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The excitation spectrum of a cigar-shaped strongly dipolar quantum gas at the crossover from a Bose-
Einstein condensate to a trapped macrodroplet is predicted to exhibit peculiar features—a strong upward
shift of low momentum excitation energies together with a strong multiband response for high momenta.
By performing Bragg spectroscopy over a wide range of momenta, we observe both key elements and also
confirm the predicted stiffening of excitation modes when approaching the macrodroplet regime. Our
measurements are in good agreement with numerical calculations taking into account finite size effects.
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The successful production of degenerate quantum gases
of magnetic lanthanide atoms [1,2] has opened the door to
study the physics of strongly dipolar Bose-Einstein con-
densates (BECs), which is fundamentally altered by the
long-range and anisotropic dipole-dipole interaction (DDI).
The competition between the contact and dipolar inter-
actions, together with a stabilization mechanism based on
quantum fluctuations (QF) [3–9], gives rise to the appear-
ance of a wide range of new exotic states, such as macro-
droplets, droplet arrays, and supersolids; see Refs. [10,11]
and references therein.
One of the keys to understanding both the stationary and

the out-of-equilibrium properties of dipolar phases lies in
the knowledge of their spectrum of collective excitations.
Remarkably, the spectrum acquires a distinct momentum
dependence due to the DDI, which is sensitive to the
orientation of the dipoles with respect to the trap axis. As an
example, we consider a dipolar BEC confined in a cigar-
shaped harmonic trap with the weak axis along y. If the
dipole orientation is perpendicular to y and the DDI is
strong enough, then the spectrum of excitations develops a
local minimum at finite momentum [12], called roton in
analogy with helium superfluid [13]; see Fig. 1(a). This
phenomenon, recently observed in experiments [14,15], is a
direct consequence of the change of sign of the DDI from
mainly repulsive to attractive for increasing momentum ky.
The ratio ϵdd ¼ add=as, with add and as being the dipolar
and s-wave scattering lengths respectively, controls the
roton energy gap. By increasing ϵdd, the energy of the roton
mode can be decreased until the point where it completely
softens, giving rise to the formation of supersolids and
independent droplet states [11].
In the complementary case, where the dipole moment

is aligned along y, the DDI is attractive for small ky
and rapidly becomes repulsive as ky increases. Here, the

condensate smoothly enters into a macrodroplet state [16]
when increasing ϵdd above unity [8,9]. In this regime, the
spectrum of excitations is much less explored. Just recently,
theoretical works have revealed remarkable features:
The excitation spectrum undergoes a stiffening, i.e. an
upward curvature at low ky, and a multiband response to
excitations [17–19]; see Fig. 1(b). These distinct character-
istics, denoted as the antiroton effect [18], call for an
experimental verification as they play a crucial role in
shaping the properties of macrodroplet states. Specifically,
the observed stiffening at low k and the spreading of the

FIG. 1. Spectra of excitations of an infinitely elongated dipolar
quantum gas in the roton (a) and antiroton regime (b), corre-
sponding to dipoles oriented perpendicular or parallel to the long
axis of the system, respectively. The calculations are performed
for 166Er in an infinite tube with transversal trapping frequency
ωρ ¼ 2π × 198 Hz, a uniform density of n ¼ 2.3 × 103 μm−1,
where ϵdd ¼ 1.36 for (a) and ϵdd ¼ 1.15 for (b). The color map
shows the strength of the zero-temperature dynamical structure
factor S0. The red dashed line is the variational energy [see
Eq. (2)] and the black dashed line is the free particle energy ϵky.
For visibility, a typical experimental Fourier broadening of 47 Hz
is applied to the DSF.
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system’s response over multiple bands indicates the height-
ened resilience of a dipolar macrodroplet against excita-
tions. This increased stability could potentially lead to the
self-evaporation of these excitations, introducing a novel
and intriguing aspect to the behavior of quantum systems
bound by beyond-mean-field quantum fluctuations, as
seen in dipolar gases and self-bound states in nondipolar
mixtures [20–25].
In the present work we report on the experimental

observation of the antiroton effect by measuring the
excitation spectrum of an erbium quantum gas across
the BEC-macrodroplet crossover. Furthermore, we extend
the current theory to finite systems to determine the
mechanisms underlying the peculiar shape of the spectrum.
Not only do we observe the predicted stiffening of the
lowest excitation branch at low ky, we also measure a
strong multiband response when increasing the imparted
momentum.
To illustrate the physics of the antiroton, let us first

discuss the theoretical framework to determine the excita-
tion spectrum of a dipolar quantum gas in an infinite tube
with constant density. The dynamic structure factor (DSF)
Sðk;ωÞ quantifies the density response of a system to a
density-coupled scattering probe of momentum ℏk and
energy ℏω within linear response theory. For a BEC the
DSF at T ¼ 0 K is given by

