOðN2Þ toOðNÞ in terms of both the footprint and the number of gates. This result paves the
way for PPC implementation in very large-scale integration.
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A programmable photonic circuit (PPC) is a versatile
platform for neuromorphic and quantum computation [1,2],
providing run-time tunability along with the advantages
of photonics—ultrafast processing, robust quantum states
[3,4], and energy-efficient matrix calculation [5–7]. PPCs
particularly enable universal and reconfigurable unitary
operations, UðNÞ, essential for trainable weight matrices
in wave neural networks [5] and programmable quantum
gates [8,9]. Conventional UðNÞ PPCs comprise SU(2)
gates, implemented using beam splitters and phase shifters
[2], and their arrangements and gate parameters are
systematically determined [10,11].
In realizing large-scale wave neural networks [7] and

qudit systems [4] with UðNÞ PPCs, two major hurdles
remain: fidelity and footprint. First, as PPC size increases,
the demand for high-fidelity platforms becomes more
crucial due to growing manufacturing errors and thermal
noises. Consistent efforts have been made to improve PPC
fidelity using self-calibration [12], optomechanics [13], and
circuit pruning [14]. Another challenge, exacerbating
the first hurdle, is poor scalability. This difficulty arises
from the operation principle of PPCs: UðNÞ operations of
propagating light, leading to a light-speed increase of an
optical path length. Consequently, the two-dimensional
(2D) PPC footprint, which is proportional to the product of
the optical path length and the channel number, exhibits
OðN2Þ scaling for both the footprint and gate number in
traditional algorithms [10,11].

Significant efforts have been conducted to resolve
the scaling issue. Recent attempts to realize highly
integrated PPCs using subwavelength optics [15] or dif-
fractive elements [16–18] still maintain OðN2Þ scaling. An
elegant approach that utilizes the frequency synthetic
dimension [19] has enabled OðNÞ scaling in PPC size,
yet requiring N multiwavelength-coded light sources
and detectors. Therefore, realizing high-N unitary PPCs
with enhanced scalability through single wavelength oper-
ations still remains a significant challenge. Revisiting
various computations that utilize the temporal axis—
fetch-execute cycles [20], qubit-gate cycles [21], and syn-
aptic plasticity [22]—we envision incorporating a temporal
degree of freedom into PPCs.
Here we develop a PPC platform that achieves OðNÞ

scaling for reconfigurable, universal, and single-wavelength
unitary operations. Inspired by space-time duality, which
has introduced photonic time crystals [23,24], dis-
order [25,26], and diffraction [27], we propose program-
mable photonic “time” circuits (PPTCs) that replace optical
path length with field evolution time. As a unit element, we
devise an SU(2) time gate, which enables universal SU(2)
operations on stored light.We demonstrate UðNÞ PPTCs for
random Haar matrices and quantum Fourier transforms
(QFTs), achieving OðNÞ scaling in both the footprint
and gate number. This result offers a scalable plat-
form for photonic deep learning accelerators and quantum
computations.
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Concept.—We compare the photonic realizations of a
unitary matrix UN ∈UðNÞ each employing conventional
PPC [Fig. 1(a)] and our PPTC [Fig. 1(b)]. The building
blocks of both circuits are SU(2) gates, which utilize
propagating modes [Fig. 1(c)] and resonance modes
[Fig. 1(d)], respectively. In realizing UN with SU(2) gates,
conventional approaches involve a nulling process [10,11]
[Fig. 1(e)]. This process sets all the off-diagonal elements
of UN to zero by sequentially multiplying the matrices T to
UN , where T ∈UðNÞ performs the SU(2) gate operation
on two specific channels while preserving the others.
Consequently, realizing UN requires NðN − 1Þ=2 SU(2)
gates, which corresponds to the number of pairs of sub- and
super- diagonal elements.
Among the algorithms for designing UðNÞ PPCs [10,11],

the Clements design [11] offers more integrated and loss-
tolerant PPCs than the original Reck design [10], by
adopting a symmetric gate arrangement that enables the

simultaneous execution of ðN − 1Þ=2 SU(2) operations on
average [Fig. 1(a)]. However, regardless of whether the
Reck or Clements design is employed, the resulting PPCs
exhibit the same OðN2Þ scaling in both their footprints and
gate numbers (Table S1 in [28]). This poor scalability is
incompatible with large-scale deep learning and noisy
intermediate-scale quantum computing (NISQ). For in-
stance, considering a conventional SU(2) gate with a foot-
print of approximately 0.5 mm2 [13], a unitary matrix for
1000 photonic neurons or 10 qubits would require a foot-
print of about 0.5 m2 and approximately 106 pairs of passive
and active elements.
To tackle this hurdle, we propose the PPTC, which

