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We reformulate the analysis of singularities of Feynman integrals in a way that can be practically applied
to perturbative computations in the standard model in dimensional regularization. After highlighting issues
in the textbook treatment of Landau singularities, we develop an algorithm for classifying and computing
them using techniques from computational algebraic geometry. We introduce an algebraic variety called the
principal Landau determinant, which captures the singularities even in the presence of massless particles or
UV/IR divergences. We illustrate this for 114 example diagrams, including a cutting-edge 2-loop 5-point
nonplanar QCD process with multiple mass scales.
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Introduction.—Modern high-precision computations in
particle physics rely on the knowledge of the singularity
structure of perturbative scattering amplitudes. This empha-
sizes the importance of being able to predict it without the
explicit evaluation of Feynman integrals. A pioneering step
in this direction was taken by Bjorken, Landau, and
Nakanishi [1–3], who demonstrated that poles and branch
points of finite Feynman integrals can be determined by
pinches of on-shell hypersurfaces in the loop-momentum
space. They are known as Landau singularities; see [4],
Sec. 1 for a historical overview and more complete
references. Nevertheless, it is not known how to system-
atically apply this analysis to standard model processes
beyond the one-loop level, due to many problems outlined
below. The goal of this Letter is to fix these issues and give
a practical algorithm for determining singularities (physi-
cal or not) in scenarios with massless particles and UV/IR
divergences.
Landau analysis is particularly important in the context

of finding analytic expressions, differential equations, and
symbol calculus for Feynman integrals, see, e.g., [5]. As a
simple example, if the amplitude has a term of the form
ð1=PÞ log½ðQþ ffiffiffiffi

R
p Þ=ðQ −

ffiffiffiffi
R

p Þ� for some polynomials P,
Q, R in the external kinematics, then its Landau singular-
ities are located at P ¼ 0 (simple pole), R ¼ 0 (square
root), and Q2 − R ¼ 0 (logarithmic) on some Riemann
sheets. By definition, Landau singularities coincide with

zeros and singularities of symbol letters in polylogarithmic
cases [6,7]. By basic elimination theory, their positions can
be always expressed as Δ ¼ 0, where Δ is a polynomial in
the Mandelstam invariants and masses squared with coef-
ficients in Q. The challenge is to determine all such Δ’s
without having to compute Feynman integrals.
According to textbooks, positions of singularities of

Feynman integrals can be computed by solving Landau
equations [8–12]. The leading singularity is computed by
setting all propagators on shell and imposing that all
interaction vertices are located at space-time points.
Subleading singularities are leading singularities of
reduced diagrams obtained by contracting any subset of
edges. In addition, second-type and mixed singularities are
those corresponding to one or more loop momenta diverg-
ing. All of these are often summarized as solving the
equations

αiðq2i −m2
i Þ ¼ 0 for all internal edges i; ð1aÞ

X
i∈ a

� αiq
μ
i ¼ 0 for all loopsa; ð1bÞ

where qμi , mi, and αi are, respectively, the momentum,
mass, and the Schwinger parameter of the ith propagator,
and the sum goes over all edges belonging to the ath loop
with signs denoting orientations.
Our work starts with an observation that the above

classification is not complete. Indeed, there are known
examples where a naive application of (1) does not detect
all singularities and more careful blowups are needed [13–
15]. There are two fundamental problems with the above
textbook lore: (i) it is not clear why only αi ≠ 0 or αi ¼ 0
solutions are considered, in contrast with more complicated
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scaling patterns; and (ii) the prescription is ambiguous in
the presence of UV/IR divergences, i.e., when (1) has
solutions for any external kinematics. In this work, building
on [16], we introduce tools from nonlinear algebra [17],
which tackle these issues as follows.
(i) Beyond the standard classification: We find that, in

general, a singularity can come from scalings

αi → εwiαi with ε → 0: ð2Þ

Each region is given by the set of rational exponents
ðw1; w2;…Þ called weights. The internal momenta qμi will
also have a specific scaling as a consequence of (2), which
will be given later in (10). Their combinatorics is captured
by a lattice polytope P described below.
Hence, it is not enough to study reduced diagrams, but

instead a whole suite of configurations obtained by shrink-
ing and expanding edges at specific relative rates is needed.
Below, we will explain that scalings beyond (2) are often
possible as well. This fact may not be surprising to the
readers familiar with the method of regions [18], which also
exploits similar scalings, though only for αi ⩾ 0, while we
consider any αi ∈C.
(ii) Interplay with UV/IR divergences. The second

issue is best illustrated on an example of a reduced diagram
obtained by contracting a number of edges, say in a given
QCD process with all external legs on-shell:

ð3Þ

In this case, the diagram on the right-hand side is always
singular due to a collinear divergence between gluons
(curly) and possibly quarks (solid) if they are taken to be
massless. Hence, the Landau equations in the form (1) have
solutions regardless of the remaining external kinematics,
i.e., they evaluate to 0 ¼ 0. However, it does not mean we
can simply discard them, because the same region of phase
space will in general lead to other genuine kinematic
singularities. Moreover, it is clear one could not find them
solely by considering the reduced diagram in (3) which
does not depend on anyMandelstam invariants. Instead, the
limit (3) needs to be taken more carefully.
More generally, we explain how to disentangle the

divergences that are always present (UV/IR) from singu-
larities that exist only for special values of the kinematics
(Landau) using a combination of elimination theory and
numerical irreducible decomposition.
The goal of this Letter is to summarize the main

construction in a way accessible to physicists and introduce
the software. The follow-up paper [4] will provide math-
ematical foundations and algorithmic details.

Landau equations revisited.—A family of Feynman
integrals with n external legs in D dimensions can be
parametrized by

IðzÞ ≔
Z

dDl1dDl2 � � � dDlL

Pν1
1 P

ν2
2 � � �Pνm

m
; ð4Þ

where the Pi’s correspond to m denominators and irreduc-
ible scalar products, each raised to a (possibly noninteger)
power νi, and la’s are the L loop momenta. We collectively
call all the kinematic parameters (Mandelstam invariants
and masses squared) z∈ E, where E is the specific subspace
of the kinematics we consider. The overall normalization
does not affect the singularity structure. Introducing m
Schwinger parameters α ¼ ðα1; α2;…; αmÞ, we write

Xm
i¼1

αiPi ¼
XL
a;b¼1

la · lbQab þ 2
XL
a¼1

la ·La þ c; ð5Þ

where L and c can depend on the internal masses and
external kinematics, but are independent of the loop
momenta. The matrix Q and vector L give rise to the
Symanzik polynomials:

UðαÞ ≔ detQ; F ðα; zÞ ≔ ðL⊺QL − cÞU: ð6Þ

Hence, F depends on external kinematic invariants and
masses, while U does not. Following standard steps, the
integrals in (4) are then proportional to [19]

I ∝
Z
Rm

þ

dmα

GD=2 α
ν1−1
1 αν2−12 � � � ανm−1m ; ð7Þ

where

Gðα; zÞ ≔ U þ F=μ2 ð8Þ

is often called the graph polynomial. We fix the auxiliary
mass scale μ ¼ 1 from now on. Singularities can also be
analyzed in other representations, which leads to equivalent
equations [4], Sec. 3.4. One can show that propagators with
νa ⩽ 0 do not give rise to new singularities and can be
excluded from the analysis, see Appendix B in [4].
The simplest Landau singularity (known as leading

second type) is obtained by solving the critical point
equations away from the boundaries:

G ¼ ∂αG ¼ 0 for α∈ ðC�Þm and z∈ E; ð9Þ

where ∂α¼½ð∂=∂α1Þ;ð∂=∂α2Þ;…;ð∂=∂αmÞ� andC�¼Cnf0g.
It is the condition for the denominator in (7) to be singular in
a way that cannot be cured by contour deformations. The
Feynman integral IðzÞ possibly develops a singularity
whenever a solution to (9) exists for a given value of z.
Back in the loop-momentum space, completing the square in
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(5) is equivalent to solving the loop Landau equations (1b).
Hence, one can read off the behavior of the loop momenta

la ¼ −
XL
b¼1

½Q−1�abLb ð10Þ

in terms of Schwinger parameters for every solution.
Similarly, solving (9) imposes the on-shell conditions (1a).
Most of the singularities are hiding on the boundaries.

They can be classified using the Newton polytope:

P ¼ NewtðGÞ: ð11Þ

The same polytope appears in other recent tropical
approaches to Feynman integrals [20–24]. Its faces can
be parametrized by weights w ¼ ðw1; w2;…; wmÞ and are
in one-to-one correspondence with scalings αi → εwiαi
with ε → 0. In particular, the behavior of the loop momenta
la in terms of ε can be read off by plugging in these
scalings into (10). On each face f of P, we keep only the
terms of G leading in ε. The result is called the initial form
and denoted by Gf. The Landau equations on this face are

