
Model-Based Optimization of Superconducting Qubit Readout

Andreas Bengtsson ,1 Alex Opremcak,1 Mostafa Khezri,1 Daniel Sank ,1 Alexandre Bourassa ,1

Kevin J. Satzinger,1 Sabrina Hong ,1 Catherine Erickson,1 Brian J. Lester,1 Kevin C. Miao,1

Alexander N. Korotkov,1,2 Julian Kelly,1 Zijun Chen,1 and Paul V. Klimov1
1Google Quantum AI, Santa Barbara, 93111 California, USA

2Department of Electrical and Computer Engineering, University of California, Riverside, 92521 California, USA

(Received 8 August 2023; accepted 2 February 2024; published 8 March 2024)

Measurement is an essential component of quantum algorithms, and for superconducting qubits it is
often the most error prone. Here, we demonstrate model-based readout optimization achieving low
measurement errors while avoiding detrimental side effects. For simultaneous and midcircuit measure-
ments across 17 qubits, we observe 1.5% error per qubit with a 500 ns end-to-end duration and minimal
excess reset error from residual resonator photons. We also suppress measurement-induced state transitions
achieving a leakage rate limited by natural heating. This technique can scale to hundreds of qubits and be
used to enhance the performance of error-correcting codes and near-term applications.
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Superconducting qubits have achieved measurement
errors below 1% for single qubits [1–4] thanks to advance-
ments including dispersive readout [5] and quantum-
limited parametric amplifiers [6]. However, the increasing
scale and complexity of algorithms bring a new set of
challenges beyond simple single-qubit measurements. For
example, quantum error correction requires measurements
to be performed simultaneously, in the middle of circuits,
and in a repetitive fashion. Midcircuit measurements must
be fast to avoid decohering qubits not being measured,
but faster readout can increase measurement and leakage
errors. In recent error-correction experiments with super-
conducting qubits, readout-induced leakage severely lim-
ited performance [7,8], and in another, 20% of the total
error (twice that of the measurement itself) was due to qubit
idling during measurement [9].
Typically, readout is calibrated in situ, meaning that

control parameters like pulse amplitude and frequency
are varied until the observed measurement error is mini-
mized. While effective at minimizing measurement error
for isolated qubits, it can fail to capture other destructive
processes like leakage or residual resonator photons.
Additionally, effects such as qubit-qubit coupling impose
nonlocality in that the optimal values for one qubit depend
on the values of neighboring qubits. In turn, qubits opti-
mized in isolation tend to perform poorly when measured
simultaneously. Thus, optimizing multiqubit measurement
requires searching a parameter space where the dimension
scales linearly with the number of qubits, while attempting
to minimize many metrics at once. This task rapidly
becomes intractable by in situ parameter sweeps as the
number of qubits grows.
In this Letter, we present an ex situ (model based)

optimization technique for readout parameters. Ex situ

optimization which allows us to explore a larger parameter
space and minimize errors that are difficult or costly to
measure, compared to in situ optimization where the
speed is limited by the data rate of the quantum processor.
In designing our model-based approach, we tackle
three challenges which are often seen in quantum optimal
control [10]. First, if the models do not accurately capture
the present error channels, ex situ optimization is likely to
perform worse than in situ. Second, the models must be
evaluated quickly to be able to actually explore a larger
space. These two challenges are conflicting in that more
accurate models typically result in slower evaluation; for
instance, a quantum simulation of the system dynamics
would be too slow. Third, we must use an optimization
algorithm that can find a reasonably good minimum
without requiring a prohibitively long runtime.
We begin by describing representative models for read-

out error channels relevant to a Sycamore processor [11],
which consists of superconducting frequency-tunable trans-
mon qubits, each coupled to their own readout resonator.
The models are quick to evaluate and we demonstrate that
they accurately predict a variety of metrics over a wide
range of parameters. We then use them together with the
snake optimizer [12] to minimize the errors for 17 qubits in
a distance-3 surface code. We achieve 1.5% measurement
error per qubit in 500 ns (from the start of the readout until
the system is ready for the next operation), while also
reducing any additional errors like reset and leakage.
The models fall into two categories: predictive or