utilizes the time evolution coordinate [47–49]. We assign
the resonance mode of each resonator to a channel,
enabling OðNÞ scaling in the footprint by replacing optical
path length [Fig. 1(a)] with evolution time [Fig. 1(b)].
Because SU(2) operations are performed with stored light,
the unit SU(2) gate must be reconfigurable, which facil-
itates OðNÞ scaling in the gate number (Table S1 in [28]).
SU(2) time gates.—A key challenge in replacing spatial

propagation with temporal evolution in resonators lies in
developing a temporal analog of reconfigurable and uni-
versal SU(2) space gates. Considering the SU(2) space gate
composed of Mach-Zehnder interferometers and phase
shifters [Fig. 1(c)], the SU(2) time gate requires time-
varying coupling and resonances. However, achieving such
a temporal equivalent with reconfigurability presents a
significant challenge because coupling is primarily deter-
mined by the fixed spatial distance between resonators.
To address this challenge, we develop the SU(2) time

gate as the fundamental building block of the PPTC, which
takes the form of a resonator lattice. At the operating
frequency, each resonator of the PPTC supports the
pseudospin modes of clockwise (σ ¼ þ1) and counter-
clockwise (σ ¼ −1) wave circulations [50]. Adjacent
resonators are coupled via two nonresonant, single-mode
waveguide loops [50,51] [Fig. 2(a)]. The coupling strength
between resonators is then determined by the decay rate
1=τ of both pseudo-spin modes to a waveguide loop. For
the upper (“U”) and lower (“L”) paths of the loop between
the mth and nth resonators, we apply the time-varying
phase differences to drive dynamical dual-channel gauge
fields ξUmnðtÞ and ξLmnðtÞ, each having opposite signs for
pseudospin modes. The tight-binding Hamiltonian of the
resonator lattice is (note S1 in [28])

H¼−X
m;σ

�
ω0þΔωmðtÞ

�
a†mσamσ

− 1

2τ

X
hm;ni;σ

��
e−iσξUmnðtÞ þe−iσξLmnðtÞ�a†mσanσþH:c:

�
; ð1Þ

where ω0 is the reference resonance frequency, ΔωmðtÞ is
the resonance perturbation of the mth resonator, a†mσ and

FIG. 1. PPTCs with OðNÞ scalability. (a),(b), Uð4Þ PPC (a) and
Uð4Þ PPTC (b). “SU2” boxes indicate the SU(2) operations with
their lengths indicating the spatial or temporal footprint. (c),(d)
SU(2) gates between the nth and (nþ 1)th channels in the PPC
(c) and PPTC (d): Mach-Zehnder interferometers (gray lines),
phase shifters (colored boxes), resonators (circles), and nonreso-
nant waveguide loops (curved triangles). Phase shifters are
applied to resonators (yellow boxes) and waveguides (red and
blue boxes). Black arrows in (a)–(d) denote wave evolutions.
(e) Nulling process. The pairs ðp; qÞ (black) and r, s (red or blue)
represent the matrix element index and the SU(2)-coupling
channels for nulling the ðp; qÞ element, respectively. Colored
arrows in (a),(b) depict the nulling processes, corresponding to
the arrows in (e).

PHYSICAL REVIEW LETTERS 132, 103801 (2024)

103801-2



amσ are the creation and annihilation operators for
the σ pseudo-spin at the mth site, respectively, hm; ni
is the neighboring site indices, and H.c. denotes the
Hermitian conjugate. The unit cell of the lattice—two
coupled resonators—in Fig. 2(a) operates as the SU(2)
time gate.
Given that UN is realized with a set of SU(2) operations

[10,11], we investigate a range of operations accessible
with a SU(2) time gate, setting ξU;Lmn ðtÞ ¼ ξU;LðtÞ,
ΔωmðtÞ ¼ þΔωðtÞ, and ΔωnðtÞ ¼ −ΔωðtÞ. For the σ ¼
þ1 mode of which the field amplitude in the pth resonator
is ψp, we introduce the spinor Ψ ¼ ½ψm;ψn�T satisfying
idΨ=dt ¼ HSΨ, where the Hamiltonian HS is (note S2
in [28])

