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We study integrated correlators of four superconformal primaries Op with arbitrary charges p inN ¼ 4

super Yang-Mills theory. The hO2O2OpOpi integrated correlators can be computed by supersymmetric
localization, whereas correlators with more general charges are currently not accessible from this method
and, in general, contain complicated multiple zeta values. Nevertheless, we observe that, if one sums over
the contributions from all different channels in a given correlator, then all the multiple zeta values (and
products of ζ’s) cancel, leaving only ζð2lþ 1Þ at l loops. We then propose an exact expression of such
integrated correlators in the planar limit, valid for arbitrary ‘t Hooft coupling. The expression matches with
the known exact localization-based results for specific charges, as well as with all existing perturbative and
strong-coupling results in the literature for more general charges. As an application, our result is used to
determine certain seven-loop Feynman integral periods and fix previously unknown coefficients in the
correlators at strong coupling.
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Introduction.—Correlation functions of four superconfor-
mal primary operators, hp1p2p3p4i≔ hOp1

Op2
Op3

Op4
i,

in N ¼ 4 super Yang-Mills (SYM) theory are quantities
of great interest, which have been computed perturbatively
in the planar theory to ten loops in the ‘t Hooft coupling
λ [1–3], as well as at strong coupling to Oðλ−3Þ [4–12] (see
the review [13] containing further references). Here Op is a
superconformal primary single-particle 1=2-Bogomol'nyi-
Prasad-Sommerfield (BPS) operator with charge p,

Opðx; yÞ ¼ Tr½ϕðx; yÞp� þ � � � ; ð1Þ

where the dots denote multitrace terms and ϕðx; yÞ are the
six fundamental scalars, with x the spacetime variable and y
an internal equivalent variable packaging together the six
scalars into a single object. There are not many quantities in
quantum field theories with more than two dimensions that
are known exactly. However, Ref. [7] showed that a special
class of such four-point functions, h22ppi, may be com-
puted exactly in both theYang-Mills coupling τ and number
of colors N when they are integrated over their spacetime
dependence with a certain measure (equivalent to integrat-
ing over all four spacetime points modulo the conformal

group [14]). This remarkable fact arises by relating the
integrated correlators to the partition function of N ¼ 2�
SYM theory on the four-sphere that can be computed using
localization [15–17]. Exact finite-N and finite-τ expres-
sions are indeed obtained by exploring the localization
formula, see Refs. [20,21] for h2222i and [22–24] for more
general h22ppi correlators. The localization techniques,
however, do not extend to general correlators beyond the
h22ppi case [7,25,26], which we will study in this Letter.
We consider integrated correlators for the most general

four-point functions hp1p2p3p4i. We observe that a great
simplification occurs at five loops if we sum over all
contributions from different SUð4ÞR channels. Inspired by
this as well as explicit perturbative results, we will present a
remarkably simple and exact expression (valid for arbitrary
λ) for any integrated correlator, summed over SUð4ÞR
channels, in the planar limit. In addition to reproducing
the h22ppi case in [7], the expression agrees with the
existing results in the literature for more general correlators
at both weak coupling [1,27] and strong coupling [10,11].
Importantly, the strong-coupling results had no input in
obtaining the formula and thus provide very strong support.
The strong-coupling results will also be used to constrain
unfixed parameters in the dual anti–de Sitter (AdS)
amplitudes [10,11].
Perturbative integrated correlators and periods.—We

begin by considering integrated correlators perturbatively
in the planar limit where all correlators are given by a single
object due to a ten-dimensional (10D) symmetry discov-
ered in [3] (see also [28,29]). In order to manifest this
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symmetry, it is useful to introduce a single operator that
generates all the single-particle operators,

Oðx; yÞ ¼
X∞
p¼2

1

p

�
16π4

c

�
p=4

Opðx; yÞ; ð2Þ

with c ¼ ðN2 − 1Þ=4. Then (in the planar perturbation
theory) the claim is that four-point functions of all
single-particle 1=2-BPS operators hp1p2p3p4i combine
together into the following “master correlator,”

hOðx1;y1ÞOðx2;y2ÞOðx3;y3ÞOðx4;y4Þi¼ free part

þI4ðxi;yjÞ
2c

X∞
l¼1

�
λ

4π2

�
l 1

l!

