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We compute the total cross section and invariant mass distribution for heavy-quark pair production in
eþe− annihilation at the next-to-next-to-next-to-leading order in QCD. The obtained results are expressed
as piecewise functions defined by several deeply expanded power series, facilitating a rapid numerical
evaluation. Utilizing top-pair production at a collision energy of 500 GeV as a benchmark, we observe a
correction of approximately 0.1% for the total cross section and around 10% for the majority of the
invariant mass distribution range. These results play a crucial role in significantly reducing theoretical
uncertainty: the scale dependence has been diminished to 0.06% for the total cross section and to 5% for the
invariant mass distribution. This reduction of uncertainty meets the stringent requirements of future lepton
colliders.
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Introduction.—As the heaviest particle in the standard
model of particle physics, the top quark plays a crucial role in
both precision electroweak physics and physics beyond the
standardmodel [1]. Currently, the topquark ismainly studied
by hadron colliders, which, for example, determine top-
quark mass with uncertainties about 500–600 MeV [2,3].
Study of the top-quark pair production at future lepton

colliders is important to further pin down properties of the
top quark [4–10], due to the substantially cleaner hadronic
environment aspects related to hadronic initial state radi-
ation. For example, at the International Linear Collider
[10], uncertainties of top-quark mass can be reduced to
50 MeV by measuring top-quark pair production near
threshold. While by measuring the cross section and
forward-backward asymmetry for the top-quark pair pro-
duction at 500 GeV, form factors for the top-quark
couplings to the photon and the Z boson can be determined
with relative uncertainties smaller than 0.3%. To exploit the
full potential of future colliders, it is imperative to under-
take advanced computations for the cross section and
differential distributions of top-pair production at higher
orders within the framework of perturbation theory.
Full next-to-leading order (NLO) QCD correction was

first computed in Ref. [11] and NLO electroweak effects

together with NLO QCD correction was provided in
Ref. [12]. Next-to-next-to-leading order (NNLO) QCD
correction to the total cross section was first obtained in
Ref. [13] using Padé approximation based on the results of
threshold expansions, high-energy expansions and low-
energy expansions. Direct calculation of the cross section
and differential distributions at NNLO QCD with full top-
mass dependence was provided in Refs. [14–17]. At the
next-to-next-to-next-to-leading order (NNNLO) level, par-
tial total cross section was obtained utilizing Padé approxi-
mation [18,19], specifically excluding the singlet
contribution like diagrams such as Fig. 1(b). For top-pair
production cross section near threshold, NNNLO QCD
correction has been achieved in Refs. [20,21]. In
Refs. [22,23], massive form factors at three loops were

FIG. 1. Representative Feynman diagrams at NNNLO.
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obtained, which are building blocks for complete NNNLO
QCD corrections. Despite significant theoretical advance-
ments, a comprehensive NNNLO QCD calculation for the
total cross section is notably absent. Moreover, tackling the
complexities of differential observables remains a substan-
tial challenge, with no single study addressing this in the
existing literature.
In this Letter, we offer a comprehensive computation of

the NNNLO QCD corrections to the total cross section in
the process eþe− → γ�=Z� → tt̄. This encompasses sce-
narios involving an off-shell photon (γ�) and/or an off-shell
Z boson (Z�), and the validity extends across the entire
physical region. Additionally, we introduce a first compu-
tation of the differential distribution up to NNNLO in QCD,
exemplified by the invariant mass distribution of the
top-quark pair. Our computations are achieved in a semi-
analytical way taking advantage of newly proposed meth-
ods and released tools. All integrals including phase-space
integrals and loop integrals are expressed as piecewise
functions represented by several deeply expanded power
series in the physical region. As a result, the final total cross
section and invariant mass distribution can be used pre-
cisely and efficiently. Employing identical methodologies,
we further derive NNNLO QCD corrections for the
production cross sections of cc̄ and bb̄.
Calculation.—We take the total cross section as an

example to illustrate our computation methods. We gen-
erate the Feynman amplitudes with QGRAF [24], with some
sample Feynman diagrams shown in Fig. 1. Note that the
four-top final state contributions, which can be measured
separately, are not included in our calculation. We use our
in-house Mathematica package to deal with Lorentz and
color algebras, and express all squared amplitudes as linear
combinations of scalar integrals, which have been mapped
to predefined integral families respectively. Phase-space
integrals are treated in the same manner as loop integrals in
our calculation taking advantage of the reverse unitarity
[25–27]. The coefficients of integrals are some simple
rational functions of the squared center-of-mass energy s,
squared heavy quark mass m2, dimensional regulator
ϵ ¼ ð4 −DÞ=2, number of light fermions nl and Nc of
the SUðNcÞ gauge group.
Integration-by-parts (IBP) reduction [28] is used to

express integrals in each family as linear combinations
of a minimal set of so-called master integrals. We realize
this by a two-step strategy. At the first step, we use LiteRed

