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Deep generative models are key-enabling technology to computer vision, text generation, and large
language models. Denoising diffusion probabilistic models (DDPMs) have recently gained much attention
due to their ability to generate diverse and high-quality samples in many computer vision tasks, as well as to
incorporate flexiblemodel architectures and a relatively simple training scheme. Quantum generativemodels,
empowered by entanglement and superposition, have brought new insight to learning classical and quantum
data. Inspired by the classical counterpart, we propose the quantum denoising diffusion probabilistic model
(QuDDPM) to enable efficiently trainable generative learning of quantum data. QuDDPM adopts sufficient
layers of circuits to guarantee expressivity, while it introduces multiple intermediate training tasks
as interpolation between the target distribution and noise to avoid barren plateau and guarantee efficient
training. We provide bounds on the learning error and demonstrate QuDDPM’s capability in learning
correlated quantumnoisemodel, quantummany-body phases, and topological structure of quantumdata. The
results provide a paradigm for versatile and efficient quantum generative learning.
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Variational parametrized quantum circuits (PQCs) [1–4]
provide a near-term platform for quantum machine
learning [5–7]. In terms of generative models [8–11],
quantum generative adversarial networks (QuGANs) have
been recently proposed [12–16], in analogy to classical
generative adversarial networks (GANs) [17]. Despite
the success, classical GAN models are known for training
issues such as mode collapse. In classical deep learning,
denoising diffusion probabilistic models (DDPMs) and
their close relatives [18–22] have recently gained much
attention due to relatively simple training schemes and their
ability to generate diverse and high-quality samples in
many computer vision tasks [23–26] over the best GANs,
and to incorporate flexible model architectures.
In this Letter, we propose the quantum denoising

diffusion probabilistic model (QuDDPM) as an efficiently
trainable scheme to generative quantum learning, through a
coordination between a forward noisy diffusion process via
quantum scrambling [27,28] and a backward denoising
process via quantum measurement. We provide bounds on
the learning error and then demonstrate QuDDPM’s
capability in examples relevant to characterizing quantum
device noises, learning quantum many-body phases,
and capturing topological structure of quantum data. For
an n-qubit problem, QuDDPM adopts linear-in-n layers of
circuits to guarantee expressivity, while it introduces
T ∼ n= logðnÞ intermediate training tasks to guarantee
efficient training.

General formulation of QuDDPM.—We consider the
task of the generating new elements from an unknown
distribution E0 of quantum states, provided only a number
of samples S0 ¼ fjψkig ∼ E0 from the distribution. The
task under consideration—generating individual states
from the distribution (e.g., a single Haar random state or
K-design state)—is not equivalent to generating the aver-
age state of a distribution (e.g., a fully mixed state for Haar
ensemble) considered in previous works of QuGAN [12].
To complete the task, QuDDPM learns a map from a
noisy unstructured distribution of states to the structured
target distribution E0. It does so via a divide-and-conquer
strategy of creating smooth interpolations between the
target distribution and full noise, so that the training is
divided to subtasks on a low-depth circuit to avoid barren
plateau [29–32].
As shown in Fig. 1, QuDDPM includes two quantum

circuits, one to enable the forward diffusion of sample data
toward noise via scrambling and one to realize the back-
ward denoising from noise toward generated data via
measurement. For each data jψ ð0Þ

i i, the forward scrambling
circuit [Fig. 1(a)] samples a series of T random unitary

gates UðiÞ
1 ;…; UðiÞ

T independently, such that the ensemble

Sk ¼ fjψ ðkÞ
i i ¼ Q

k
l¼1U

ðiÞ
l jψ ð0Þ

i igi evolves from the sample
data toward a random ensemble of pure states from k ¼ 0 to
k ¼ T. A Bloch sphere visualization of such a forward
scrambling dynamics is depicted in Figs. 1(b1)–1(b5) for a
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toy problem of learning single-qubit states S0 clustered
around a single pure state, e.g., j0i, (b1), where the noise
ST is uniform on the Bloch sphere (b5).
With the interpolation from data S0 and noise ST in hand,

the backward process can start from randomly sampled
noise S̃T [Fig. 1(c5)] and reduce the noise gradually via
measurement step by step, toward the final generated data S̃0