Z
d4x5

ð−4π2Þ � � �
d4x4þl

ð−4π2Þf
ðlÞðx2

ijÞ;

ð3Þ

where λ ¼ Ng2YM is the ‘t Hooft coupling, and I4ðxi; yjÞ is
a known prefactor arising from superconformal symmetry.
The bold spacetime invariants x2

ij combine the external and
internal variables into a natural 10D object,

x2
ij ≔ x2ij − y2ij ¼ x2ijð1 − gijÞ; ð4Þ

with gij ≔ y2ij=x
2
ij, and yi ¼ 0 if i > 4 (thus, gij ¼ 0 if i or

j > 4). The function fðlÞðx2
ijÞ is given as a sum over planar

f graphs [1,27] (see also [2,30]),

fðlÞðx2
ijÞ ¼

X
α

cðlÞα fðlÞα ðx2
ijÞ; ð5Þ

fðlÞα ðx2
ijÞ ¼

1

jautðαÞj
X

σ ∈ Slþ4

Y4þl

i;j¼1

1

ðx2
σiσjÞe

α
ij
; ð6Þ

where α are ð4þ lÞ-point graphs with net weight 4 at
each vertex, and eαij is the number of edges between points i
and j (we choose a particular labeling of the graph to define
eαij; numerator edges between i and j are negative). Here
we sum over full permutation symmetry Slþ4 [1,27], and
jautðαÞj is the symmetry factor of the graph.
We now consider the integrated correlators. These have

been defined (in the h22ppi cases) by integrating the
correlators [omitting the “free part” and divided by the
prefactor I4ðxi; yjÞ as well as the factor gp−234 ] over a certain
measure. As shown in [14], this measure is equivalent to
simply integrating over the four external variables (modulo
the conformal group),

Z
dμ � � � ¼ −

1

π2

Z
d4x1;…; d4x4
vol½SOð2; 4Þ� � � � : ð7Þ

Note that it only makes sense to integrate in this way
conformally covariant objects with conformal weight 4 at

each of the four points xi against this measure. Dividing by
gp−234 gives the correct weight to be integrated.
This also shows the natural way to define integrated

correlators of arbitrary charges hp1p2p3p4i. They are more
general polynomials of gij, so we cannot simply divide by
gij factors; we instead integrate separately each coefficient
of the gij polynomial. Equivalently, we write the correlator
as a function of x2ij; gij rather than x2ij; y

2
ij and treat gij as

constants.
Combined with the 10D symmetry (3) then all such

integrated correlators are obtained from the integrated
master correlator

Cðλ; gijÞ ≔ −
X∞
l¼1

�
λ

4π2

�
l

×
Z

d4x1;…; d4x4þl

vol½SOð2; 4Þ�
fðlÞ

�
x2ijð1− gijÞ

�
π2l!ð−4π2Þl : ð8Þ

Here we integrate over all ð4þ lÞ (internal and external)
points. For every individual term in the permutation sum

in a particular f-graph contribution fðlÞα (6), the xij and
ð1 − gijÞ terms completely factorize and, after integration,
the xij contributions from a given f graph contribute

equally, all giving the period of the graph fðlÞα . Thus, all
the integrated correlators package together as

Cðλ; gijÞ ¼ −
X∞
l¼1

�
λ

4π2

�
l

×
1

l!ð−4Þlþ1

X
α

cðlÞα P
fðlÞα

fðlÞα ð1 − gijÞ; ð9Þ

where the periods are defined as

P
fðlÞα

¼ 1

ðπ2Þlþ1

Z
d4x1;…; d4x4þl

vol½SOð2; 4Þ� fðlÞα ðx2ijÞ: ð10Þ

Periods of Feynman integrals of the form (10) have been
studied quite extensively [31–38], which have been utilized
for integrated correlator h2222i [14].
Let us consider some examples. At one loop, we have

fð1Þðx2ijÞ ¼
1Q

1≤i<j≤5x
2
ij
; ð11Þ

and so the integrated master correlator is simply (recall
y5 ¼ 0 and gi5 ¼ 0)