[29] and FiniteFlow [30] to generate and solve the system of
IBP identities based on Laporta’s algorithm [31] over finite
field. A small number (typically 50) of numerical sam-
plings are sufficient for us to construct the block-triangular
relations for target integrals proposed in Refs. [32,33]. At
the second step, we use these much more efficient block-
triangular relations to obtain large amount (typically 1000)
of samplings to eventually reconstruct the reduction coef-
ficients. In this work, the two-step strategy typically

reduces the computational time by 1–2 orders, depending
on families, compared with the reduction without using
block-triangular relations. We note that this is the first time
the block-triangular relations are used to tackle a physical
problem.
The master integrals are computed using differential

equations [34] based on power series expansion [35,36].
The differential equations of master integrals with respect
to x ¼ 4m2=s are constructed using the aforementioned
IBP reduction. To fix the boundary conditions, say at an
arbitrary regular point x ¼ 4=23, we utilize the auxiliary
mass flow method [37–40] implemented in AMFlow [41].
With these in hand, we are able to construct a piecewise
function for each master integral using the differential
equation solver in AMFlow, as 5 deeply expanded power
series at the following points x → f0; 1

4
; 1
2
; 3
4
; 1g, where 0,

1=4, and 1 are singular points and 1=2 and 3=4 are regular
points. The expansion at each point, say x0, offers a rapidly
converging estimation, particularly within the range
x∈ ðx0 − 1=8; x0 þ 1=8Þ. Consequently, the entire physical
region x∈ ð0; 1Þ is comprehensively covered.
It is widely recognized that within dimensional regu-

larization, the simultaneous satisfaction of the anticommu-
tation relation fγμ; γ5g ¼ 0 and the cyclicity of the Dirac
trace poses a challenge. In practical applications, the
maintenance of the anticommutation relation is not only
favored for computational simplification but is also valued
for its potential to safeguard chiral symmetry and, con-
sequently, gauge invariance [42]. This approach necessi-
tates a specific prescription for reading a fermion loop,
which we choose the KKS scheme [43–45]. In the KKS
scheme, the ultimate result is defined as the average of all
conceivable reading points, originating from both the head
and tail of an axial-vector three-point fermion-gauge sub-
graph that encompasses the maximal one-particle-irreduc-
ible non-singlet-type loop correction [45,46]. In this
context, the terms “singlet” and “non-singlet” are defined
within the framework of Feynman diagrams, indicating
whether the external current directly couples to a fermion
loop within the relevant part of the Feynman diagram. This
distinction is exemplified in Fig. 1(b) and 1(a, c, d),
respectively. For our calculation within the standard model,
which is anomaly-free, no additional finite renormalization
is required to restore symmetries when using the KKS
scheme, at least to the order considered here [45,46].
As we are working in the bare perturbation theory, we

need to replace bare quantities by renormalized ones before
physical results can be obtained. QCD coupling is renor-
malized in the MS scheme, and heavy quark mass and
fields are renormalized in the on-shell scheme. Both
coupling renormalization and field renormalization can
be realized by simply multiplying the bare results by

proper powers of ZMS
αs and ZOS

2 . Heavy quark mass
renormalization is more complicated because it is not
multiplicatively renormalizable. We replace bare mass by
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renormalized mass via mb ¼ mOS þ δm, and keep on-shell
condition of external heavy quark momentum p2 ¼ ðmOSÞ2
untouched. In the spirit of perturbation theory, δm is a
small quantity and can be expanded to any desired order.
The expansion can be readily implemented either at
the integrand level or, alternatively, at the integral level
by formulating and solving differential equations with
respect to δm. After the expansion of δm, we can sub-
stitute renormalization constants, which can be found in
Refs. [47–49], to obtain the final renormalized cross
section. We note that performing renormalization in this
way makes our calculation very systematic, and at the same
time introduces negligible efforts against the calculation of
bare cross section at the highest order in αs.
Another key technique in our calculation is that the

master integrals are calculated with numerical values of ϵ
and the ϵ dependence is only reconstructed at the cross
section level, as proposed in Refs. [40,41]. The advantage
of this technique is that we do not need to manipulate
Laurent expansions of ϵ during the intermediate stages of
calculations, which significantly reduces the computa-
tional time.
Finally, we discuss how to compute differential cross

sections based on the previously outlined methods. Using
the invariant mass distribution of the heavy-quark pair as an
example, the differential cross section can be derived by
inserting a delta function δ