[Fig. 1(c1)] that mimic the sample data [Fig. 1(b1)].
Measurements are necessary, as the denoising map is
contractive and maintains the purity of all generated data
in S̃0. As shown in Fig. 1(d), each denoising step adopts a
unitary Ũk on the system plus nA number of ancilla qubits in
j0i and performs a projectivemeasurement in computational
bases on the ancilla after the unitary Ũk. Starting from the

state jψ̃ ðTÞ
i i, which is randomly sampled from noise ensem-

ble, each unitary plus measurement step evolves the random

state toward the generated data jψ̃ ð0Þ
i i. Note that here all

unitaries Ũk are fixed after training. In practice, the gen-

eration of noisy jψ̃ ðTÞ
i i can be directly completed by running

the T layers of the forward scrambling circuit on an arbitrary
initial state. Via training, the denoising process learns
information about the target from the ensembles in the
forward scrambling, stores information in the circuit param-
eters, and then encodes onto the generated data.
Training strategy.—In classical DDPM, the Gaussian

nature of the diffusion allows efficient training via maxi-
mizing an evidence lower bound for the log-likelihood
function, which can be evaluated analytically [18,19,33].
However, in QuDDPM, we do not expect such analytical
simplification to exist at all—classical simulation of

quantum device is inherently inefficient. Instead, the train-
ing of the QuDDPM relies on the capability of quantum
measurements to extract information about the ensemble
of quantum states for the efficient evaluation of a loss
function.
The training of a T-step QuDDPM consists of T training

cycles, starting from the first denoising step ŨT toward the
last Ũ1. As shown in Fig. 2, at the training cycle ðT þ 1 − kÞ,
the forward noisy diffusion process is implemented from

UðiÞ
1 to UðiÞ

k to generate the noisy ensemble Sk ¼ fjψ ðkÞ
i igi,

while the backward denoising process performs the denois-
ing steps ŨT to Ũkþ1 to generate the denoising ensemble

S̃k ¼ fjψ̃ ðkÞ
i igi. Within the training cycle, the parameters of

the denoising PQC Ũkþ1 are updated such that the generated
denoising ensemble S̃k converges to the noisy ensemble Sk.
Therefore, QuDDPM divides the original training problem
into T smaller and easier ones. Indeed, even with a global
loss function, for n qubits we can divide the ΩðnÞ layers
(required by expressivity) of gates into T ∈Ωðn= log nÞ
diffusion steps, such that each Ũkþ1 has order logðnÞ layers
of gates to avoid barren plateau [30].
Loss function.—To enable training, a loss function

quantifies the distance between the two ensembles of
quantum states. In this Letter, we focus on the maximum
mean discrepancy (MMD) [46] and the Wasserstein dis-
tance [47,48] based on the state overlaps jhψ ðkÞ

i jψ̃ ðkÞ
i ij2

estimated via a swap test [33].
Given two independent distributions of pure states E1

and E2 on the state vector space V, the statewise fidelity
between jψi and jϕi is defined as Fðjϕi; jψiÞ ¼ jhϕjψij2,
and we can further define the mean fidelity as

F̄ðE1; E2Þ ¼ Ejϕi∼E1;jψi∼E2 ½jhϕjψij2�; ð1Þ

where the random states jϕi ∼ E1 and jψi ∼ E2 are drawn
independently. Since the fidelity F is a symmetric and
positive definite quadratic kernel, according to the theory of
reproducing kernel Hilbert space [49], the MMD distance
can be written as

FIG. 1. Schematic of QuDDPM. The forward noisy process is
implemented by a quantum scrambling circuit (QSC) in (a), while
in the backward denoising process is achieved via measurement
enabled by ancilla and PQC in (d). Subplots (b1)–(b5) and (c1)–
(c5) present the Bloch sphere dynamics in generation of states
clustering around j0i, where convergence can be seen despite
sample fluctuations, as shown in the Supplemental Material [33].

FIG. 2. The training of QuDDPM at each step t ¼ k. Pairwise

distance between states in generated ensemble ψ̃ ðkÞ
i ∈ S̃k and true

diffusion ensemble ψ ðkÞ
j ∈Sk is measured and utilized in the

evaluation of the loss function L.
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DMMDðE1;E2Þ¼ F̄ðE1;E1Þþ F̄ðE2;E2Þ−2F̄ðE2;E1Þ; ð2Þ

which allows the estimation of MMD through sampled
state ensembles S1 and S2. The expressivity of general
MMD as a statistical distance measure depends on the
kernel. On one hand, identifiability requires that the
distance be zero if and only if E1 ¼ E2. On the other hand,
one also needs to ensure the quality of statistical estimation
of the distance with a finite sample size of state ensembles.
Hence, whether fidelity (1) is a proper kernel choice is
problem-dependent. In the Supplemental Material [33], we
show an example where DMMD in Eq. (2) fails to distin-
guish two simple distributions. To resolve such an issue,
we may alternatively consider the Wasserstein distance,
a geometrically meaningful distance for comparing com-
plex data distributions based on the theory of optimal
transport [47,48] (see the Appendix for details).
As shown in Fig. 2, in the training cycle t ¼ k, loss is a

function of the unitary fŨlgTkþ1 and depends on the noise
distribution ẼT and the scrambled data distribution Ek,