HS ¼ −ω0σ0 − 1

2τ

�
cos ξUðtÞ þ cos ξLðtÞ�σx

− 1

2τ

�
sin ξUðtÞ þ sin ξLðtÞ�σy − ΔωðtÞσz; ð2Þ

and σ0 and σx;y;z are the identity matrix and Pauli matrices,
respectively.
Because of the time-varying system parameters, Eqs. (1)

and (2) lead to nonlinear dynamics. To gain clearer insight,
we impose the linearized picture by assuming the digital
modulation: setting the constant gauge fields and resonance
perturbation as ξU;LðtÞ ¼ ξU;L and ΔωðtÞ ¼ Δω during
a specific temporal range. For the Stokes vector [52]
S ¼ ½Sx; Sy; Sz�T where Sj ¼ Ψ†σjΨ (j ¼ x, y, and z),
the geometrical evolution of S on the Bloch sphere is
governed by dS=dt ¼ S ×B, where the pseudomagnetic
field B is (note S3 in [28])

B ¼ 2

τ

�
cos ξU þ cos ξL

2
;
sin ξU þ sin ξL

2
;Δωτ

�
T

: ð3Þ

Equation (3) demonstrates that the spinor evolution in
the SU(2) time gate is analogous to the Larmor precession
[53]. The evolution also corresponds to the SU(2) rotation
of the spinor Ψ (note S4 in [28]) for the spinor Hamiltonian
HS ¼ −ω0σ0 −B · σ=2, where σ ¼ exσx þ eyσy þ ezσz is
the Pauli vector.
According to Eq. (3), we define two fundamental system

states (Note S5 in [28]): even-parity gauges without re-
sonance perturbations [Fig. 2(b); ξU ¼ ξL ¼ ξ and
Δω ¼ 0], and odd-parity gauges with resonance perturba-
tions [Fig. 2(c); ξU ¼ −ξL ¼ π=2 and Δω ≠ 0]. The even
and odd states correspond to the spinor rotations about B
on the xy plane [Fig. 2(d)] and along the z axis [Fig. 2(e)],
respectively, allowing seamless coverage of the Bloch
sphere by controlling time t.
UðNÞ operations.—By employing the conventional nul-

ling process outlined in the Clements design [11], we
develop the combination of SU(2) time gates for UðNÞ
PPTCs (note S6 in [28]). This nulling process under the
linearized picture derives the time-coded digital modulation
of system parameters applied to the universal unitary
operations of PPTCs. We note that the designed UðNÞ
PPTCs perform computations through gate cycling instead
of the one-shot, spatial computations found in conventional
PPCs, by reconfiguring SU(2) time gates dynamically.
Considering the upper limit of modulation speed for

refractive index changes, determined by various index
modulation mechanisms—such as all-optical [54,55],
electro-optical [56–58], or thermo-optical [59] schemes—
we assume the first-order low-pass filtering (LPF) for time-
coded modulation signals (note S7 in [28]). For LPF
modulations with the cutoff frequency ωc, we conduct
the time-domain analysis using the sixth-order Runge-
Kutta (RK6) method [60] (note S7 in [28]). Although

FIG. 2. SU(2) time gate. (a) Schematic diagram: circles for
resonators and curved triangles for waveguide loops. Shaded
boxes represent phase shifters. The inset represents the PPTC
composed of time gates. (b),(c) System states with the even-parity
(b) and odd-parity (c) gauges. Black arrows in (a)–(c) indicate
wave circulations. (d),(e) Spinor evolutions for the even-parity
states (d) with ξ ¼ 2π=3 (red) and ξ ¼ π=6 (blue), and the odd-
parity state (e) with Δω ¼ 3 × 10−4ω0. Black dots denote initial
states. 0 ≤ t ≤ 0.8πτ. Supplemental Material movies 1–3 show
the evolutions in (b) and (c).

PHYSICAL REVIEW LETTERS 132, 103801 (2024)

103801-3



we obtain the modulation signals under the linearization,
we apply the RK6 method to the nonlinear Eq. (1) directly
to demonstrate the validity of our assumption.
As the first example, we examine the unitary matrix

UQFT ∈UðNÞ for the two-qubit QFT [61] (N ¼ 22)
achieved with the PPTC. Using the time-coded modula-
tions obtained through the LPF [Fig. 3(a)], the amplitude
and phase of the field inside each resonator are tailored
[Fig. 3(b)]. Figures 3(c) and 3(d) show an example of
the input and output of the two-qubit QFT. As shown in
Fig. 3(d), the output (solid lines) aligns closely with the
expected solution (dashed lines). A slight deviation, likely
due to the LPF, necessitates a more in-depth quantitative
analysis, which we will address subsequently.
Fidelity and measurement.—We investigate the fidelity

of the PPTC for the QFT, and more generally, universal
unitaries: sampling the UðNÞ group uniformly with the