�ðpQ þ pQ̄Þ2 −M2
QQ̄

�
into the

final state phase space integration. This integration can be
approached similarly to the total cross-section calculation,
noting that the delta function can be expressed as cut
propagators using reverse unitarity [25–27]. We highlight
that the boundary conditions for differential equations of
master integrals in differential cross-section computation
can be determined by aligning them with integrals from the
total cross section. Specifically, we solve the differential
equation and formulate master integrals as piecewise
functions of MQQ̄, represented by 13 deeply expanded
power series with undetermined coefficients. By integrating
over MQQ̄, we collapse the cut propagator and arrive at
integrals that belong to the integral families of the total
cross section, which are already known. Consequently, we
can ascertain both the unknown coefficients and the
piecewise functions.
Thanks to all these strategies mentioned above, the

computational resources utilized in this work amount to
less than 105 CPU core hours in total.
Results.—By combining everything together, we end up

with final results at the NNNLO level, which are free of
ultraviolet and infrared divergences as expected from the
Kinoshita-Lee-Nauenberg theorem [50,51]. Our result of
the NNNLO total cross section is expressed as a piecewise
function of x ¼ 4m2=s represented by 5 power series.
Expanding these series to 40 orders enables us to achieve at
least 10 correct digits in the physical region, with a relative
error of approximately 2−40 ∼ 10−12. The expressions can

be found in a computer-readable ancillary file attached to
this Letter [52].
To provide numerical result for top-quark pair produc-

tion, we choose top-quark mass as m ¼ 172.69 GeV [53]
and set all other quarks as massless. Electromagnetic
coupling is chosen as a fixed value α ¼ 1=132.2, and
strong coupling αsðμÞ is running as a function of renorm-
alization scale μ, which is computed using the RunDec

package [54,55] with input value α
nf¼5
s ðmZÞ ¼ 0.1181.

Other electroweak parameters are chosen from Ref. [53].
Figure 2 shows our result for the total cross-section of tt̄

production, where LO, NLO, NNLO, and NNNLO are
shown in black, blue, green and red respectively, and the
dashed, dotted, and dot-dashed lines correspond to γ − γ,
Z − Z, γ − Z and Z − γ contributions at NNNLO, respec-
tively. In the upper panel, the middle lines of each band
correspond to the choice of μ ¼ ffiffiffi

s
p

for the renormalization
scale, and the upper and lower lines correspond to the scale
variations between μ ¼ ffiffiffi

s
p

=2 and μ ¼ 2
ffiffiffi
s

p
. It can be

found that the NNNLO correction significantly reduces
the scale dependence. However, the NNNLO result near the
production threshold, say for

ffiffiffi
s

p
< 370 GeV, still suffers

from large uncertainty due to Coulomb interaction.
Perturbative calculations become unreliable in this region,
necessitating the application of resummation for further
improvement [20,21,56].
The total cross section can also be expressed in the form

σNNNLO ¼ σLOð1þ Δ1 þ Δ2 þ Δ3Þ; ð1Þ

where the order αs, α2s and α3s correctionsΔ1,Δ2 andΔ3 are
displayed in the lower panel of Fig. 2 as functions of the
center-of-mass energy, respectively. The renormalization
scale is set to

ffiffiffi
s

p
. The smallness of Δ3 confirms a good

convergence of perturbative expansion with respect to αs.
In Fig. 3, we further show the reduction of the scale

dependence after includingOðα3sÞ correction by varying the
renormalization scale in a larger range. It is found that, for a
collision energy of 500 GeV, the scale dependence has been

FIG. 2. Total cross section for tt̄ production. Refer to the text
for details.
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reduced from 0.60% at NNLO to 0.06% at NNNLO by
varying the scale between μ ¼ ffiffiffi

s
p

=2 and μ ¼ 2
ffiffiffi
s

p
, which

meets the precision requested by, e.g., International Linear
Collider [10].
The situation is analogous for bb̄ or cc̄ production

cases, as illustrated in Fig. 4. In these instances, an on-
shell heavy-quark mass is chosen as mb ¼ 4.8 and
mc ¼ 1.5 GeV, respectively. Except the threshold region
where perturbation is unreliable, theoretical uncertainties
are significantly reduced, making them valuable for
describing corresponding processes, like the so-called R
ratio. It is important to note that, in our calculation, quarks
with masses heavier than the considered heavy quark are
excluded, while those with masses lighter than the con-
sidered quark are treated as massless. Additionally, our
consideration is limited to diagrams mediated by an off-
shell photon (γ�) since the mass of the Z boson significantly
exceeds the energy scale of interest here.
As a first instance of NNNLO differential cross-sections,