LðfŨlgTkþ1; Ek; ẼTÞ ¼ DðEk; Ẽk½fŨlgTkþ1; ẼT �Þ; ð3Þ

where D can be the MMD distance or the Wasserstein
distance. The distribution Ẽk is a function of all the reverse
denoising steps from T to kþ 1 and the noise distribution
ẼT . In practice, we use finite samples to approximate the
loss function as LðfŨlgTkþ1;Sk; S̃TÞ.
The toy example in Fig. 1 adopted the MMD distance in

the loss function, and details of the training can be found in
the Supplemental Material [33] (see Ref. [50] for codes and
data, and Table I for details of parameters). Here we present
the training history of a more challenging 2-qubit example
of preparing states clustered around j0; 0i, to allow a
meaningful comparison with other algorithms. In each of
the 20 steps of training cycles, the loss function is
minimized till convergence. To quantify the convergence,
we also evaluate the MMD distance (see Fig. 3) DðS̃t; E0Þ
between the true distribution E0 and the trained ensemble of
states S̃t throughout the training cycles (blue), showing a
convergence toward D ¼ 0. The periodic spikes show the
initial increase of the MMD distance at each training cycle,
due to introducing a randomly initialized PQC in a new
denoising step. For reference, we also plot the evolution of
the MMD distance throughout the forward-diffusion (red
circles), which starts from zero at diffusion step 0 and
grows toward a larger value as the diffusion step increases
(from right to left). We see the training results (blue) follow
closely to the diffusion results (red) as expected. In
addition, the testing results (green) also agree well with
the training results (blue) for QuDDPM.
As benchmarks, we consider two major quantum gen-

erative models, QuGAN and quantum direct transport
(QuDT). QuDT can be regarded as the generalization of

the quantum circuit Born machine [51–54] toward quantum
data. Previous works of both models only considered a
single quantum state or classical distributions [14,52,55],
and here we generalize them to adapt to the state ensemble
generation task by allowing Haar random states as inputs
and introducing ancilla to be measured [33]. For a fair
comparison, we keep the number of variational parameters
of generator circuits in QuDT and QuGAN the same as
QuDDPM, listed in Table II. As shown in Fig. 3, QuDTand
QuGAN converge to generate ensembles with a substantial
MMD deviation to the true ensemble, demonstrating
QuDDPM’s advantage due to its unique diffusion and
denoising process.
Gate complexity and convergence.—Now we discuss the

number of local gates required and convergence analysis
for QuDDPM to solve an n-qubit generative task. For
simplicity, we assume the qubits are one-dimensional with
nearest-neighbor interactions, while similar counting can
be done for other cases. To guarantee convergence toward
noise, the forward scrambling circuits need a linear number
of layers in n as predicted by K design [56,57], leading to
Oðn2Þ total gates. The backward circuit will be similar,
with at most nA ≤ 2n additional ancillas and Oðn2Þ gates,
leading the overall gate complexity of QuDDPM to
be Oðn2Þ.
Similar to the classical case [58], the total error of

QuDDPM involves three parts,

E ≃ Ediff þ EM þ Egen; ð4Þ

with a deviation Ediff of ST to true random states,
measurement error EM, and generalization error Egen.
We discuss the scaling of three parts separately in the
following. Suppose the diffusion circuits approach an
approximate K design; its diffusion error is known as [56]

FIG. 3. The decay of MMD distance D between generated
ensemble S̃t using different models and target ensemble of states
E0 clustered around j0; 0i versus training steps. The converged
value is D ≃ 0.002 for QuDDPM, showing an advantage of 2
orders of magnitude over QuDT and QuGAN.
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Ediff ∼ 2nKe−T=AðKÞC ∼Oðe−TÞ; ð5Þ

where AðKÞ ¼ ⌈ log2ð4KÞ⌉2K5t3.1= logð2Þ is a polynomial of
K and C is a constant determined by the circuit in a single
step. For measurement, the standard error in estimating
the fidelity Fij between any two states jψ ii; jψ̃ ji is
SEðFijÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − FijÞ=m
p