Gf ¼ ∂αGf ¼ 0 for α∈ ðC�Þm and z∈ E: ð12Þ

The system (9) is recovered in the special case when f
is the full-dimensional face, i.e., the entire polytope.
Mathematically, the faces of P correspond to torus orbits
in a toric compactification of ðC�Þm. The incidence variety
Yf (also called “pinch surface”) is the variety defined
by (12).
Some of the faces can be matched onto the textbook

classification, though others are new. For example, the facet
with weight w ¼ ð−1;−1;…;−1Þ computes the leading
first-type singularity. Replacing −1’s with 0’s and 1’s
corresponds to various subleading singularities, see [4],
Sec. 3.5. All other faces go beyond the standard classi-
fication (note that they also appear in the geometric
approach to the expansion by regions [25]). By definition,
solutions with all αi ⩾ 0 are on the physical sheet of the
kinematic space [26]; we are interested in singularities on
any sheet where αi’s are generically complex. We can
further categorize the solutions depending on which value
of the external kinematics they occur as follows.
(a) Any value of the external kinematics, z∈ E: These

are the UV/IR divergences, which below are called dom-
inant components (also known as “permanent pinches”).
After identifying from which part of the integrand they
arise, we want to strip them away since they are instead
taken care of by dimensional regularization.
(b) Special values of the external kinematics,

z∈ fΔ ¼ 0g ⊂ E: These are the kinematic singularities
we want to identify. Since analytic functions can only have
codimension-1 singularities in E, i.e., the ones that can be
written as Δ ¼ 0, we focus on them here.

A given face can have none, either, or both types of
solutions which need to be distinguished. We now move on
to studying the geometry of this problem.
Geometry of singularities.—Euler discriminants: Intuiti-

vely, Feynman integrals (7) may develop singularities
whenever the surface fGðα; zÞ ¼ 0g becomesmore singular
than for a generic z∈ E. As a way of probing the topology of
this surface, we compute the (signed) Euler characteristic:

χz ≔ jχððC�ÞmnfGðα; zÞ ¼ 0gÞj: ð13Þ

While nontrivial, one can prove that there exists a generic
value χ�, such that χz ¼ χ� for almost all z∈ E and χz < χ�
otherwise [4], Thm. 3.1. This leads us to define the Euler
discriminant variety ∇χðEÞ as the locus of such special
kinematic points:

∇χðEÞ ¼ fall z∈ E for which χz < χ�g ⊂ E: ð14Þ

If the coefficients of all monomials in G were independent
of each other, ∇χðEÞ coincides with the singularity locus
of generic Gelfand-Kapranov-Zelevinsky (GKZ) hypergeo-
metric functions, which is known as the principal
A-determinant [27]. We propose that this relationship
extends to Feynman integrals: that their singularities are
contained in ∇χðEÞ.
This claim is physically intuitive: χz computes the

number of master integrals in the appropriate sense (see
Refs. [28,29] for reviews). The above proposal equivalently
says that the system of first-order differential equations
satisfied by (4) drops rank when evaluated on a singularity.
There are two obstacles with applying the above tools to

Feynman integrals. First, beyond the simplest of cases, they
are not generic in the GKZ sense: for example, the G
polynomial of the diagram in (3) has 64 monomials, but
depends only on 7 kinematic invariants. Hence, one cannot
directly apply GKZ technology such as principal A deter-
minants to Feynman integrals (see Refs. [30,31] for
previous attempts). Explicit criteria are given in [4],
Sec. 2.2. Secondly, while the Euler discriminant can be
used to determine whether a given candidate point z is
singular, it does not give a constructive algorithm for
finding ∇χðEÞ. Both of these problems lead us to the
definition of the principal Landau determinant (PLD) [32].
Principal Landau determinants: The PLD aims to

systematize Landau analysis based on the combinatorics
of the polytope P introduced above. A complication is that
each face f can produce multiple components and one has
to distinguish if they belong to (a) or (b).
The incidence variety Yf defined by (12) is a union of

subvarieties of ðC�Þm × E. In general, it can have multiple
irreducible components with different dimensions:

Yf ¼ ⋃
i
YðiÞ
f : ð15Þ
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Note that the dimension of YðiÞ
f is in general different from

the dimension of f. We are interested in eliminating α’s,
which is the same as projecting all components of Yf

“downstairs” to the kinematic space E. In other words, for
every point ðα̂; ẑÞ contained in Yf, its projection πðα̂; ẑÞ ¼ ẑ
“forgets” about α̂ and remembers only the coordinates
ẑ∈ E. We illustrate this with a simple example:

ð16Þ

Here, α and z ¼ ðz1; z2Þ are coordinates on the one-
dimensional C� and two-dimensional E, respectively.
The incidence variety Yf has five irreducible components,