−
1

1!ð−4Þ1
Pfð1ÞQ

1≤i<j≤4ð1 − gijÞ
; ð12Þ

with Pfð1Þ ¼ 6ζð3Þ [31,39]. The correlators h22ppi are

extracted from this by taking the coefficient of gp−234 and
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setting all g’s to zero. In this case, they are all equal, in
agreement with [7,22]. At two loops, we have

fð2Þðx2ijÞ ¼
1

48

X
σ ∈ S6

x2σ1σ2x
2
σ3σ4x

2
σ5σ6Q

1≤i<j≤6x
2
ij

; ð13Þ

and the integrated master correlator becomes

−
Pfð2Þ

2!ð−4Þ2
g12g34 þ g13g24 þ g14g23 − 3

P
1≤i<j≤4gij þ 15Q

1≤i<j≤4ð1 − gijÞ
;

where Pfð2Þ ¼ 20ζð5Þ [31,39]. For h22ppi, after we set gij
to zero except g34, it gives

−
Pfð2Þ

2!ð−4Þ2
�

12

1 − g34
þ 3

�
: ð14Þ

Expanding in g34 yields integrated correlators for h22ppi:
−75ζð5Þ=8 for h2222i and −15ζð5Þ=2 for all others.
Proceeding to higher loops in a similar way, we obtain

integrated correlators of all single-trace 1=2-BPS operators
in terms of the f-graph periods at higher loops. When
specifying to the h22ppi case, the resulting expressions all
agree with the known results [7,22].
Simplification and all-order expression.—Starting from

five loops, we find multiple zeta values and products of ζ’s
on integrating higher-charge correlators. For example, for
h4444i at five loops, we find

g212g
2
34

40320

h
7560ζð5;3;3Þþ14685615ζð11Þþ56700π2ζð9Þ

þ252π4ζð7Þþ31500ζð5Þ2þ6300ζð3Þ2ζð5Þ−20π6ζð5Þ
i

−
g12g23g34g14

40320

h
7560ζð5;3;3Þþ569205ζð11Þ

þ56700π2ζð9Þþ252π4ζð7Þþ31500ζð5Þ2

þ6300ζð3Þ2ζð5Þ−20π6ζð5Þ
i
; ð15Þ

with additional terms from crossing. However, we note,
intriguingly, in the sum of the two terms in (15) (despite
different gij factors) everything but ζð11Þ cancels.
Remarkably, this pattern continues at higher charges: for

any correlator at five loops, if we sum over all contributions
in this way, so that all SUð4ÞR channels contribute equally,
then one is always left with a single ζð11Þ. This sum over
channels can be implemented automatically by formally
replacing gij → γiγj. With this replacement, the different
gij factors in a given correlator contribute equally and we
can see the above simplification directly at the level of the
integrated master correlator. Note gij → γiγj is irrelevant
for h22ppi, which has only a single SUð4ÞR channel. The γi
carry the information of the operator charges, so correlator
hp1p2p3p4i arises as the γp1−2

1 γp2−2
2 γp3−2

3 γp4−2
4 coefficient.

We therefore observe the striking feature in the inte-
grated correlators with gij → γiγj that all multi-ζ’s cancel.
We then initiated a careful examination of perturbative
results, which we knew up to five loops for all charges. By
comparing with all-order results of h22ppi [7], we were
then able to guess all-order expressions for new correlators,
such as h33ppi, h44ppi, h23ppþ 1i. Although these
nontrivial results are obtained based on observation from
lower-loop results, we are confident of their validity due to
the strong-coupling matching as well as other checks,
which we will discuss later.
Crucially, on lifting these results to the master correlator

and rewriting the resulting symmetric polynomial in γ1, γ2,
γ3, γ4 in terms of Schur polynomials, we found further
dramatic simplification. The result of these investigations
is then a proposal for the planar integrated master corre-
lator (8) (summed over channels) via the following
remarkably simple formula:

Cðλ;γiγjÞ¼
X∞
l¼1

λl
X∞
ν¼2

4ð−1Þνþlþ1Γðlþ 3
2
Þ2ζð2lþ1Þ

π2lþ1Γðlþ2−νÞΓðlþνþ1Þ FνðγiÞ;

ð16Þ

where l is the number of loops and we have set gij → γiγj.
The factor FνðγiÞ, which contains the information of the
operator charges, is given by