, where m is the number of
repetitions of measurement. With N data in the two sets
S; S̃, the measurement error of estimating the mean
fidelity is

EM ¼ 1

N2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i;j¼1

SEðFijÞ2
vuut ∼O

�
1

N
ffiffiffiffi
m

p
�
: ð6Þ

Finally, we provide numerical evidence that the generali-
zation error [59,60]

EgenðfŨlgT1 Þ≡LðfŨlgT1 ;E0; ẼTÞ−LðfŨlgT1 ;S0;S̃TÞ ð7Þ

has the scaling Oð1=TNÞ, as shown in Fig. 4 for an n ¼ 4
qubit clustering state generation task. Here we estimate the
generalization error via a validation set independently
sampled, while the proof is an open problem [59,60].
The 1=N scaling agrees with classical machine learning
results [61,62].
Applications.—To showcase QuDDPM’s applications,

we consider a particular realization of QuDDPM with each

unitary UðiÞ
k and Ũk implemented by the fast scrambling

model [63]—layers of general single-qubit rotations in
between homogeneous tunable entangling layers of all-to-
all ZZ rotations—and hardware efficient ansatz [64]—
layers of X and Y single-qubit rotations in between layers of
nearest-neighbor control-Z gates—separately [33]. While
the MMD distance characterization similar to Fig. 3 is
presented in the Supplemental Material [33], we adopt
more direct measures of performance in each application.
Learning correlated noise.—When a real quantum

device is programmed to generate a quantum state, it
inevitably suffers from potentially correlated errors in

the gate control parameters [65,66]. As a result, the
generated states S0 are close to the target state but have
nontrivial coherent errors, which can be learned by
QuDDPM. We take a 2-qubit example of the target state
jΨi ¼ c0j00i þ c1j01i þ c3j11i under the influence of
fully correlated noise, where e−iδX1X2 and e−iδZ1Z2 rotations
happen with probability p and 1 − p. Here Xk and Zk are
Pauli operators for qubit k. In each case, the angle of
rotation δ is uniformly sampled from the range ½−δ0; δ0�. As
the j10i component in the superposition only appears
when XX error happens, we can utilize average fidelity
F10 ¼ ES̃0

jh10jψ ð0Þij2 as the performance metric to esti-

mate the error probability p via p̃ ¼ F10=ðjc1j2Eδ½sin2 δ�Þ.
We show a numerical example in Fig. 5(a), where the
generated ensemble average fidelity in training and testing
agrees with the theoretical prediction up to a finite sample
size deviation.
Learning many-body phases.—As a proof of principle,

we take the simple and well-known transverse-field
Ising model (TFIM) described by the HamitonianHTFIM ¼
−
P

i ZiZiþ1 − g
P

i Xi. When g increases from zero, the
system undergoes a phase transition from an ordered
ferromagnetic phase to a disordered phase, with the critical
point at g ¼ 1. The states before diffusion are chosen from
ground states of HTFIM with g∈ ½0.2; 0.4Þ uniformly
distributed. To test the capability of QuDDPM, we utilize
the magnetization,M ¼ ðPi ZiÞ=n, to identify the phase of
generated states from QuDDPM, and show its distribution
in Fig. 5(b). Most generated states (blue and green) of
QuDDPM live in the ferromagentic phase, and show a
sharp contrast to the random states (orange).
Learning nontrivial topology.—We consider the ensem-

ble of states with a ring structure—generated by applying a
unitary on a single state, e.g., jψ ii ¼ e−ixi·Gj0i, which
models the scenario where one encodes the classical data xi
onto the quantum data ψ i, as commonly adopted in

(a) (b)

FIG. 4. The generalization error of QuDDPM in generating
cluster states versus (a) diffusion steps T and (b) training dataset
size N. Dots are numerical results, and orange dashed line is
linear fitting results with both exponents equal to 1 within the
numerical precision.

FIG. 5. Generation of states with probabilistic correlated noise
on a specific state in (a) and (b) states with ferromagnetic phase.
In (a), average fidelity F10 between states at step t and j10i for
diffusion (red), training (blue), and testing (green) are plotted. In
(b), we show the distribution of magnetization for generated data
from training (blue) and testing (green) dataset, and compared to
true data (red) and full noise (orange). Four qubits are considered
in (b).
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quantum machine learning to solve classical problems
[15,67–69]. We test QuDDPM with a single qubit toy
example, where the generators are chosen as Pauli Y and
the rotation angles are uniform in ½0; 2πÞ. In the QuDDPM
training, we use the Wasserstein distance [48] to cope with
the nontrivial topology. The forward noisy diffusion

process on the sample data and the backward denoising
process for training and testing are depicted in Fig. 6.
To quantitatively evaluate the performance of QuDDPM,
we evaluate the deviation by Pauli Y expectation hYi2 in
Figs. 6(d) and 6(e), where gradual transition between zero
and a Haar value of 1=3 is observed in both forward
diffusion and backward denoising.