Fig. 5 illustrates the invariant mass distribution of the top-
quark pair for a collision energy of 500 GeV. The
distribution increases as Mtt̄ becomes larger and becomes
singular when Mtt̄ approaches its maximum value of

ffiffiffi
s

p
,

where QCD radiations must be soft. In this region, the
fixed-order prediction breaks down, prompting us to take
an average over a 20 GeV bin. Although fixed-order

perturbation theory also breaks down when Mtt̄ ∼ 2mt,
this region is negligible due to the significant suppression
by phase space considerations. On the whole, the pure
Oðα3sÞ correction introduces a significant modification to
the lower order result, falling within the range of approx-
imately 9% to 13% for Mtt̄ ∈ ½370; 480� GeV and about
−1% for the bin at the end point. The scale uncertainties
have been mitigated to approximately 5% across the
majority of the distribution range. This represents a con-
siderable impact for phenomenological study.
Verification.—Besides free of ultraviolet and infrared

divergences, our results have been checked in several other
aspects, which we describe in the following.
Our result for tt̄ total cross-section and invariant mass

distribution at NNLO agrees with that obtained in
Refs. [14,16]. Specifically, we have replicated Fig. 3,
Fig. 7, and the left plot of Fig. 10 in Ref. [14], and
reproduced Fig. 1, Fig. 2, and the right plot of Fig. 5 in
Ref. [16]. Our three-loop contribution agrees with
Refs. [22,23] to 7 digits provided there. Our non-singlet
results at NNNLO agree with [18,19] within their uncer-
tainty. [While singlet contributions are suppressed near the
production threshold, as they exchange two fewer Coulomb
gluons compared to nonsinglet contributions, they become
crucial with increasing energy. Numerically, NNNLO
singlet contributions become as large as non-singlet con-
tributions when

ffiffiffi
s

p
=ð2mÞ > 5.] All master integrals

involved in total cross section, obtained by solving differ-
ential equations with respect to x with boundary conditions
given at x ¼ 4=23, have been checked by AMFlow at another
phase space point x ¼ 15=16 with at least 10 digits
precision. By integrating the invariant mass differential
distribution at NNNLO, we found perfect agreement with
total cross section.
For the vector current contributions, we also calculate the

forward scattering amplitude of a virtual photon at 4-loop
level without cut, and then relate its imaginary part to the
desired cross section by virtue of optical theorem. The
results agree perfectly with that obtained using default
methods. Note that using optical theorem could induce

FIG. 3. Scale dependence for tt̄ production at
ffiffiffi
s

p ¼ 500 GeV.

FIG. 4. Total cross section for bb̄ and cc̄ production. FIG. 5. The Mtt̄ distribution at
ffiffiffi
s

p ¼ 500 GeV.
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undesired final states, including states with no heavy
quarks and states with four heavy quarks, which are
subtracted by calculating virtual corrections and real
radiations using the default methods.
To validate the appropriateness of the chosen γ5 scheme,

we performed a cross-check by computing the singlet part
of the axial-axial contribution at NNNLO using the Larin
scheme [57,58]. Our focus was specifically on the axial-
axial contribution, as the vector-vector contribution does
not involve γ5, and the vector-axial contribution is zero.
Moreover, for the nonsinglet portion of the axial-axial
contribution, the use of the anticommuting γ5 scheme is
unambiguous, because there will always be an even number
of γ5 in the Dirac trace. Consequently, our consideration is
confined to the singlet part of the axial-axial contribution.
Our findings indicate that the results obtained using the
KKS scheme align with those obtained using the Larin
scheme, following a finite renormalization in the latter
scheme [57–59].
Summary.—In this Letter, we present the complete

NNNLO QCD correction to the cross section of heavy-
quark pair production at lepton colliders. Additionally, we
provide the first differential cross section, specifically the
invariant mass distribution, at the same order. Using top-
quark pair production at a collision energy of 500 GeVas a
benchmark, we observe a correction of approximately 0.1%
for the total cross section, while the correction for the
invariant mass distribution ranges around 10% for most
values away from the end point. The NNNLO QCD
correction largely reduces the scale dependence. These
results hold significant value for the precision testing of
heavy-quark pair production.
The derivation of our results involves the integration of

various powerful techniques, like reverse unitarity, finite
field, block-triangular relations, and numerical sampling
of ϵ. Our strategic approach is not only tailored to the
specific process studied here but is also versatile enough to
be applied to numerous other processes, including differ-
ential observables. This versatility holds promise for
advancing perturbative calculations to unprecedented
orders in various contexts.
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