FνðγiÞ ¼
Sν−2;ν−2;0;0ðγiÞ − Sν−2;ν−2;1;1ðγiÞQ

1≤i<j≤4ð1 − γiγjÞ
; ð17Þ

where SνiðγiÞ are the Schur polynomials,

Sν1;ν2;ν3;ν4ðγiÞ ¼
detðγ4þνj−j

i Þi;j¼1;2;3;4Q
1≤i<j≤4ðγi − γjÞ

: ð18Þ

Some comments are in order to illuminate the expression
of FνðγiÞ. The structure of the denominator is expected
from (9) and (6). The fact that the numerator is given by
some symmetric polynomial in γi is also not surprising
because the integrated correlators are permutation sym-
metric due to the symmetric integration measure. What is
striking is the appearance of the Schur polynomials with
very special partitions and, more importantly, the remark-
able simplicity of the overall formula, which is hidden
unless written in terms of Schur polynomials.
The integrated hp1p2p3p4i correlator (summed over

channels) is then extracted from (16) by simply taking
the coefficient of γp1−2

1 γp2−2
2 γp3−2

3 γp4−2
4 ,

Cp1p2p3p4
ðλÞ ≔ Cðλ; γiγjÞ

��
γ
p1−2
1

γ
p2−2
2

γ
p3−2
3

γ
p4−2
4

: ð19Þ

We remark that, for correlators at a fixed loop order l or for
a fixed correlator of charges pi, the summation over ν
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in (16) is naturally truncated: the Γðlþ 2 − νÞ in the
denominator means all terms with ν > lþ 2 vanish;
whereas Schur polynomials with ν > maxðpiÞ will not
contribute to the hp1p2p3p4i correlator [40].
We now comment on the 10D symmetry and its role in

our construction. It is incredibly useful in obtaining
results for arbitrary charge correlators, which we used
to deduce (16). However, our formula (16) is not a simple
consequence of the 10D symmetry, which is valid only at
integrand level, destroyed upon integration. Furthermore,
the 10D symmetry is broken at strong coupling, but as we
will see the expression (16) correctly reproduces inte-
grated correlators at strong coupling.
Resummed expression.—The proposed all-order expres-

sion (16) can be resummed through a modified Borel
transform (see, e.g., [41,42]) by using the following integral
identity:

ζðnÞΓðnþ 1Þ ¼ 2n−1
Z

∞

0

dw
wn

sinh2ðwÞ : ð20Þ

Replacing ζð2lþ 1Þ in (16) by its integral representation
using the above identity and performing the resummation,
we obtain

Cðλ; γiγjÞ ¼
Z

∞

0

wdw
sinh2ðwÞ

X∞
ν¼2

½Jν−1ðuÞ2 − JνðuÞ2�FνðγiÞ;

ð21Þ

where u ¼ ðw ffiffiffi
λ

p
=πÞ and JνðuÞ are Bessel functions. For

h22ppi, (21) reduces to the known result of [7]

C2;2;p;pðλÞ ¼
Z

∞

0

wdw
sinh2ðwÞ ðJ1ðuÞ

2 − JpðuÞ2Þ; ð22Þ

while for h33ppi, for instance, we find

C3;3;p;pðλÞ ¼
Z

∞

0

wdw
sinh2ðwÞ

�
3J1ðuÞ2 þ 4J2ðuÞ2

þ J3ðuÞ2 − 2Jp−1ðuÞ2 − 4JpðuÞ2
− 2Jpþ1ðuÞ2

�
: ð23Þ

Similar expressions can be obtained for all other cases.
Importantly, the expression (21) is valid for arbitrary λ,

allowing us to study the strong-coupling regime, which we
will consider in the next section.
Strong coupling.—The strong-coupling expansion of the

integrated correlators can be obtained straightforwardly
from (21) by using the Mellin-Barnes representation of
products of Bessel functions [7], and we find