Haar measure [62] to generate K realizations of random
Haar matrices UHaar

k ∈UðNÞ (k ¼ 1; 2;…; K). When we
realize unitary matrices using the PPTC, the time-coded
modulations result in nonunitary operations because Eq. (1)
is nonlinear. Therefore, we develop a stochastic model to
evaluate the PPTC fidelity (note S7 in [28]). The model
utilizes L effective matrix operations {VQFT;l} forUQFT and
{VHaar;l

k } for UHaar
k (l ¼ 1; 2;…; L) obtained from the

relationship between M random inputs and their corre-
sponding outputs calculated by the RK6 method, where
L;M ≫ N. By employing the fidelity [14] comparing the
effective N × N matrix V to U

FðU;VÞ ¼ 2Re
�
TrðV†UÞ�

N þ TrðV†VÞ ; ð4Þ

the fidelities are obtained as FQFT ≡ hFðUQFT; VQFT;lÞil
and FHaar

k ≡ hFðUHaar
k ; VHaar;l

k Þil, where h…il represents the
ensemble average across realizations denoted by index l.
We calculate the fidelities FQFT and FHaar

k for different
LPF bandwidths [Fig. 4(a)], comparing N ¼ 4 and N ¼ 8
in realizing Haar and QFT matrices. The result shows that
higher ωc leads to better fidelities owing to the better
conservation of the designed modulation signals. Although
the importance of ωc becomes more significant as N
increases, three-qubit (N ¼ 8) PPTCs achieve FHaar ≥ 0.95
for ωc ≥ 0.006ω0, where FHaar ≡ hFHaar

k ik is the averaged
fidelity with UHaar

k . The decrease in fidelity originates from
our digital modulation scheme with LPF [Fig. 3(a)].
Techniques in digital signal processing [63], such as
predistortion, can be employed to compensate for this
fidelity degradation. In note S8 of [28], we present an
example of predistortion employing inverse filtering, which
demonstrates a substantial enhancement in fidelities
(FHaar > 0.80 across the entire range of ωc ≥ 0.001ω0).
Figure 4(b) illustrates a measurement setup employing

probe waveguides, similar to conventional approaches
[50,51] (note S7 in [28] for numerical analysis). The
waveguides are coupled to each resonator with an identical
lifetime τe, while ensuring distinct optical paths for the
incident (φþ

n ) and scattering waves (φ−
n ). When we excite a

temporally bounded pulse and normalize the scattering
power Σnjφ−

n j2, the probe waveguides with an identical τe
do not impact the fidelity (note S9 in [28]). However, as
shown in Fig. 4(c), the ratio τe=τ determines the scattering
power. When τe ≫ τ (lower inset), the probe waveguide is
coupled tooweakly to the PPTC to effectively excite inputs.
In contrast, when τe ≪ τ (upper inset), the excited fields
decay too rapidly during the operations. Therefore, the
competition between the excitation and decay results in an
N-dependent optimum point in τe=τ.
To assess the potential performance of PPTCs in prac-

tical implementations, we examine the effect of nonuniform
system parameters on fidelity, including variations in

FIG. 3. QFT PPTC. (a) Time-coded modulations of Δωq and
ξU;Lðp;pþ1Þ for the two-qubit QFT ð1 ≤ p ≤ 3; 1 ≤ q ≤ 4Þ. The

signals undergo LPF with ωc ¼ ω0=100, where ω0 is the
operating frequency. (b) The corresponding temporal evolutions
of the state vectors ψq. The temporal cells Tl

m and D are the
unitary and diagonal matrices, which are the decomposition
matrices of UQFT (note S6 in [28] for details). (c),(d) An example
of the input (c) and QFToutput (d). Resonance fields representing
qubit states j00i, j01i, j10i, and j11i are depicted in the complex
plane. In (d), the solid and dashed lines describe the PPTC output
and ideal solution, respectively. τ ¼ 500 × ð2π=ω0Þ.
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resonant frequencies, intrinsic loss, and external coupling
(note S10 in [28]). The result indicates that achieving the
uniformity of the systems would be critical for realizing
high-fidelity PPTCs, while a fidelity of approximately
≥0.95 for N ¼ 4 is achievable with conventional techno-
logy in integrated photonics. Further discussion on scal-
ability and future research is provided in note S11 of [28].
In conclusion, we proposed a reconfigurable and uni-

versal UðNÞ platform, using temporal degrees of freedom
in line with recent efforts on the space-time analogy,

such as photonic time crystals [23,24] and disorder [26].
The systematic design of time-coded modulations for
high-fidelity unitaries was demonstrated. We envisage
the simultaneous utilization of space-time degrees of
freedom for programmable photonics, considering recent
studies [64,65].
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