Yð1Þ
f ; Yð2Þ

f ;…; Yð5Þ
f . Let us analyze them one by one. Below,

when we write fiber dimension of a component, we mean
the dimension of the pre-image π−1ðzÞ for a generic point z
on πðYðiÞ

f Þ, i.e., it is the number of unconstrained Schwinger
parameters remaining after solving (12).
The orange componentYð3Þ

f is dominant because it projects
down to thewhole kinematic spaceE. It has fiber dimension0,
i.e., every point downstairs comes from a projection of a
unique point upstairs. In physics terms, it corresponds to a
UV/IR divergence. In other words, the Landau equations (12)
have a solution for any z∈ E. This, however, does not mean
that we can simply disregard the (fictional) face f: there are
other irreducible components of type (b).
The red components Yð1Þ

f and Yð4Þ
f both have fiber

dimension 0 and project down to codimension 1 in E.

Next, the blue component Yð5Þ
f has fiber dimension 1 and

projects to codimension 1. We hence keep all three of them

in PLD. Finally, the green component Yð2Þ
f has fiber

dimension 1, but projects to codimension 2. We do not
include it in PLD. See [4], Ex. 5.1 for more details.
Let us call the result of the projection πðYðiÞ

f Þ. For any
Feynman diagram G, PLD is defined as the union of all
those projections that have codimension 1:

PLDGðEÞ ≔ ⋃
faces f

⋃
codim−1

projections i

πðYðiÞ
f Þ ⊂ E: ð17Þ

This definition can be used in practice and is implemented
in PLD.jl (we refer to [4], Sec. 3.2 for a formulation in
the language of algebraic geometry).
Implementation.—Code and database: Classic sym-

bolic elimination tools, such as Gröbner bases, can be
used, but are not efficient enough to handle multiloop
examples. We hence introduce a numerical algorithm for
computing PLD, based on homotopy continuation tech-
niques. It performs the above irreducible decomposition
and projection to the kinematic space. We refer to [4],
Sec. 5.2 for the algorithmic details. We implemented both
symbolic and numerical elimination algorithms in an open-
source JULIA package PLD.jl available at [34]. This
website also contains documentation and a guided tutorial
through the functionality of PLD.jl. Together with the
package, we provide a database of 114 example diagrams
with various graph topologies and mass assignments.
Comparison with HyperInt: The only competitive

tool for finding Landau singularities is the compatibility
graph reduction algorithm cgReduction implemented in
HyperInt [35] and based on the formalism of Pham and
Brown in integer dimensions D [36,37]. It computes an
upper bound on the set of singularities, i.e., finds many
components that are not genuine singularities of the
corresponding Feynman integral. However, they can be
efficiently filtered out by the Euler characteristic criterion
(14), see [4], App. A for a practical example. We found
diagrams for which this pipeline gave more singularities
than those computed numerically by PLD, which means
that PLDGðEÞ ⊊ ∇χðEÞ ⊊ cgReduction. Indeed, it is
known that the blowups implicitly performed by looking
at the Newton polytope might not suffice to detect all
singularities of Feynman integrals, see [15], Sec. 6.4 and
[4], Ex. 3.9. In other words, there are scalings of Schwinger
parameters that go beyond (2) with genuinely new singu-
larities. These are captured by the Euler discriminant but
not by PLD.
On the other hand, in practice, cgReduction termi-

nated only on the simplest 70 out of 114 diagrams we
considered, so PLD remains the only practical tool for
obtaining (a subset of) singularities of more complicated
diagrams. At any rate, most of the entries in the database
give new predictions for singularities of previously unstud-
ied diagrams.
Example.—As a concrete example, let us consider the

following Higgsþ jet production process:

ð18Þ
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We take the external Higgs (dashed) to have mass-squared
M2 ¼ p2

5, the quarks (solid) to have mass-squared m2, and
all the remaining particles massless. The m ¼ 0 case has
been computed in [38], but m ≠ 0 remains unknown. Here,
we use PLD.jl to predict its singularity structure.
In this case, the kinematic space E is parametrized by

z ¼ ðs12; s23; s34; s45; s51; m2;M2Þ; ð19Þ

where sij ¼ ðpi þ pjÞ2 are the Mandelstam invariants. The
diagram is specified by providing the internal edges as a
list of pairs of vertices they connect, as in (18), and
similarly nodes listing the vertices to which the external
momenta p1; p2;…; p5 are attached. Likewise, the
internal_ and external_masses are also assigned
in order of appearance. One computes the PLD by running:
The code scans through all faces in increasing order of
dimensions (roughly speaking, easier to harder). The
generic Euler characteristic is χ� ¼ 330 and the number
of faces of P in dimensions 0; 1;…; 8 is