Cðλ; γiγjÞ
���
strong

¼
X∞
ν¼2

�
1

2νðν − 1Þ þ
X∞
n¼1

4nð−1ÞnΓðnþ 1
2
ÞΓðνþ n − 1

2
Þζð2nþ 1Þ

λnþ1
2

ffiffiffi
π

p
ΓðnÞΓðν − nþ 1

2
Þ

�
FνðγiÞ: ð24Þ

This can then be compared with known results for four-
point correlators of general charges at strong coupling,
which can be determined using a simple effective action of
a massless 10D scalar on AdS5 × S5 [10]. The correlators
are completely fixed up to order λ−5=2 and λ−3 [9–11] under
a certain Z2-symmetry assumption [43]. The 10D effective
action is very different from the 10D symmetry of the
“perturbative integrands.” The tree-level supergravity result
does possess the 10D symmetry, but α0 corrections break
this. The key point for us is that the effective action
generates correlators of all charges at strong coupling
efficiently; one can then integrate their spacetime depend-
ence with the measure (7) analytically using the techniques
outlined in Appendix B of [44]. These give highly non-
trivial functions of γi, which perfectly agree with our
predictions (24) for all the correlators [45].
At order λ−7=2 there remain unfixed coefficients, but our

result (24) is both consistent with these and indeed
constrains them further. There are 11 coefficients occurring
as possible nonequivalent terms in the effective action, and

comparison with our result (24) fixes five of them. If in
addition we utilize the recently available h2222i correlator
at this order [12], we further fix three coefficients. The Z2

symmetry fixes two more coefficients to zero, left with a
single undetermined coefficient. Explicitly, in the notation
of [10] we fix nine coefficients,

A4¼−
1575ζð7Þ

4
; C2¼

641ζð7Þ
16

; D1¼0;

E1¼0; F0¼
ζð7Þ
2

; G1;0¼−
11ζð7Þ
64

;

G2;0¼
71ζð7Þ
64

; G3;0¼
141ζð7Þ
256

; G5;0¼−
51ζð7Þ
64

;

ð25Þ
together with B2 ¼ 20G4;0 þ ½259ζð7Þ=4�. Finally, in [11]
the authors found one additional constraint arising from
the operator product expansion, which goes beyond
what the effective action predicts [46], which gives
G4;0 ¼ ½12 619ζð7Þ=6656�.
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Unlike the small-λ expansion (16), the large-λ expan-
sion (24) is asymptotic and not Borel summable. The
series should be completed with exponentially decayed
terms ΔCðλ; γiγjÞ, which can be obtained by the means of
resurgence [47]. Following [20,48], we find

ΔCðλ; γiγjÞ ¼ � i
2

X∞
ν¼2

ð−1Þνð2ν− 1Þ2
�

8Li0ðzÞ
ð2ν− 1Þ2 þ

2Li1ðzÞ
λ1=2

þ ð4ν2 − 4νþ 5ÞLi2ðzÞ
4λ

þ � � �
�
FνðγiÞ; ð26Þ

where z ¼ e−2
ffiffi
λ

p
. Holographically, these terms behave as

e−2L
2=α0 (L is the AdS length scale), which indicates they

may arise from world-sheet instantons.
Modular invariance.—The S duality of N ¼ 4 SYM

theory [49,50] implies that the correlators of the operators
we consider here should be SLð2;ZÞ invariant. Therefore,
the large-N expansion of the integrated correlators
with fixed coupling τ should be expressed in terms of
modular functions. More explicitly, as in the cases of
h2222i [20,51,52] (and, more generally, h22ppi [22–24]),
we expect the power series terms (24) are replaced by the
nonholomorphic Eisenstein series Eðs; τ; τ̄Þ, whereas the
exponentially decayed terms (26) should be expressed in
terms of DNðs; τ; τ̄Þ introduced in [52] (see also [53] in a
different context). These modular functions are defined as

Eðs; τ; τ̄Þ ¼
X

ðm;nÞ≠ð0;0Þ

τs2
πsjmþ nτj2s ;

DNðs; τ; τ̄Þ ¼
X

ðm;nÞ≠ð0;0Þ
e−4

ffiffiffiffiffi
Nπ

p jmþnτjffiffiffi
τ2

p τs2
πsjmþ nτj2s ; ð27Þ

where τ ≔ θ=ð2πÞ þ i4π=g2YM ¼ τ1 þ iτ2. The results (24)
and (26) allow us to determine the first few orders in the
large-N (fixed-τ) expansion [54],