S0ðk;ωÞ ¼
X

j

����
Z

dxðu�j þ v�jÞeik·xψ0

����
2

δðℏω − ϵjÞ; ð1Þ

where fujðxÞ; vjðxÞg are the Bogoliubov quasiparticle
amplitudes with respective energies ϵj, and ψ0 is the
condensate wave function. As presented in Refs. [18,19],
the excitations are plane waves along the y direction of the
infinite tube i.e. ujðxÞ → uν;kyðρÞeikyy, with ν labeling the
transverse excitation (e.g. see Ref. [17]), ℏky being the y
component of momentum, and ρ ¼ ðx; zÞ the transverse
coordinates. Together with a variational description of the
transverse structure of the condensate and excitations,
this ansatz allows a simple semianalytical expression of
the dispersion relation for the lowest excitation branch
of the form

ϵvarky
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵky

�
ϵky þ 2nŨαðkyÞ þ 3n3=2gQF

�q
: ð2Þ

Here, ϵky ¼ ℏ2k2y=2m and the quantities ŨαðkyÞ and gQF
describe the (Fourier transform of the) two-body inter-
actions and the effects of quantum fluctuations after the
transverse degrees of freedom are integrated out [26].
In the roton regime (dipoles perpendicular to y), the

variational dispersion relation provides an excellent
description of the full excitation spectrum, as shown by
the remarkable agreement between Eq. (2) and the full
numerical calculation, see Fig. 1(a). The latter, described in

detail in the Supplemental Material [26] and Ref. [15], also
reveals that the dynamic response of the system essentially
involves only the lowest branch.
In the macrodroplet regime (dipoles parallel to y), the

situation is very different. As shown in Fig. 1(b), Eq. (2)
is only capable to describe the low momentum part
(ky < 1=lρ), where lρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mωρ

p
is the characteristic

transverse length scale and ωρ the transverse trapping
frequency. For larger momenta, the variational dispersion
relation deviates substantially from the numerics. More-
over, from the full calculation of the DSF, we also observe a
strong multibranch response of the system for ky ≳ 1=lρ i.e.
the DSF for a single momentum features multiple resonant
energies with weights on the same order of magnitude.
Both aspects suggest the emergence of new phenomena not
captured by the above variational method. We find that the
same qualitative behavior persists also in the experimen-
tally relevant case of a three-dimensional trapped system.
Despite the expected broadening and discretization of the
excitation modes, the antiroton features are still visible,
namely the stiffening of the spectrum with an initial rapid
increase in energy with ky and the strong multibranch
response above ky ≳ 1=lρ.
To probe the theoretical findings, we experimentally

explore the spectrum of excitations of a macrodroplet state
using Bragg spectroscopy. We first prepare a dipolar BEC
of 166Er in the lowest Zeeman state at a magnetic field of
B ¼ 1.9 G pointing along z in a crossed dipole trap,
analogous to Refs. [9,14]. We then prepare the state of
interest by simultaneously rotating the direction of B to
point toward y, ramping its magnitude to the desired value,
and by reshaping the trap to ωx;y;z=2π ¼ ð170; 30; 230Þ Hz,
resulting in a characteristic transverse trapping frequency
ωρ ¼ ffiffiffiffiffiffiffiffiffiffiffi

ωxωz
p ¼ 2π × 198 Hz with a corresponding length

scale of lρ ¼ 0.55 μm. Finally, we perform Bragg spec-
troscopy [33] by illuminating the cloud with a moving
lattice with wave vector kL ¼ k1 − k2 and angular fre-
quency ωL ¼ ω1 − ω2, resulting in a phase velocity of
vL ¼ ωL=jkLj, see Fig. 2(a) [26].
In the experiment, kL is aligned along y such that

kL ¼ kLŷ. The lattice is created by letting two laser beams
(k1, ω1) and (k2, ω2), red-detuned by about 40Γ from the
main electronic transition of erbium at 401 nm, intersect at
an angle θ at the position of the atoms. The two beams drive
a two-photon transition when the resonance condition
ℏωL ¼ ϵðkLÞ is met, transferring momentum kL and energy
ℏωL to the atoms. The imparted momentum and energy
can be independently controlled via the digital micro-
mirror device used to create both beams. We use a pulse
duration of τ ¼ 8.3 ms, corresponding to roughly a quarter
of the axial trap period, as a compromise between mini-
mizing Fourier broadening and the influence of the trap on
the momentum of the excited atoms. The power of the
Bragg beams is chosen for each measurement in a range of
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1–7 mW such that a clear excitation signal is seen on
resonance while the maximum excited fraction is kept
below 20%. We probe the atomic cloud by standard
absorption imaging along z after a total 30 ms time-of-
flight (TOF) expansion. Excitations are then visible either
as a separated peak for large kL, or as an asymmetric
broadening of the momentum distribution for low kL.
A more detailed description of our Bragg-spectroscopy
setup based on a digital micromirror device can be found
in Ref. [15].
From the 2D momentum distribution—assuming ballistic