heuristic. Ideally, we would only have predictive models
(models that accurately predict error rates), but this is not
always feasible as the computation might be too inaccurate
or take too long. In those cases we use heuristic models to
steer the optimizer away from parameter regions where
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errors are large, but difficult to quantify. We use predictive
models for the signal-to-noise ratio (SNR), qubit relaxation
during readout, and residual resonator photons. Heuristic
models include measurement-induced state transitions
[13,14], and coupling to neighboring qubits. We sum all
models into a single optimization cost function. The
process is illustrated in Fig. 1(a).
Each model takes one or several input parameters

describing the properties of the qubits, their readout
resonators, or the measurement system itself. In total there
are seven such parameters: (i) qubit anharmonicity α < 0;
(ii) resonator-qubit coupling gðωqÞ; (iii) bare resonator
frequency ωr; (iv) measurement efficiency η [5]; (v) reso-
nator linewidth κ; (vi) qubit relaxation rate as a function of
frequency Γ1ðωqÞ; and (vii) a calibrated reference for the
readout pulse power at the processor.
We characterize these using a suite of metrology experi-

ments [15]. Most of them are static and characterized just
once. However, the qubit relaxation time is known to
fluctuate [16] and is therefore remeasured just before
optimization.

Additionally, there are four parameters which we can
tune and optimize: (i) qubit frequency during readout ωq;
(ii) readout pulse amplitude B0; (iii) readout pulse length
tp; and (iv) readout ringdown length tr.
The ringdown length is needed for midcircuit measure-

ments to allow the resonator to decay back to its ground
state before other operations can resume. We choose to use
a fixed total readout time (tp þ tr ¼ 500 ns), allowing us
to synchronize gates, as well as reduce the number of
optimization parameters to three.
A key parameter derived from the model inputs is the

separation between resonator frequencies for the states j0i
and j1i, i.e., the dispersive shift 2χðωqÞ, given by [17],

χðωqÞ¼
gðωqÞ2α

ðωq−ωrÞ2½1þα=ðωq−ωrÞ�
�
1−

ωq−ωr

ωq

�
: ð1Þ

The shift is tunable since it depends on the qubit frequency;
absent other constraints, the SNR per measurement photon
is maximized when 2χ ¼ κ.
A second derived parameter is the field in the resonator

as a function of time βðtÞ, which is found by solving

dβ
dt

¼ ffiffiffi
κ

p
BðtÞ þ ðiΔ − κ=2ÞβðtÞ; ð2Þ

where BðtÞ is the readout drive amplitude and has the
dimension

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
photons per time

p
, and Δ is the frequency

difference between the drive and the dressed resonator.
In the rest of this Letter we restrict the drive to be in the
center of the resonator frequencies corresponding to j0i and
j1i, i.e., Δ ¼ �χ, since that yields the highest SNR in the
parameter regime we are interested in. For both states, we
find the corresponding βj0iðtÞ and βj1iðtÞ by numerically
solving Eq. (2).
The applied readout pulse, together with the noise

(assumed to be Gaussian) in the readout chain, leads to a
certain SNR, from which we derive the corresponding
probability to misidentify the state. Given δβðtÞ ¼ βj0iðtÞ−
βj1iðtÞ, the SNR is calculated as

SNR ¼ 2ηκ
j R tpþtr

0 δβðtÞwðtÞdtj2R tpþtr
0 jwðtÞj2

; ð3Þ

where wðtÞ is an integration window function, which we set
to δβðtÞ� to maximize SNR. From SNR we derive the
corresponding error,

ϵseparation ¼
1

2
erfc

� ffiffiffiffiffiffiffiffiffiffi
SNR

p

2

�
: ð4Þ

During readout the qubit might decay and potentially
cause a measurement error. To calculate the error rate we
need the qubit frequency during readout, which is changing

