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Quantum theory features several phenomena which can be considered as resources for information
processing tasks. Some of these effects, such as entanglement, arise in a nonlocal scenario, where a
quantum state is distributed between different parties. Other phenomena, such as contextuality, can be
observed if quantum states are prepared and then subjected to sequences of measurements. We use robust
remote state preparation to connect the nonlocal and sequential scenarios and provide an intimate
connection between different resources: We prove that entanglement in a nonlocal scenario can arise only if
there is preparation and measurement contextuality in the corresponding sequential scenario and that the
absence of entanglement implies the absence of contextuality. As a direct consequence, our result allows us
to translate any inequality for testing preparation and measurement contextuality into an entanglement test;
in addition, entanglement witnesses can be used to design novel contextuality inequalities.
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Introduction.—Quantum information science bears the
promise to lead to novel ways of information processing
which are superior to classical methods. This begs the
question of which quantum phenomena are responsible for
the quantum advantage and which resources are needed to
overcome classical limits. There are two main scenarios
where genuine quantum effects are studied. First, in the
nonlocal scenario (NLS), two parties, Alice and Bob, share
a bipartite quantum state ρAB and perform different mea-
surements on it. This leads to a joint probability distribution
for the possible outcomes. Second, in the sequential
scenario (SQS), Bob prepares some quantum state σ and
transmits the quantum state to Alice, who performs a
measurement. Clearly, these scenarios are connected: In the
NLS Alice and Bob can, using classical communication,
postselect on the outcome of Bob’s measurement, so that
Bob remotely prepares the state σ for Alice; see also Fig. 1.
In both scenarios, several notions of nonclassicality are

known and have been identified as resources for special tasks.
For the NLS a major example is entanglement which arises if
the quantum state cannot begenerated by local operations and
classical communication [1,2]. Entanglement has been iden-
tified as a resource for tasks like quantum key distribution [3]
or quantum metrology [4,5]. Other examples of nonclassi-
cality in the NLS are quantum steering [6] and Bell non-
locality [7].
For the SQS a major notion of nonclassicality is

contextuality [8,9]; we will consider the preparation and
measurement (PM) contextuality, sometimes also called
simplex embeddability [10–13]. Contextuality can be
viewed as a resource in various tasks, such as quantum
state discrimination [14], cryptography [15–17], quantum
computation [18–22], and metrology [23].

Are there any connections between quantum resources
arising in the nonlocal and the sequential scenario? This is a
key question for understanding the quantum advantage in
information processing. For quantum key distribution it
was already observed some time ago that prepare and
measure schemes (like the BB84 protocol) can be mapped
to entanglement-based schemes, which allows for a
common security analysis of both scenarios based on
entanglement theory [3,24]. More recently, the notion of
remote state preparation was used to show that steerability
of a quantum state ρAB corresponds to preparation non-
contextuality [25], while steerability of an assemblage
corresponds to measurement noncontextuality [26]; see
also Ref. [12] for a discussion.
In this Letter we show that entanglement in the NLS

corresponds to PM contextuality in the SQS. We use the

FIG. 1. Connections between entanglement in the nonlocal
scenario and contextuality in the sequential scenario. In the
nonlocal scenario, one considers probability distributions of the
type pða; bjρABÞ ¼ Tr½ðMa ⊗ NbÞρAB�, where Ma and Nb de-
scribe measurements. In the sequential scenario, Alice prepares a
quantum state σ, transmits it to Bob, leading to the probabilities
pðajσÞ ¼ TrðσMaÞ. We show that entanglement in the nonlocal
scenario is practically equivalent to noncontextuality in the
sequential scenario, if the state σ ∼ TrB½ð1a ⊗ NbÞρAB� is pre-
pared remotely by performing a measurement on Bob’s part of the
nonlocal scenario.
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fact that any bipartite quantum state gives rise to some
sequential scenario by using a kind of remote state
preparation [27,28]. Then, PM contextuality in this SQS
is a precondition of entanglement of the bipartite state. Our
results show that PM contextuality is a notable model of
classicality in the SQS since it corresponds to entanglement
in NLS and they imply that one can map noncontextuality
inequalities to entanglement witnesses and that one can use
classes of entanglement witnesses to design noncontex-
tuality inequalities. Additionally, we also discuss the
impact of our results on quantum key distribution. Our
research was motivated by recent findings on a connection
between noncontextuality and the mathematical notion of
unit separability [29]. Our results significantly differ from
the previously known connections between Kochen-
Specker contextuality and Bell nonlocality [30–34] since
not every entangled state exhibits Bell nonlocality, and
despite the similar name, Kochen-Specker contextuality
and Spekkens contextuality are strictly different operational
concepts exhibiting different nonclassical properties, even
though there are known connections between Spekkens
contextuality and Bell nonlocality [14,35,36].
Entanglement and remote preparations.—Assume that