Q. Z. and B. Z. acknowledge support from NSF
CAREER Awards No. CCF-2240641 and No. ONR
N00014-23-1-2296. X. C. acknowledges support from
NSF CAREER Award No. DMS-2347760.

Appendix A: On details of parameters.—We list
hyperparameters and performance for all generative
learning tasks in Table I for reference, and state the
targeted distribution of states to generate in the
following. The major codes and data of the work can be
found in Ref. [50].
In Figs. 1(b) and 1(c), we consider data in the form of

jψ ð0Þi ∼ j0i þ ϵc1j1i up to a normalization constant where
ℜc1;ℑc1 ∼N ð0; 1Þ is Gaussian distributed, and the scale
factor is chosen as ϵ ¼ 0.08. We have taken single qubit

rotations as UðiÞ
k , where each angle is randomly sampled,

e.g., from the uniform distribution U½−π=8; π=8�. In the
generation of states with probabilistic correlated noise of
Fig. 5(a), the noise perturbation range is δ∈ ½−π=3; π=3�.

TABLE I. List of hyperparameters of quantum denoising diffusion probabilistic model (QuDDPM) and its performance in different
generative learning tasks. To test the performance after training, we randomly sample Nte random noise states, and perform the
optimized backward PQC to generate the sampled data. Dataset size Ntr ¼ Nte ¼ N. n is the number of data qubit n and nA is the ancilla
qubit. L is the PQC depth. T is the diffusion steps. For cluster state generation, we evaluate the average fidelity with the center state in
each cluster, i.e., j0i for single qubit and j0; 0i for 2 qubit [33]. We also specify the cost function, among the two choices: maximum 131
mean discrepancy (MMD) and Wasserstein distance.

Generation task n nA L T N Cost function Performance

Clustered state
1 1 4 20 100 MMD

F0;data ¼ 0.987� 0.013
(Fig. 1 of main text and
Figs. 4 and 6a of Ref. [33])

F0;tr ¼ 0.992� 0.021
F0;te ¼ 0.993� 0.014

Clustered state
2 1 6 20 100 MMD

F0;data ¼ 0.977� 0.014
(Fig. 3 of main text and Fig. 6(b)
of Ref. [33])

F0;tr ¼ 0.952� 0.070
F0;te ¼ 0.944� 0.075

Clustered state [Figs. 4(a) and 4(b)] 4 2 8 20
[Fig. 4(b)]

100
[Fig. 4(a)]

MMD See Figs. 4(a) and 4(b)

Correlated noise [Fig. 5(a)] 2 2 6 20 500 MMD
Data: 0.129

Training: 0.128
Testing: 0.133

Many-body phase [Fig. 5(b)] 4 2 12 30 100 MMD

Measured by magnetization.
Data: 1

Training: 0.9
Testing: 0.96

Circular states (Fig. 6) 1 2 6 40 500 Wasserstein

Data: hYi2 ¼ 0

Training: hYi2 ¼ 0.00367� 0.0251

Testing: hYi2 ¼ 0.00506� 0.0439

FIG. 6. Bloch visualization of the forward (a1)–(a3) and
backward (b1)–(b3),(c1)–(c3) process. (d),(e) deviation of gen-
erated states from unit circle in X-Z plane. The deviation hYi2 for
forward diffusion (red), backward training (blue), and backward
test (green) are plotted. The shaded area shows the sample
standard deviation.
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Appendix B: On Wasserstein distance.—For pure
states, choosing the quantum trace distance (equaling
infidelity) D2ðjϕi;jψiÞ¼1− jhϕjψij2, then Kantorovich’s
formulation for optimal transportation involves solving
the following optimization problem:

OPT ≔ min
π ∈ΠðE1;E2Þ

Z
V×V

Dpðjϕi; jψiÞdπðjϕi; jψiÞ ðB1Þ

for p ≥ 1, where ΠðE1; E2Þ is the set of admissible
transport plans (i.e., couplings) of probability
distributions on V × V such that πðB × VÞ ¼ E1ðBÞ and
πðV × BÞ ¼ E2ðBÞ for any measurable B ⊂ V; namely
ΠðE1; E2Þ stands for all distributions with marginals as
E1 and E2. The Kantorovich problem in Eq. (B1)
induces a metric, known as the p-Wasserstein distance,
on the space PpðVÞ of probability distributions on V
with finite pth moment. In particular, the p-Wasserstein
distance WpðE1; E2Þ ¼ OPT1=p, and it has identifiability
in the sense that WpðE1; E2Þ ¼ 0 if and only if E1 ¼ E2.
More details can be found in Ref. [33].