expansion during TOF—we extract the momentum profile
along y by integrating out the x-direction nðkyÞ ¼R
nðkx; kyÞdkx, and then calculate the mean momentum

per particle as k̄y ¼
R
kynðkyÞdky=

R
nðkyÞdky [26]. One

can show that this quantity is directly proportional to the
zero-temperature dynamical structure factor S0ðk;ωÞ in the
linear response regime as

k̄y ¼ kL
πτV2

0

2ℏ
S0ðkL;ωÞ; ð3Þ

where V0 is the depth of the moving lattice [34,35].
This comparison between the mean imparted momentum
and the dynamic structure factor is particularly robust since
it is insensitive to scattering processes during or after
the excitation pulse and does not rely on any fitting
parameters [26].
Figures 2(b)–2(d) shows examples of the measured

response of the system k̄y as a function of the excitation
frequency ωL=ωρ for three different values of the imparted
momentum kL. At low momentum (kL ¼ 0.59=lρ), we
observe one prominent resonance around ωL ≈ 1.5ωρ

indicating the presence of a single excitation branch. For
larger momenta (kL ¼ ½1.0; 1.76�=lρ), we instead observe a
multipeak response, signalling that additional resonances
at higher energies start to appear and become more pro-
nounced when increasing kL, see Figs. 2(c) and 2(d).
A direct comparison of our experimental spectra to the
expected response of the system from the full calculation
reveals a good agreement with both energies and strengths
of the excitation resonances when we take into account the
expected Doppler and Fourier broadening [26]. While the
Fourier broadening of δωF=2π ≈ 47 Hz does not depend
on the probing momentum and determines the resonance
width at low kL, the Doppler broadening increases with
kL like δωD=2π ≈ 58 Hz × kLlρ, limiting our ability to
observe separated excitation branches due to their increas-
ing spectral width.
We reconstruct the full spectrum of excitations by

repeating the above measurements over a wide tuning
range of kL ¼ ½0.06; 2.38�=lρ. Figure 3 summarizes our
experimental results together with the numerical calcula-
tions. The measured spectrum of excitations [Fig. 3(a)]
shows the predicted steep upward curvature of the first
excitation branch for low kL, with an additional decrease of
its slope and the appearance of a strong multiband response
for increasing momentum. The datapoints mark our
extracted resonance positions obtained by fitting multiple
Gaussians to the obtained spectra for fixed kL as shown
in Figs. 2(b)–2(d).
Figure 3(b) shows our experimental results on top of

the calculated DSF taking into account the expected
Doppler and Fourier broadening as direct comparison,
while Fig. 3(c) plots the bare theory spectrum without
any broadening as reference. We find very good agreement
between our experimental results and the numerical cal-
culations, confirming the existence of the antiroton phe-
nomena, which signalizes the macrodroplet’s resilience to
excitations. This rigidity is expected to further increase
when moving from the BEC toward the macrodroplet
regime [19]. This behavior becomes apparent from our
study, showing that an ever-increasing energy is needed to
excite the system as ϵdd increases. Figure 4(a) summarizes
these findings. Here, for each point, we experimentally
Bragg excite the system at a fixed momentum kL ¼ 1.30=lρ
and extract the excitation frequency belonging to the lowest

FIG. 2. (a) Illustration of the experimental setup: A BEC of
166Er in an elongated trap with the dipole moment aligned along
the weak axis y. Bragg spectroscopy is performed by intersecting
two beams at the BEC which impart momentum ℏkL and energy
ℏωL. (b)–(d) Measured response of the system k̄y as a function of
the excitation frequency ωL=ωρ for three different values of the
imparted momentum kL ¼ ½0.59; 1.0; 1.76�=lρ, respectively. The
black line is the sum of three Gaussians (dashed lines) fit to the
data. The green lines are the theoretically calculated values of
S0ðky;ωÞ, rescaled in amplitude and accounting for the exper-
imental Fourier and Doppler broadening.
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branch of the spectrum. We then repeat the measurement
for various interaction parameters in the range ϵdd ¼
½0.73; 1.12� and observe the expected increase of excitation
energy with increasing ϵdd in quantitative agreement to
theory.
While the results clearly show the stiffening and