two remote parties, Alice and Bob, share a bipartite quan-
tum state ρAB. We then say that the bipartite state ρAB is
entangled if it cannot be prepared using local operations
and classical communication [37]. This is the same as
requiring that the state ρAB is not separable, i.e., there is no
decomposition of the form ρAB ¼ P

i piσ
A
i ⊗ σBi , where

the pi form a probability distribution and σAi and σBi are
some states of Alice’s and Bob’s system.
Given a bipartite state ρAB, Bob can apply a measurement

to his part of the system and announce the outcome, which
results in remotely preparing the state TrB½ð1A ⊗ EBÞρAB�
for Alice. While a single remotely prepared state does not
capture the properties of the bipartite state ρAB shared
between Alice and Bob, it is intuitive that the set of all
possible remotely preparable states should have some
properties based on whether the shared bipartite state
ρAB is entangled or not. In order to investigate this, we
denote byΛAðρABÞ the set of all possible states that Bob can
remotely prepare for Alice using the shared bipartite state
ρAB. Mathematically, ΛAðρABÞ is defined as

ΛAðρABÞ ¼ fσA ∈DðHAÞ∶ ∃EB ≥ 0 such that

σA ¼ TrB½ð1A ⊗ EBÞρAB�g; ð1Þ

where HA is the Hilbert space corresponding to Alice’s
system, DðHAÞ is the set of density matrices on HA, and
EB ≥ 0 means that EB is a positive semidefinite operator.
ΛBðρABÞ is defined analogously. Note that these sets of
quantum states play a role in recent approaches to tackle the
problem of quantum steering [28,38].
Contextuality.—There are several notions of contextual-

ity. Here we are interested in the so-called preparation

measurement noncontextual models in the sense of
Spekkens [8,9]. This notion of contextuality is operation-
ally well defined and straightforward to generalize to
operational and probabilistic theories [39]. The details of
this approach were previously heavily discussed in the
literature; we will provide only an abridged introduction
and refer the reader to existing literature for in-depth
treatment [8–13,25,26,31,35,36,39–41].
In this approach one considers equivalence classes of

preparations, in quantum theory represented by density
matrices, and equivalence classes of measurements, in
quantum theory represented by positive operator-valued
measures (POVMs). A hidden variable model for a given
set of preparations and measurements is given by the
probability pðλjρÞ of preparing the hidden variable λ given
the density matrix ρ and by the response functions, that is,
by probability pðajM; λÞ of observing the outcome a
given the hidden variable λ and the POVM M was
measured. The probability pðajM; ρÞ of observing the
outcome a if ρ was prepared and M was measured must
satisfy pðajM; ρÞ ¼ P

λ pðλjPÞpðajM; λÞ.
In order to obtain the definition of PM contextuality, we

will assume that the distribution of the hidden variable
pðλjρÞ can be obtained only by having access to a single
copy of the prepared system and that the response function
can be obtained only by having access to single use of the
measurement device; operational arguments imply that
pðλjρÞ must be a linear function of the density matrix
and the response function must be a linear function of the
POVM [25,40].
Given that we can prepare only states ρ∈K ⊂ DðHÞ,

where K is a convex subset of density matrices, and that we
can measure all measurements, a quantum system has a PM
noncontextual model if for every density matrix ρ∈K and
for every POVM M ¼ fMag, 0 ≤ Ma ≤ 1,

P
a Ma ¼ 1,

we have TrðρMaÞ ¼
P

λ pðλjρÞpðajλ;MÞ, where pðλjρÞ is
a linear function of ρ and pðajλ;MÞ is a linear function of
Ma. It follows that there are operators Nλ such that
pðλjρÞ ¼ TrðρNλÞ that satisfy the positivity and normali-
zation conditions:

TrðρNλÞ ≥ 0 and
X

λ

TrðρNλÞ ¼ 1; ð2Þ

for all ρ∈K. Note that this does not imply that the Nλ form
a POVM. In fact, whenever K is a strict subset of the
density matrices, then according to the hyperplane sepa-
ration theorem [42] there is some Nλ that satisfies the
positivity condition in Eq. (2) that is not a positive semi-
definite operator. Analogically, since pðajλ;MÞ is a linear
function of Ma, we have pðajλ;MÞ ¼ TrðωλMaÞ, where
ωλ ∈DðHÞ. Putting everything together, we get the follow-
ing definition that is sufficient for our needs.
Definition (PM noncontextual model).—There exists

preparation measurement noncontextual model for K ⊂
DðHÞ if for every ρ∈K and every POVM M ¼ fMag, we
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have

TrðρMaÞ ¼
X

λ

TrðρNλÞTrðωλMaÞ; ð3Þ

where ωλ ∈DðHÞ and Nλ are operators satisfying (2).
As in our definition, we always consider the PM non-

contextual model of K ⊂ DðHÞ with respect to all mea-
surements since our results connect entanglement and PM
noncontextuality with respect to all measurements.
Main results.—We can directly formulate our first main

result.
Theorem 1.—Let ρAB be a bipartite quantum state and

assume that there exists a PM noncontextual model for the
set of states ΛAðρABÞ and all possible measurements. Then,
ρAB is separable.
The proof is given in the Supplemental Material [43].

The underlying idea is that in the PM noncontextual model
from Eq. (3) the term TrðωλMaÞ can be interpreted as
measurement on Alice’s side of a separable decomposition
ρAB ¼ P

λ ωλ ⊗ Kλ, where Bob’s parts Kλ in the decom-
position are given by Kλ ¼ TrA½ðNλ ⊗ 1BÞρAB�.
In the following theorem we will prove that a separable

state ρAB ¼ P
λ ωλ ⊗ Kλ yields remotely preparable set

ΛAðρABÞ with a PM noncontextual model if the operators
Kλ in the separable decomposition can be chosen such
that they belong to the linear hull of ΛBðρABÞ. We will get
rid of this condition later by considering robust remote
preparations.
Theorem 2.—Let ρAB be a separable bipartite quantum

state with the decomposition ρAB ¼ P
λ ωλ ⊗ Kλ, where

ωλ ≥ 0, TrðωλÞ ¼ 1, and Kλ ≥ 0. Assume that Kλ belongs
to the linear hull of ΛBðρABÞ for all λ. Then there exists PM
noncontextual model for ΛAðρABÞ.
The proof can be found in Supplemental Material [43].

In the dimension restricted case where we assume that
both Alice and Bob have locally only a single qubit,
dimðHAÞ ¼ dimðHBÞ ¼ 2, one can see from the separabil-
ity criteria presented in [28] that the condition on the Kλ to
be in the linear hull of ΛBðρABÞ is not necessary and the
state is separable if and only if there exists PM non-
contextual model for ΛAðρABÞ. The following example
shows that Theorem 2 cannot be directly extended to all
states. Consider the separable qubit-ququart state:

ρAB ¼ 1

4
ðj0ih0j ⊗ j00ih00j þ j1ih1j ⊗ j01ih01j

þ jþihþj ⊗ j10ih10j þ j−ih−j ⊗ j11ih11jÞ: ð4Þ

This does not meet the condition in Theorem 2; at least for
the decomposition in Eq. (4) this is obvious: ΛBðρABÞ is
three dimensional, while there are four linearly independent
Kλ. On the other hand, ΛAðρABÞ ¼ convðfj0ih0j; j1ih1j;
jþihþj; j−ih−jgÞ does not have a PM noncontextual
model; see Eq. (9) below.