Cðτ; τ̄; γiγjÞ ¼
X∞
ν¼2

�
1

2ðν − 1Þν −
2ν − 1

24N
3
2

Eð3=2; τ; τ̄Þ

þ 3ð2ν − 3Þð4ν2 − 1Þ
28N

5
2

Eð5=2; τ; τ̄Þ þ � � �

� 2ið−1ÞνDNð0; τ; τ̄Þ þ � � �
	
FνðγiÞ: ð28Þ

The expression agrees with known results in the literature
when there is an overlap in charges and to the orders
determined here. The fixed-τ result is beyond the ‘t Hooft
limit; in particular, it contains instanton contributions.
New periods and the 10D lightlike limit.—Finally, we

return to the perturbative regime where the all-order
expression (16) can be compared directly with the
results obtained from four-point functions integrated in

terms of periods (9). At six loops, there are 26 periods and
the integrands can be found in [1]. They are highly
nontrivial seven-loop Feynman integral periods [55].
We have evaluated 16 of them explicitly using
HYPERLOGPROCEDURES [36], and we find the proposed
expression (16) is perfectly consistent with these Feynman
integral results. Furthermore, (16) allows us to then
determine the remaining unknown periods. We find (16)
fixes all the periods except a single one, which can
be further determined by exploiting a fascinating con-
nection [3] between the master correlator and the “octa-
gon” O introduced in [56,57], as we will discuss now.
As proposed in [3], in a 10D lightlike limit x2

i;iþ1 ¼
x2i;iþ1 − y2i;iþ1 → 0, the master correlator (3) reduces to the
octagon O (squared),

lim
x2i;iþ1

→0

hOOOOi
hOOOOifree

¼ M2; ð29Þ

where M ¼ O=Ofree [58]. The octagon is given in terms of
products of known ladder integrals [59], whereas the
correlator is expressed as four-point conformal integrals.
This relation then predicts nontrivial relations between
these conformal integrals, which has been previously
confirmed (numerically) to four loops [3].
The 10D lightlike limit together with gij → γiγj implies

γ1 ¼ γ3 ¼ 1=γ2 ¼ 1=γ4 ≔ γ. Making this substitution and
integrating over both sides of (29) with the measure (7)
allows an all-orders comparison. For the lhs we use our
formula (16); the rhs, arising from the octagon [3], is also
known to all orders in this limit [60]. We find both sides
of (29) lead to exactly the same result,

−
X∞
l¼1

�
λ

4π2

�
l lþ1

22lþ1

�
2lþ2

lþ1

�ðγ2−1Þ2l
γ2l

ζð2lþ1Þ: ð30Þ

We have further verified the relation (29) up to six loops
(integrating over external points) without imposing
gij → γiγj, using the results of Feynman integral periods
determined from (16). All these simultaneously provide
further consistency checks of both our proposal (16) and
the relation (29). In the process, we also obtain many
integral relations, which allow us to express the aforemen-
tioned unfixed period in terms of certain (integrated) triple
products of ladders that then can be computed using
HYPERLOGPROCEDURES. More detailed discussion of six-
loop integrated correlators and the evaluation of periods at
this order can be found in the Supplemental Material [61] as
well as the attached Mathematica notebook.
Conclusion.—We have presented an exact formula for

the integrated correlators of arbitrary charges in the planar
limit. We should emphasize that the formula was obtained
purely based on examining data to five loops in perturba-
tion theory (but for all correlators). The fact that the
formula is then consistent with the periods entering six
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loops, as well as the octagon to all orders, and furthermore
agrees with all strong-coupling results to λ−7=2 for all
correlators provides very strong evidence for the proposal.
Our result reveals remarkable simplicities of these

general integrated correlators at both weak and strong
coupling. Given that they are currently inaccessible by
supersymmetric localization, a natural question that arises
then is what the origin of the simplicities is and, in
particular, what is the meaning of, or reason for, the
gij → γiγj replacement. A related question is if there are
some other operations in gij space one could perform,
which still yield simple and interesting results.
It has been shown that integrated correlators h22ppi

obey Laplace-difference equations that relate them with
different N and charges [20,22,62,63]. It would be fasci-
nating if these general integrated correlators studied in this
Letter obey similar relations. Seeing any such structures
requires results beyond the planar limit.
Wewould also like to explore integrated correlatorswith a

different integration measure [44,64], which was originally
introduced for h2222i. In perturbation theory, they can again
be understood as periods of Feynman integrals [14]. We
leave this Letter as a future direction.
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