56; 294; 681; 884; 699; 343; 101; 16; 1; ð20Þ

for a total of 3075 separate systems of equations to
consider. Note that a naive analysis based on reduced
diagrams would include only 28 ¼ 256 systems, many of
which ambiguous as in (3). We solved the simplest 1270
ones symbolically and the remaining 1805 numerically
[39], while cgReduction did not terminate.
PLD.jl found the total of 71 distinct kinematic sin-

gularities fΔi ¼ 0g with degrees between 1 and 12 in z.
In general, multiple different faces f contribute to the
same singularity. The full list is provided in the G ¼
Hj� npl� pentb entry in our online database. It is a
new prediction for the singularities of (18), though we do
not claim that the list is exhaustive. Here, we give a few
examples of Δi for illustration.
For example, a two-dimensional face with weight

ð−1;−1; 1; 1;−1;−1; 1; 1Þ contributes a dominant compo-
nent together with

Δ1 ¼ M2; Δ4 ¼ M2 − 4m2; ð21Þ

each coming from one-dimensional fibers. They have Euler
characteristics χΔ1

¼ 244 and χΔ4
¼ 290, respectively.

Another example is a three-dimensional face with weight
−ð3; 1; 0; 1; 1; 1; 1; 1Þ, giving the degree-3 component

Δ15 ¼ 4m2ðM2s23 − s45s15Þ − s215s14; ð22Þ

which comes from a zero-dimensional fiber and has Euler
characteristic χΔ15

¼ 328.
The most complicated components we find are Δ29 and

Δ47, which both have degree 12 in z. They originate from

zero-dimensional fibers on five-dimensional faces with
weights −ð0; 1; 0; 1; 1; 1; 1; 1Þ and −ð1; 0; 1; 1; 1; 1; 0; 1Þ,
respectively, and χΔ29

¼ χΔ47
¼ 329. Some terms ofΔ29 are

Δ29 ¼ 116m4M10s312s
2
34 − 676m2M10s12s434s45

þ 736m4M6s312s34s
3
45 − 2656m6M4s12s234s

4
45

þm4s212s
4
34s

4
45 þ ð329more termsÞ: ð23Þ

Similarly,Δ47 is a polynomial with 420 terms. Both of them
set out our prediction for the most complicated (even)
letters of the symbol alphabet in the (18) topology.
We can make a comparison with the m ¼ 0 case. As

emphasized throughout [4], specializing kinematic param-
eters and computing PLD in general do not commute, but
one can obtain a subset of the m ¼ 0 singularities by
substituting m ¼ 0 in each Δi. E.g., (23) simplifies dras-
tically to

Δ29jm¼0 ¼ M4s234ðM4 −M2ðs12 − s34 − s45Þ þ s12s45Þ4:
ð24Þ

Indeed, each factor in this polynomial was already iden-
tified as a singularity of the m ¼ 0 specialization [38] and
similarly for Δ47jm¼0. This can also be verified with the
EulerDiscriminantQ function in PLD.jl. The fact
that (23) is so much larger than (24) suggests that them ≠ 0

Feynman integral may have a vastly more complicated
analytic form.
Discussion.—In this Letter, we reformulated Landau

analysis in a way that can be applied to multiloop
computations in the standard model and made it practical
by introducing PLD.jl. It was important to realize that
singularities can arise from more complicated patterns of
shrinking and expanding edges than just reduced diagrams.
Previous results relying on this assumption should be
revisited. Likewise, our work emphasizes the need to study
asymptotics going beyond (2) more carefully.
Even though our discussion focused on Feynman inte-

grals, PLD.jl can be applied to analyzing singularities of
other integrals appearing throughout physics. Notable appli-
cations include (a) cosmological wave functions [40],
(b) energy correlators in jet physics [41,42], (c) post-
Minkowskian and Newtonian expansions in gravitational-
wave physics [43], or (d) elliptic and Calabi-Yau geometries
arising in perturbative computations [44].
This progress should be viewed as a necessary step in a

more ambitious program of using Landau singularities to
systematically constrain Feynman integrals relevant to
collider and gravitational-wave physics. For example,
expanding around incidence varieties would give informa-
tion about the local nature of the singularity and their
discontinuities in the kinematic space, see, e.g., [26,45]
for progress on zero-dimensional fibers without UV/IR
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subdivergences. We leave these important questions for
future work.

The supporting data for this Letter are openly available
from the research data repository MathRepo [34].
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