Appendix C: On related works.—The proposed
QuDDPM represents an application of the theoretical
idea of quantum information scrambling [27,28] in the for-
ward diffusion, and its backward denoising also connects
to the measurement-induced phase transitions [70].
Here we point out that our forward diffusion circuits
include an actual implementation of scrambling as part of
the QuDDPM algorithm, while previous papers utilize
tools from the study of quantum scrambling to understand
quantum neural networks [71,72].
Below, we discuss several related works. Reference [73]

utilizes a diffusion map (DM) for unsupervised learning
of topological phases, and [74] proposes a diffusion
K-means manifold clustering approach based on the
diffusion distance [75]. A quantum DM algorithm has also
been considered [76] for potentially quantum speedup.
However, these works are not on generative learning and do

not consider any denoising process. Layerwise training [77]
also attempts to divide a training problem into subtasks in
nongenerative learning; however, the performance of such
strategies is limited [78]. QuDDPM integrates the division
of training task and an actual noisy diffusion process to
enable provable benefits in training. After the completion
of our Letter, we became aware of a recent paper [79],
where hybrid quantum-classical DDPM is proposed. Our
Letter focuses on quantum data; provides explicit con-
struction of quantum diffusion and quantum denoising, loss
function, training strategy and error analyses; and presents
several applications.

Appendix D: On future directions.—Finally, we point
out some future directions, besides various applica-
tions of QuDDPM in learning quantum systems. Our
current QuDDPM architecture requires a loss function
based on fidelity estimations. For large systems, fidelity
estimation can be challenging to implement. Toward effi-
cient training in large systems, alternative loss functions
can be adopted. For example, one may consider adopting
another quantum circuit trained for telling the ensembles
apart, such as a quantum convolutional neural network
[4] and other circuit architecture [80]. Such an approach
will combine QuDDPM and the adversarial agent in
QuGAN to resolve the training problem in QuGAN.
Another future direction is controlled diffusion [81]:
when the ensemble has special symmetry, one can restrict
the forward scrambling, the backward denoising, and the
random noise ensemble to that symmetry. It is also an
interesting open problem of how to introduce a control
knob such that QuDDPM can learn multiple distributions
and generate states according to an input requesting one
of the distributions.
Besides learning quantum errors and many-body phases,

quantum sensor networks [82,83] provide another appli-
cation scenario of QuDDPM. In this scenario, one sends
quantum probes to sense a unitary physical process; on the
return side, the receiver will collect a pure state from a
distribution in the ideal case. It is an open problem of how

TABLE II. List of hyperparameters of quantum denoising diffusion probabilistic model (QuDDPM), quantum direct transport
(QuDT), and quantum generative adversarial networks (QuGANs) for generating a clustered state in Figs. 3 and 8 in Ref. [33]. Dataset
size Ntr ¼ Nte ¼ N. n is the number of data qubit n, and nA is the ancilla qubit. In performance, the mean fidelity with the center state of
the cluster j0; 0i is F0 ¼ Ejψi∈ S̃jh0; 0jψij2, and for true data it is F0;data ¼ 0.977� 0.014 [33].

Model n nA No. variational parameters N Cost function Performance

QuDDPM 2 1 720 100 MMD F0;tr ¼ 0.947� 0.070, F0;te ¼ 0.948� 0.061

QuDT 2 1 720 100 MMD
F0;tr ¼ 0.572� 0.321
F0;te ¼ 0.465� 0.349

QuGAN 2 1

720
(generator)

100
Error probability
based cost function

F0;tr ¼ 0.570� 0.250

96
(discriminator)

F0;te ¼ 0.443� 0.269
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QuDDPM can be adopted to provide an advantage in
quantum sensing.
Furthermore, the data can also be quantum states

encoding classical data, where QuDDPM can also process
classical data. Benchmarking QuDDPM and previous
algorithms for classical data generative learning is an open
direction.
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