We now want to get a version of Theorem 2 without the
condition on the Kλ to be in the linear hull of ΛBðρABÞ.
Clearly, the condition is met if the set ΛBðρABÞ spans the
entire operator space. If dimðHAÞ ¼ dimðHBÞ, then for
almost all separable states τAB we have that ΛBðτABÞ spans
the entire operator space, but note that this is not true for the
maximally mixed state. We will use this insight to get rid of
the pathological cases. The proof can be found in the
Supplemental Material [43].
Theorem 3.—Let dimðHAÞ ¼ dimðHBÞ and let ρAB be a

separable quantum state. Then for almost all separable
quantum states τAB there is a δðτABÞ > 0 depending on τAB,
such that for every ε∈ ð0; δÞ there exists a PM non-
contextual model for ΛA½ð1 − εÞρAB þ ετAB�.
Mapping noncontextuality inequalities to entanglement

witnesses.—Using the results of Theorem 3 one can obtain
entanglement witnesses from noncontextuality inequalities.
The only caveat is that the noncontextuality inequalities
must be formulated in terms of unnormalized states. This is
necessary to account for the fact that TrB½ð1A ⊗ EBÞρAB� is
not normalized for EB ≥ 0. This is because the set of EB
such that Tr½ð1A ⊗ EBÞρAB� ¼ 1 in general depends
on ρAB.
We will demonstrate the method using the noncontex-

tuality inequality presented in Ref. [44]. Let K be the set of
allowed preparations. By coneðKÞ we denote the set of all
unnormalized allowed preparations, that is, all operators of
the form μσ̃, where μ∈R, μ ≥ 0, and σ̃ ∈K. Let σt;b ∈
coneðKÞ for t∈ f1; 2; 3g and b∈ f0; 1g be such that σ� ¼
1
2
ðσt;0 þ σt;1Þ is the same for all t∈ f1; 2; 3g and letMt;b be

positive operators, Mt;b ≥ 0, such that 1
3

P
3
t¼1Mt;b ¼

ð1=2Þ and Mt;0 þMt;1 ¼ 1. In other words, Mt;b are three
binary POVMs such that their uniform mixture corresponds
to the random coin toss. Then the unnormalized version of
the noncontextuality inequality from Ref. [44] is as follows:
If there is a PM noncontextual model for K, then we haveP

3
t¼1

P
1
b¼0 Trðσt;bMt;bÞ ≤ 5Trðσ�Þ. See the Supplemental

Material [43] for the proof of this modified noncontextuality
inequality. Using this inequality we obtain the following
entanglement witness.
Proposition 4.—Let ρAB be a separable quantum state. Let

Et;b and Mt;b be positive operators, Et;b ≥ 0 and Mt;b ≥ 0,
such that E� ¼ 1

2
ðEt;0 þ Et;1Þ, 1

3

P
3
t¼1 Mt;b ¼ ð1A=2Þ, and

1A ¼ Mt;0 þMt;1 for all t∈ f1; 2; 3g and b∈ f0; 1g. Then

X3

t¼1

X1

b¼0

Tr½ðMt;b ⊗ Et;bÞρAB� ≤ 5Tr½ð1A ⊗ E�ÞρAB�: ð5Þ

Moreover, there is an entangled state ρAB that violates Eq. (5)
for suitable choice of the operators Et;b and Mt;b.
The proof follows from Theorem 3, since if ρAB is

separable, then Eq. (5) is satisfied for all ΛA½ð1 − εÞρAB þ
ετAB� for all ε∈ ð0; δÞ. This is then used to construct the
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corresponding entanglement witness. The full proof can be
found in the Supplemental Material [43].
Being more concrete, one can write down an explicit

entanglement witness from observables leading to a viola-
tion of the original noncontextuality inequality [9]; see
the Supplemental Material [43] for detailed construction.
We obtain that for every separable state ρAB we have
Tr½ðσx ⊗ σxÞρAB� þ Tr½ðσz ⊗ σzÞρAB� ≤ 4

3
, which is aweak-

ened version of the well-known witness Tr½ðσx ⊗ σxÞρAB� þ
Tr½ðσz ⊗ σzÞρAB� ≤ 1 [45–47]; still, this inequality is vio-
lated by the maximally entangled state.
Mapping entanglement witnesses to noncontextuality

inequalities.—Noncontextuality inequalities are inequal-
ities that are satisfied by any operational model that is
PM noncontextual. Since they are theory independent,
noncontextuality inequalities are an experimentally feasible
method of certifying nonclassicality of experimental setups
without having to trust the physical implementation. We
will also sketch other potential uses for noncontextuality
inequalities in quantum key distribution inspired by our
results in a later section. While some techniques for
constructing noncontextuality inequalities are known
[36,48], our results enable us to derive additional non-
contextuality inequalities. This is not so straightforward, as
we cannot use just a single entanglement witness, but we
must map a whole class of entanglement witnesses to get a
class of noncontextuality inequalities. We will proceed with
an example that showcases this. We will use a class of
entanglement witnesses that comes from the Clauser-
Horne-Shimony-Holt (CHSH) inequality [49,50], but a
similar approach works for other Bell inequalities as
well [51].
Let Ai and Bi for i∈ f1; 2g be observables such that

