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The stochastic exploration of the configuration space and the exploitation of functional states underlie
many biological processes. The evolutionary dynamics stands out as a remarkable example. Here, we
introduce a novel formalism that mimics evolution and encodes a general exploration-exploitation
dynamics for biological networks. We apply it to the brain wiring problem, focusing on the maturation of
that of the nematode Caenorhabditis elegans. We demonstrate that a parsimonious maxent description of
the adult brain combined with our framework is able to track down the entire developmental trajectory.
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Introduction.—Modeling and analyzing the dynamics of
biological systems is notoriously challenging. Critically,
they are often stochastic in nature, as they involve and
possibly exploit some degree of randomness. At the same
time, biological dynamics are also shaped by functional
constraints that determine which outcomes are viable. The
constraints emerge from the need for biological systems to
perform specific tasks and act on the system as a whole, not
on specific components. Stochastic events that violate these
constraints are unlikely to persist, while those that align
with them are more likely to become integrated. If the
details of such exploration-exploitation (EE) dynamics are
context dependent, general principles can still be formu-
lated [1]. This entails addressing several challenging
questions. For instance, how do biological systems explore
the space of possible configurations? How do they identify
the optimal states that satisfy specific functional demands?
A possible solution is offered by nature itself. In

evolutionary dynamics, a population primarily evolves
under the combined action of mutations and recombina-
tions (exploration) and natural selection (exploitation). The
latter is based on the notion of fitness: Those individuals
that are more apt to the environment will have a higher
reproductive success (high fitness) and survive to the next
generations, while the others will go extinct [2] (see
Supplemental Material, Sec. I [3]). We argue that evolu-
tionary dynamics is a particular instance of the aforemen-
tioned EE dynamics and build upon it to construct a general
EE formalism for networked biological systems.
We use it to tackle the brain wiring problem and model

the developmental dynamics of the Caenorhabditis elegans
connectome, recently obtained by serial-section electron
microscopy [4,5,33].
Theoretical framework.—Let us begin by clarifying the

terminology. (a) Exploration refers to the act of stochasti-
cally searching the configuration space. (b) Exploitation
refers to the harnessing the discovered configurations to

optimize the system function. The resulting optimization
problem is defined once we specify (b)(i) how the optimal
states are encoded and (b)(ii) how the system approaches
them.
Formally, let us consider a biological system represented

as a simple graph (or network) G∈G over N nodes,
unweighted, undirected, with no self-loops. It can be
identified with a finite, binary, symmetric and with zero-
diagonal adjacency matrix G ¼ faijg, where aij ∈ f0; 1g
indicates the absence or presence of an edge within the pair
of nodes, or dyad, ðijÞ. There are L ¼ NðN − 1Þ=2 dyads
and, hence, L possible edges. Let PðG; tÞ be the probability
of the graph G at time t.
(a) Exploration.—Each dyad mutates its state in the time

interval Δt with rate μ ≥ 0. A simple exploration scheme is
to randomly create or dissolve edges; e.g., an edge is added
if none existed or removed if present. The effect on the
graph distribution is

PðG; tþ ΔtÞ ¼ PðG; tÞ þ Δtμ
X
i<j

�
PðMijG; tÞ − PðG; tÞ�;

ð1Þ
where Mij is the operator that mutates the dyad aij of the
graph G. The exploration rate μ is here constant and
uniform across dyads.
(b) Exploitation.—A functional metric FðGÞ∶G → R

serves the purpose of representing the concept of biological
function, with optimal states defined as maxima of F (b)(i).
In the time interval Δt, we formally define exploitation as
follows:

PðG; tþ ΔtÞ ¼ eΔtφFðGÞ

heΔtφFit
PðG; tÞ; ð2Þ

where h·it stands for the ensemble average at time t,
i.e., heΔtφFit ¼

P
G eΔtφFðGÞPðG; tÞ, and φ ≥ 0, the
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exploitation rate, is an overall scaling. Therefore, the
way in which the dynamics approach the most functional
(highest F) configurations is by exponentially increasing
the probability of those graphs that have higher F values
than the ensemble average at time t (b)(ii).
We will refer to the ratio ρ ¼ φ=μ as the functional

pressure: ρ ∼ 0 implies a dynamic dominated by random-
ness, similar to a random walk in the graph space G, while
ρ → ∞ corresponds to the limit of perfect exploitation,
where only the most functional graph configurations have
non-negligible probabilities.
In Supplemental Material, Sec. II [3], we introduce four

simple models, namely, the cases of no exploitation, edge
penalty, edge covariate, and distancelike F metric. We
show that these cases can be treated analytically and offer a
formal understanding of the intuitions (i) that the optimal
states implied by a F metric are not strictly attainable as
long as μ ≠ 0 and (ii) that the functional pressure ρ controls
not only the rate of approach to the maxima of F, but also
the final stationary state.
The above framework closely mimics a Darwinian

evolution driven by mutations and fitness-based natural
selection, in the infinite population limit [6,32].
Equations (1) and (2) can be regarded as an algorithm,
inspired by evolution, that (a) uses random choices to
(b) direct an exploitative search for solving an optimization
problem. In this sense, it is similar to a genetic algorithm
[7]; see Supplemental Material, Sec. I [3]. We further
explore the parallel with the evolutionary dynamics to
design simulations based on Eqs. (1) and (2), concisely
described in Supplemental Material, Sec. III [3].
F is shaped by the environment and has the role of

mapping the functional requirements of the biological
system onto the configuration space. As a consequence,
the particular form of F depends on the specific context and
system. In general, no demands are made on the properties
of F, which could be regarded as a black box which returns
a real number for each possible input (graph). In this work,
however, we will study a white-box F metric which admits
a mathematical formulation. In particular, we will describe
the state of a graph G by a set of sufficient statistics
xðGÞ∈Rr, and in this latter space the F∶ Rr → R will be
formally defined.
C. elegans brain maturation.—In the following, we will

consider the so-called brain wiring problem [33], i.e., how
the structural complexity of a natural brain arises during the
development of an organism. Answering the brain wiring
problem is an open challenge in neuroscience and entails
tackling at least two kind of questions: (i) what drives the
brain maturation (structural principles) and (ii) which is the
driving algorithm (dynamical principles). Here, we will
formulate them in terms of an F metric and EE dynamics,
respectively. In particular, the latter is consistent with three
essential and general features of the brain wiring dynamics,
which are (a) functionally robust—the adult brains are

capable of supporting the functions that sustain the life of
an organism; (b) not hardwired—genetically encoded
developmental algorithms give rise to similar yet non-
identical structures, resulting in high interindividual vari-
ability [33]; and (c) self-referential—the updating rules
evolve in time, as a function of the state and, therefore, of
the history of the system [34].
To tackle the brain wiring problem, a natural choice is to

consider that of the nematode C. elegans [8] (see
Supplemental Material, Sec. VA [3]). This is the only
organism for which a comprehensive map of neuronal
connections within a brain has been reconstructed across
development [5]. The dataset consists of eight fully
reconstructed brains of the hermaphrodite C. elegans,
obtained from different isogenic individuals at different
developmental ages, including one at birth and two
adults (t ∼ 45 h after birth) (see Supplemental Material,
Sec. V B [3]). We consider the unweighted and undirected
networks of chemical synapses between sensory, inter,
motor, and modulatory neurons (161–180 nodes and
617–1669 edges). This choice of representation is moti-
vated by the statistical properties of the adult C. elegans
connectome [9,10], along with the effort to devise a
simplified growth model; a critical discussion can be found
in Supplemental Material, Sec. V B [3].
The developmental principles that guide the C. elegans

brain maturation are not entirely known. On the one hand,
approximately 43% of the synaptic connections between
neurons are not conserved among genetically identical
individuals, suggesting a prominent role of stochasticity
in the brain wiring [5,33]. Conversely, the diverse range of
behaviors exhibited by adult C. elegans [35] demands
functional selection. Our EE framework captures these two
tendencies simultaneously. An overview of the approach
is illustrated in Fig. 1. A microlevel interpretation of
Eqs. (1) and (2) for the wiring dynamics of the individual
neurons is extensively discussed in Supplemental Material,
Sec. V C [3].
A preliminary step of our modeling approach is the