FIG. 1. (a) The optimization workflow. We build error models
from fixed parameters like resonator frequency and linewidth,
which we then run an optimizer on to find a set of variable
parameters (e.g., pulse amplitude and length) that gives low
errors. The output of the optimizer is a unique pulse shape for
each qubit, as well as qubit frequency (not shown). (b) Examples
of readout error mechanisms. The middle qubit, which is in j1i, is
coupled to two other qubits. During readout of the middle qubit
its excitation can relax to j0i; swap into j1i of the right qubit; or
combine with the excitation in the left qubit to j2i. Additionally,
photons in the readout resonator can excite the qubit up to a high
state. (c) Number of photons in the readout resonator as a function
of time, both simulated (solid line) and measured (circles). The
inset shows the simulated values on a logarithmic scale. Residual
photons can cause reset and dephasing errors.
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throughout the process due to the ac-Stark effect, and the
corresponding relaxation rates at those frequencies. The
latter is measured by a standard relaxation experiment
versus qubit frequency; while the former can be found via
Eqs. (1) and (2),

ωqðtÞ ¼ ωqð0Þ þ 2jβj1iðtÞj2χ
�
ωqð0Þ

�
; ð5Þ

where we have assumed that the ac-Stark shift is strictly
linear. Given Γ1ðωqÞ, we calculate the relaxation error as

ϵrelaxation ¼
Z

T0

0

Γ1½ωqðtÞ�dt: ð6Þ

We approximate T0 to be the point where SNR is half of its
maximum, since a relaxation event beyond that point
should not change the measurement outcome. We also
choose to ignore the upward transition rate j0i → j1i, since
the timescale for that process is much longer than for
relaxation and the readout.
The resonator must be mostly depleted of photons before

the next operation can begin, since any remaining photons
cause qubit dephasing. Additionally, in our architecture
such photons directly translate into reset errors since it is
based on the swap interaction between the qubit and its
resonator [18], and a photon in the resonator could be
swapped into either j1i or j2i, depending on the state. We
use the mean photon number in the resonator at the end of
the readout,

ϵphoton ¼
jβj0iðTÞj2 þ jβj1iðTÞj2

2
; ð7Þ

as the error model to minimize both the reset error and qubit
dephasing.
Shown in Fig. 1(c) are the expected photon number

jβj0iðtÞj2 and the corresponding measured values (via
spectroscopic measurements of the ac-Stark shift [14]).
The measurement technique is not sensitive to the small
frequency shifts occurring at the low photon numbers
toward the end of readout; however, since the agreement
is good during the pulse itself we can use the model to infer
what the final photon number is, which in this example
is 0.005.
In Fig. 2, we show predicted and measured values for

ϵseparation and ϵrelaxation as a function of qubit frequency,
pulse amplitude, and pulse length. We additionally show
the predicted residual photon number, though we do not
have a sensitive enough technique to reliably measure this
quantity at the modeled levels. Overall, we see good
agreement between measured and simulated values, with
the exception for ϵrelaxation at low amplitudes and lengths
where ϵseparation is large. That parameter regime should be
avoided and accurately predicting ϵrelaxation there is less
important. The cause of the discrepancy could be due to the

approximations in Eq. (6) or from the inaccuracy in trying
to extract a small error on top of a large error.
We can understand the trade-offs in readout optimization

by studying the predictive models. If we only consider
these three models, the ideal pulse would be short and
with high amplitude, since the SNR approximately scales
quadratically with the amplitude [Fig. 2(b)] and linearly
with the pulse length [Fig. 2(c)], while ϵphoton also scales
quadratically with the amplitude, but exponentially with the
pulse length (for a fixed total time). Additionally, a short
readout pulse minimizes ϵrelaxation.
However, a high pulse amplitude can be problematic for

several reasons. For example, it leads to measurement-
induced state transitions [13,14], which occurs when
resonator photons are transferred to the qubit and excite
it far beyond the computational subspace, as illustrated in
Fig. 1(b). While this high state may lead to a measure-
ment error, it is more importantly immune to our reset
protocol [18], making it particularly destructive for mid-
circuit measurements and quantum error correction [7,8].
Using the model in Ref. [14], valid only for ωq > ωr, we
define a heuristic that constrains the maximum photon
number in the resonator,

maxðjβðtÞj2Þ < aebðωq−ωrÞ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aebðωq−ωrÞ

p
; ð8Þ

where a and b are extracted from numerical simulations
and only dependent on α and g [14].
Finally, we introduce a model related to the coupling

between qubits. Our qubits are laid out on a square grid
where a pair of qubits have four relevant coupling channels,
j01i ↔ j10i, j11i ↔ j20i, j11i ↔ j02i, and j12i ↔ j21i.