−1A ≤ Ai ≤ 1A and −1B ≤ Bi ≤ 1B and let ρAB be a sepa-
rable state. Then we have Trf½A1 ⊗ ðB1 þ B2Þ þ A2 ⊗
ðB1 − B2Þ�ρABg ≤ 2. In order to obtain a noncontextuality
inequality proceed as follows. Let Biþ and Bi− be the
positive and negative parts of Bi, respectively, that is, Biþ
and Bi− are operators such that Bi� ≥ 0, BiþBi− ¼ 0, and
B ¼ Biþ − Bi−. Denote σi� ¼ TrB½ð1A ⊗ Bi�ÞρAB�. Then
we have

2 ≥ Trf½A1 ⊗ ðB1 þB2Þ þA2 ⊗ ðB1 −B2Þ�ρABg
¼ Tr½ðA1 þA2Þðσ1þ − σ1−Þ� þTr½ðA1 −A2Þðσ2þ − σ2−Þ�;

ð6Þ

which already bears some formal similarity to the non-
contextuality inequality from above. From −1B ≤ Bi ≤ 1B
it follows that the eigenvalues of Bi are from the interval
½−1; 1� and so we also have jBij ≤ 1B. Define σi0 ¼
TrBf½1A ⊗ ð1B − jBjiÞ�ρABg and σ� ¼ TrBðρABÞ, then we
have σ1þ þ σ1− þ σ10 ¼ σ� ¼ σ2þ þ σ2− þ σ20, which is
going to play a crucial role in the formulation of the
noncontextuality inequality. We obtain the following.

Proposition 5.—Let K be a set of allowed preparations.
Let σ� ∈K and let i∈ f1; 2g, let σiþ; σi−; σi0 ∈ coneðKÞ be
subnormalized preparations such that

σ1þ þ σ1− þ σ10 ¼ σ� ¼ σ2þ þ σ2− þ σ20: ð7Þ

Let Ai be observables such that −1 ≤ Ai ≤ 1 for all
i∈ f1; 2g. If there is a PM contextual model for K, then

Tr½ðA1 þA2Þðσ1þ − σ1−Þ� þTr½ðA1 −A2Þðσ2þ − σ2−Þ� ≤ 2:

ð8Þ

The proof of Proposition 5 is given in the Supplemental
Material [43]. The proof is significantly different from the
proof of Proposition 4: There, we showed that Eq. (5) is an
entanglement witness because it was derived from non-
contextuality inequality. In the proof of Proposition 5 we
use Eq. (6) only as an educated guess and we have to prove
that Eq. (8) is a noncontextuality inequality by showing that
it holds whenever a PM noncontextual model exists.
In order to construct an explicit violation of the non-

contextuality inequality, we can consider the equivalent of
the standard quantum violation of the CHSH inequality: let
H be a qubit Hilbert space, dimðHÞ ¼ 2, let σx, σy, σz be
the Pauli matrices, and let

A1 ¼
1
ffiffiffi
2

p ðσx þ σzÞ; A2 ¼
1
ffiffiffi
2

p ðσx − σzÞ;

σ1þ ¼ 1

2
jþihþj; σ1− ¼ 1

2
j−ih−j;