dispersion of the response of a macrodroplet over multiple
branches of excitation, the physical origin of this phe-
nomenon and the reason for the failure of the variational
approach still await explanation. We find that a first
important indication comes from the theoretical study of
the transverse behavior of the system. While the variational
approach [Eq. (2)] imposes a Gaussian-type transverse
profile of the excitation modes, regardless of energy, the
numerical results show a marked change in the profile at
low and high energy. This observation is exemplified in
Figs. 4(b) and 4(c), in which we compare the profile of the
density fluctuations jδnj2 for specific excitation modes in
the lowest branch at different energies ϵj. From the profile
integrated along the axial direction, we observe that for
increased energy the transversal profile of the excitation
mode changes from a Gaussian-like shape to a more
broadened multipeak structure, substantially differing from
the ground-state wave function. This leads to a drastic
reduction of the strength of the DSF of the lowest branch,
since it scales directly with the overlap integral between the
condensate and the excitation wave functions, see Eq. (1).
As a consequence, the higher branches pick up more
relative weight due to the f-sum rule [36], leading to the
multiband response. This behavior of the shape also
explains the breakdown of the variational model, as it
assumes a similar transverse structure for the excitations

and the condensate which is only valid for small energies in
this regime.
But why do the excitations change their shape in the first

place? Here one should be reminded that dipolar inter-
actions exhibit a momentum dependence. In the macro-
droplet regime, DDI are becoming attractive for small
momenta and strongly repulsive for large momenta.
Therefore excitations with large momentum exhibit a large

FIG. 3. Excitation spectrum of an elongated 166Er cloud polarized along the weakly confined axis with ϵdd ¼ 1.13,N ¼ 25ð5.0Þ × 104

and trapping frequencies ωx;y;z=2π ¼ ð170; 30; 230Þ Hz. (a) Measured response of the system k̄y as a function of ωL=ωρ and kL. The
datapoints denote the experimentally detected resonance positions from fits as shown in Figs. 2(b)–2(d) with the error bars indicating
one standard error from the fit. The black lines represent the maxima of S0ðky;ωÞ from our numerical calculation. (b) Detected resonance
positions on top of the calculated S0ðky;ωÞ as indicated by the color map, including Fourier and Doppler broadening. (c) Calculated
S0ðky;ωÞ for our finite system with minimal broadening. (a)–(c) Each momentum column is normalized to the maximum value.

FIG. 4. Stiffening and shapes of excitation modes. (a) Fre-
quency of the first excitation branch versus ϵdd at fixed excitation
momentum kL ¼ 1.30=lρ. The error bars denote one standard
error from the fit. The shaded area corresponds to the theoretical
predictions within a range of atom number N ¼ ½15; 35� × 104.
ðb2Þ,ðc2Þ Shapes of the numerically calculated excitation modes
at ϵdd ¼ 1.13 and energies ϵj=ℏ ¼ 0.51ωρ (b) and ϵj0=ℏ ¼
1.87ωρ (c) represented via plots of jδnjj2 ¼ jðu�j þ v�jÞψ0j2. The
dashed lines mark the 1/e size of the condensate. ðb1Þ,ðc1Þ Pro-
files of the excitation modes after integration along y. The dashed
lines mark the integrated shape of the condensate.

PHYSICAL REVIEW LETTERS 132, 103401 (2024)

103401-4



repulsion from the condensate, forcing them to reduce their
overlap to lower the energy. This goes hand-in-hand with
the transition from collective to single-particle excitations
as the excitation energy increases above the chemical
potential μ of the condensate [36].
In summary, this work presents the first measurement of

the excitation spectrum of a dipolar quantum gas in the
crossover regime from a Bose-Einstein condensate to a
macrodroplet state. While a dominant side-by-side dipole
orientation typically leads to a softening of the excitation
spectrum, resulting in the emergence of the roton spec-
trum [12,14] and eventually supersolidity [11], our obser-
vations reveal a contrary behavior. Specifically, we note a
stiffening of the excitation spectrum and a spreading of the
dynamic structure factor across multiple branches when
dipoles are primarily arranged head to tail. This phenome-
non, referred to as the antiroton effect, becomes particularly
pronounced in the macrodroplet phase, imparting a resis-
tance to the formation of density modulations.
Our findings open the path for further investigation into

the excitations of the macrodroplet and their impact on the
system’s behavior, especially in the self-bound regime. In
this scenario, it is predicted [17,19] that reducing the
confinement will transform the multiple discrete branches
that couple to axial probing into just one discrete branch
and a continuum of excitations. The observed increased
stiffening is also predicted to induce self-evaporation of
excitations [37], prompting questions about interpreting
finite temperature effects in such systems. Another unre-
solved aspect is whether the system has a critical velocity and
its relation to the incompressible nature of the droplet [19].
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