FIG. 2. Error models and their dependence on readout para-
meters. (a) Separation and relaxation errors, and residual photon
number, versus the qubit frequency with amplitude and length
kept fixed. Circles are measured data, and lines are simulated
values. As the qubit frequency changes, we track the readout
pulse frequency to be centered between the two dressed resonator
states. The peak at 6 GHz is due to a two-level system defect. (b)
and (c) show the same models, but versus pulse amplitude and
length, respectively. The total readout time is kept constant, such
that when the pulse length increases, the ringdown time de-
creases. The nonswept parameters are kept fixed at the values
indicated by the dashed vertical lines in the respective panels.
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We heuristically model the errors associated with these
channels using a sum of Lorentizians,

ϵcoupling ¼
X
i

ci
γi
2

π

ðωq − ωiÞ2 þ γ2i =4
; ð9Þ

where ci, γi, and ωi are the amplitude, width, and center
frequency of each transition. We use a heuristic to avoid
having to model the time dependence of the qubit fre-
quency and its effect on the measurement errors. That
dependence is complicated by the ac-Stark effect, which
imposes both a frequency shift due to mean number of
photons in the resonator [Eq. (5)], as well as frequency
broadening due to photon number fluctuations. By using
wide and large enough Lorentzians the optimizer avoids
any qubit-qubit interactions. Assuming couplings between
nearest and next-nearest neighbors there are up to 32
frequency collisions for each qubit.
We now continue to the actual optimization. While any

global optimizer can be used, we choose to employ the
snake optimizer [12], which has successfully optimized
single and two-qubit gate parameters for a variety of
quantum algorithms [9,11,19]. More optimization details
are found in Supplemental Material, Ref. [20]. As our
experimental platform we use 17 qubits in a distance-3
surface code layout, illustrated in Fig. 3(a). The optimiza-
tion takes 1 min and includes 1.7 × 106 evaluations of the
cost function. Afterward, the resulting parameters are
uploaded to the control system, and the only remaining
calibration is to find the discrimination line to distinguish
between j0i and j1i for each qubit. We choose to not model
this since we can efficiently measure it simultaneously
across all qubits, and it does not conflict with the other
parameter choices.
We compare three different optimization strategies to

evaluate the performance of our model-based approach.
The first strategy is in situ optimization where we choose a
fixed pulse length (300 ns) and perform a sequence of 1D
sweeps to find the optimal pulse frequency, amplitude,
qubit frequency, and integration window. The second
strategy is ex situ optimization using a partial cost function
consisting of only the predictive models, i.e., no qubit-qubit
coupling or measurement-induced state transitions models.
The third strategy is ex situ optimization using a complete
cost function consisting of all available models. For each
strategy, we quantify three important aspects: measurement
errors, reset errors, and leakage. Note that we do not
benchmark the performance of the optimizer itself, e.g.,
how well it finds the actual global minimum. The perfor-
mance aspects of the snake have been recently studied
in Ref. [22].
We benchmark measurement errors by preparing 200

random initial states over all qubits and then sampling 2000
measurement outcomes for each initial state. We then
repeat the procedure, but this time using only the measure

qubits to mimic the surface code midcircuit measurements.
We compare all outcomes with the known initial states and
extract the errors, seen in Fig. 3(b), and calculate the
measurement error as ½Pð1j0Þ þ Pð0j1Þ�=2, where PðfjiÞ is
the probability of preparing jii and measuring jfi. Note that
state preparation errors will show up as measurement errors
in this protocol. The complete ex situ optimizer achieves an
average measurement error of 1.5% per qubit, while in situ
and partial ex situ optimization achieve 1.9% and 4.7%,
respectively. Overall, in situ and complete ex situ optimi-
zation have similar performance with the exception of a few
high-error outliers for the in situ optimizer. For instance, the
largest outlier is caused by j11i ↔ j02i swapping between
two neighboring qubits, which the ex situ optimizer is able
to avoid [20]. Out of the 1.5% error per qubit, we are able to
account for 1.2% when we include the contributions from
state preparation, separation error, and relaxation error [20].
We estimate that the state preparation error is 0.4%, which,
if accurate, should be subtracted from the values above.