σ2þ ¼ 1

2
j0ih0j; σ2− ¼ 1

2
j1ih1j; ð9Þ

where jþi; j−i and j0i; j1i are the eigenbasis of the Pauli
operators σx, σz respectively. We have σ1þ þ σ1− ¼
σ2þ þ σ2−, and so the constraint (7) is satisfied. We get
Tr½ðA1þA2Þðσ1þ−σ1−Þ�þTr½ðA1−A2Þðσ2þ−σ2−Þ�¼2

ffiffiffi
2

p
;

hence, the inequality (8) is violated.
Let us note that it was shown in Ref. [10] that the

stabilizer rebit theory, whose state space consists of the
convex combinations of the states j0ih0j, j1ih1j, jþihþj,
j−ih−j, has a PM noncontextual model which may seem to
contradict the violation of the noncontextuality inequality
(8). However, there is no contradiction because the observ-
ables A1 and A2 are not included in the stabilizer rebit
theory.
Applications in quantum key distribution.—Our results

provide an insight into why entanglement is a precondition
for secure quantum key distribution [3]. This is a known
result, but we will show that it can be understood in terms
of noncontextuality by employing our result. Consider an
entanglement-based protocol for quantum key distribution:
let ρAB be the state shared between Alice and Bob and let
Majx be the measurements available to Alice and Nbjy be
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the measurements available to Bob. In line with [3] we
say that Majx ⊗ Nbjy do not witness the entanglement of
ρAB if for any entanglement witness of the form W ¼P

a;b;x;y cabxyMajx ⊗ Nbjy, that is, for every operator W of
this form such that TrðWσABÞ ≥ 0 for all separable states
σAB, we also have that TrðWρABÞ ≥ 0. It was observed in
[3] that if Majx ⊗ Nbjy do not witness the entanglement of
ρAB, then there is a separable state ξAB such that
Tr½ðMajx ⊗ NbjyÞρAB� ¼ Tr½ðMajx ⊗ NbjyÞξAB�.
We will interpret Bob’s measurements on ρAB as remote

preparations; thus Bob will be sending to Alice states σajx
proportional to TrB½ð1 ⊗ MajxÞρAB�. If we assume that
Majx ⊗ Nbjy do not witness the entanglement of ρAB, then
we can replace ρAB with the respective separable state ξAB,
and it follows from Theorem 3 that there exists PM
noncontextual model for the set ΛA½ð1 − εÞξAB þ ετAB�.
Then in any prepare and measure quantum key distribution
protocol where Bob sends to Alice states from the set
ΛA½ð1 − εÞξAB þ ετAB� for arbitrary small ε > 0, the eaves-
dropper can then map the state prepared by Bob to the
hidden variables, broadcast the hidden variables, and map
one copy to the respective state that is then sent to Alice
while using the other to obtain complete information about
the secret key. It follows that quantum key distribution is
not possible in this scenario, and thus it is also not possible
with the state ρAB and measurements Majx and Nbjy,
respectively.
The fact that a state is entangled does not guarantee that

it is useful for quantum key distribution in entanglement-
based protocols and, analogically, the fact that K is
contextual does not guarantee that it is useful for quantum
key distribution in prepare and measure protocols. But it is
known that sufficient violation of a Bell inequality, such as
the maximal violation of the CHSH inequality, is sufficient
for quantum key distribution. Using the standard connec-
tion between entanglement-based and prepare and measure
protocols for quantum key distribution [24,52–54], it
follows that sufficient violation of the respective non-
contextuality inequality enables quantum key distribution.
We leave further investigation of this topic for future
research.
Conclusions.—Our main results, Theorems 1 and 3,

prove that contextuality is a precondition for entanglement
and that only entangled states allow for robust remote
preparations of contextuality. We have used these results to
map noncontextuality inequalities to a class of entangle-
ment witnesses in Proposition 4 and to design a class of
noncontextuality inequalities using entanglement witnesses
in Proposition 5. We have also discussed potential future
applications of our results in quantum key distribution.
As a consequence of our results any experiment which

verifies entanglement of a state (e.g., by observing quantum
steering or violation of a Bell inequality) immediately
verifies PM contextuality of the induced system. Moreover,

our results open the path to further transport of results
between entanglement and contextuality, one can use our
result to design noncontextual inequalities that can be used
to verify parameters of an experimental setup [51], and it is
also possible to take a contextuality-enabled task and
transform it into a remote entanglement-enabled task.
Thus our results provide a blueprint for connecting the
resource theory of entanglement and contextuality.

Note added.—After submission of this manuscript a paper
connecting contextuality and Bell nonlocality in a similar
manner appeared [55], where also the decidability of the
membership problem of the set of quantum contextual
behaviors is discussed.
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