FIG. 3. Benchmarking of the optimized readout performance.
We compare three optimization strategies: in situ; ex situ with
only predictive models; ex situ with predictive and heuristic
models. (a) The distance-3 surface code with 9 data qubits
(yellow) and 8 measure qubits (blue), used for the benchmarking.
(b) Simultaneous measurement errors for two cases: all qubits,
only measure qubits. We prepare a set of random states across the
qubits and perform simultaneous measurements. The data show
the combination of the two cases. (c) Reset error added by a
preceding measurement, benchmarked on the measure qubits.
The excess reset error is caused by residual photons in the readout
resonator. (d) Average leakage probability in the measure qubits
after preparing j1i and performing N measurements. The dashed
line shows the heating limit where the measurements are replaced
by an equivalent amount of waiting time.
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However, since state preparation errors should affect all
three strategies the same we have chosen to be conservative
and not do the subtraction.
Next, we benchmark reset errors added by readout for the

measure qubits only (data qubits do not need reset). We
prepare j1i, perform measurements immediately followed
by reset and another round of measurements. In the case of
no errors we expect the second measurement to yield j0i.
We also perform the same sequence but without the first
round of measurements and subtract that to remove the
intrinsic reset and measurement errors. The results are
shown in Fig. 3(c). Complete ex situ optimization adds on
average an additional 0.4% of reset errors, compared to
4.7% and 1.4% for partial and in situ, respectively.
For the final benchmark, we quantify qubit leakage.

Again, we focus on the measure qubits and prepare j1i as
that makes the qubits more likely to leak, and then perform
a variable number of measurements. We append a final and
different measurement that is able to discriminate if the
qubit has left the computational subspace. Figure 3(d)
shows the probability of leakage as a function of the
number of measurements. Complete ex situ optimization
suppresses leakage down to an average of 0.8% after 20
measurement rounds, comparable to the heating limit as
measured by repeating the experiment with no readout
pulses but an equivalent amount of waiting time. After the
same number of rounds, the partial and in situ strategies
have leakage populations of 5.7% and 2.2%, respectively.
Comparing the optimization strategies, we see that

complete ex situ using both predictive and heuristic models
outperforms the others in all three benchmarks. It is able to
achieve lower measurement errors, while also adding less
reset and leakage errors for midcircuit measurements. The
partial ex situ optimizer generally performs worse than
in situ optimization. This is likely due to the lack of an
amplitude limiting model, which tends to drive the opti-
mizer toward short and high-amplitude pulses, which in
turn leads to state transitions. This emphasizes that for
model-based optimization to work well, the models have to
account for all dominant error mechanisms, even if only as
heuristics.
In conclusion, we demonstrated model-based optimiza-

tion for superconducting qubit readout achieving low
measurement errors (1.5%) for both midcircuit and terminal
measurements. For midcircuit measurements, we also
observed suppressed reset errors (0.4%) and no increase
in leakage due to readout. We accomplished this by
overcoming the challenges stated in the introduction: the
presented models accurately capture the relevant error
channels, and they can be evaluated 10 000 times faster
(1 min vs 1 week for the parameter space used here) than
measuring errors directly in hardware, which unlocks the
ability to use a global optimizer. Based on recent work in
Ref. [22] we believe the snake optimizer and these models
will scale to at least 1000 qubits.

Our model-based readout optimization strategy has
already been employed in several large experiments, such
as the demonstration of a distance-5 surface code [9] with a
measurement error of 1.9% per qubit, and a 70 qubit
random-circuit sampling experiment [19] with an error of
1.3% per qubit. While the performance is among the best
observed for repetitive and simultaneous measurements in
superconducting qubits, even better performance will be
needed to be well below the error-correcting threshold. In
particular, the readout time has to be shorter to avoid data-
qubit idling errors.
We believe that the error rates achieved in this Letter are

close to optimal for the given processor, and that the path to
more performant readout is through longer relaxation
times, higher measurement efficiencies, and more opti-
mized circuit parameters. While we treated the circuit
parameters as fixed, we could include them as optimization
parameters to inform the design of future processors.
However, more research is needed to find the optimal
readout circuit for superconducting qubits.
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V. Sivak and W. Livingston for providing comments on the
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