characterization of the worm brain by a set of sufficient
statistics xðGÞ. Based on recent evidence [11,36], we
consider a parsimonious representation in which

xðGÞ ¼

2
664

P
k>0

wðkÞ
τd xðkÞd ðGÞ

P
k>0

wðkÞ
τesp xðkÞespðGÞ

3
775; ð3Þ

where xðkÞd and xðkÞesp are the number of nodes with
degree k and the number of connected dyads sharing

exactly k partners, respectively. The coefficients are wðkÞ
α ¼

eαf1 − ð1 − e−αÞkg, with α ¼ τd; τesp > 0 decay parame-
ters. In other words, these statistics are linear combinations
of the degree and edgewise shared partner distributions.
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They yield a model that is both realistic and computation-
ally tractable [12] (see Supplemental Material, Sec. IV [3]).
More specifically, the first statistic is called geometrically
weighted degree (gwd) and encodes the information, e.g.,
on the presence or absence of hub nodes in the graph, well
documented in the case of C. elegans [5,11]. The second
statistic is called geometrically weighted edgewise shared
partner (gwesp) and is a proxy for a triadic-closure
phenomenon in the graph; i.e., pairs of nodes that have
links to one or more common neighbors have a higher
chance of being connected to each other. The latter could,
in turn, result from a tendency of the network to segregate
into densely connected modules [5,11].
Given a choice of statistics as in Eq. (3), we

can characterize any observed graph G� within the infer-
ential framework of exponential random graph (ERG)
models [12,13] (see Supplemental Material, Sec. IV [3]).
Accordingly, the ensemble G is endowed with a maximum
entropy probability distribution

PERGMðGjθÞ ¼ e−HðG;θÞ=
X
G̃∈G

e−HðG̃;θÞ; ð4Þ

where HðG; θÞ ¼ −θ · xðGÞ is the Hamiltonian. Given an
observed graph G�, the vector of parameters θ� can be

inferred as approximate solution the maximum likelihood
estimation problem θ� ¼ arg maxθ log PðG�jθÞ. The
inferred parameters quantify the contribution of the asso-
ciated statistics to the structure of the observed graph. For
example, if the statistic xα is non-negative, positive θ�α
imply the existence of a bias toward graphs with higher-
than-random values of xα—given the rest of the modelP

β≠α θ
�
βxβ [12] (see Supplemental Material, Sec. IV [3]).

We are now in the position to propose the following F
metric for the C. elegans brain maturation:

FðGÞ ¼ θ� · xðGÞ; ð5Þ

where xðGÞ are defined in Eq. (3). The parameters θ� are
obtained from the ERG inference in the adult stage, so that
the correct (functional) balance of model statistics can be
achieved at the end of the developmental process. The
topography of the functional landscape is genetically
encoded and results from the combined effect of physical,
genetic, and functional constraints.
In particular, we consider the average estimated param-

eters from the two adult worms G�
T ¼ ðG�

T;1; G
�
T;2Þ and

obtain θ�gwd ¼ 0.44 and θ�gwesp ¼ 0.58 (see Supplemental
Material, Sec. VI A [3]). EE dynamics based on Eq. (5) will
favor both the emergence of hubs and of a triadic closure
behavior, since, by virtue of the positive values of the linear
parameters, higher values of the statistics in Eq. (3) will
imply higher F values. This is in line with experimental
observations that, during development, hub neurons at birth
get more inputs and that the overall modularity of the C.
elegans brain network increases [5].
We can now proceed to model the developmental

dynamics by setting appropriate boundary conditions and
the EE parameters of the dynamics: the exploration rate and
the functional pressure. As the argument goes, μ and ρ are
characteristic of the specific instance (C. elegans) of the
biological process (brain wiring); they are genetically
encoded and, therefore, result from the evolutionary history
of the species.
We set the graph G�

0 corresponding to the network
at birth as the starting point of the dynamics,
PðG ¼ G�

0; 0Þ ¼ 1. In fact, (i) as reported in [5], the brain
morphology at birth serves as the structural foundation
upon which the adult connectivity unfolds. Moreover,
(ii) an implicit assumption of the EE graph dynamics is
the functional homogeneity, i.e., that the same F metric
holds true throughout the whole dynamics. This
assumption is likely to be violated before hatching (birth),
during the embryonic stage, where a different growth
regime of the nervous system has been observed [37].
Throughout development, the removal of synaptic con-

nections happens rarely [5]. Accordingly, we modify the
mutation scheme described in Eq. (1) by restricting the
removal of edges. By Occam’s razor, we assume a constant
exploration rate

FIG. 1. EE dynamics for the C. elegans brain maturation. We
consider the eight snapshots of the worm network of chemical
synapses, at different developmental ages t ¼ 5, 8, 16, 23, 27, and
45 h (two adults), from [5]—some are omitted for visual clarity.
The birth configuration is fixed as the starting point of the
dynamics. The two adult snapshots are used to infer (i) the
topography of the functional landscape FðGÞ (bottom left),
encoded in the set θ�—ERG inference starting from the empirical
statistics x� ≡ xðG�

TÞ; and (ii) the EE parameters, i.e., the
exploration rate μ� and the functional pressure ρ�; see Supple-
mental Material, Sec. VI [3].
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μ� ¼ 1

TL

X
i<j

½āijðG�
TÞ − aijðG�

0Þ� ¼ 1.43 × 10−3 h−1; ð6Þ

where T ¼ 45 h is the adult age, L ¼ NðN − 1Þ=2 is the
number of dyads of the adult brain graphs (N ¼ 180),P

i<j āijðG�
TÞ is the average number of edges between the

two adult worms, and
P

i<j aijðG�
0Þ is the number of edges

at birth. At the end of the developmental dynamics, μ� is
assumed to drop to zero.
We are left with only one free parameter, i.e., the

functional pressure ρ ¼ φ=μ > 0. Nonzero ρ describe the
scenario in which new connections emerge primarily in
locations where they result in an enhanced system function.
Its value must be biologically regulated to ensure the
development of adequately specialized functional circuits
prior to reaching the adult stage. Therefore, we use the
corresponding degree of freedom to inform the EE graph
dynamics about the age of the adulthood. In particular, we
set ρ� ¼ minρ δmah

T , where the quantity to be minimized is
the Mahalanobis distance [14], at time T, between the two-
dimensional ensemble distribution of the graph statistics

and the average experimental values (see Supplemental
Material, Sec. VI B [3]).
In Fig. 2(a), we show that δmah

T is a convex function of the
functional pressure ρ. Both insufficient and excessive ρ
lead to the ensemble distribution diverging from the
experimental values. The minimization procedure yields
ρ� ¼ 9.017 × 102 (R2 ¼ 0.98).
Notably, in estimating the dynamical parameters we

have relied solely on the C. elegans brain graphs at birth
and in the adult stage. We can ask if and how the
estimation would change when considering the whole
available data, which include the developmental time
points at 5, 8, 16, 23, 27, and 45 h after birth. A linear
fit of the growth of the number of edges based on the
whole time series yields μ�� ¼ ð1.39� 0.08Þ × 10−3 h−1.
This estimation is compatible with the value μ� in Eq. (6)
[Fig. 2(b)]. As for the functional pressure, we can
define an equivalent minimization problem where the
Mahalanobis distance is summed over all experimental
time points, yielding a value ρ�� that is statistically
consistent with ρ� [see Fig. 2(a) and Supplemental
Material, Sec. VI B [3] ].

FIG. 2. Tracking down the C. elegans brain maturation. (a) We run 100 simulations ∀ ρ∈ f200þ 20i; 0 ≤ i ≤ 60g. For each ρ, we
compute the mean and standard deviation of δmah

T (red line and shaded area, respectively). We fit the data with a quadratic curve (dash-
dotted line) and take the abscissa ρ� of its minimum (red diamond) as an estimation of the functional pressure. On the same curve, we
show the value (blue diamond) corresponding to the abscissa ρ�� we get by minimizing the sum of the Mahalanobis distances over all
experimental time points (see Supplemental Material, Sec. VI B [3]). The two overlap within the error bars. (b) The exploration rate is
calculated by using the first and last time points (average). The shaded area corresponds to the estimation by a linear fit over the whole
time series. (c) One simulation run with μ�; ρ�. Main: the trajectory in the space of statistics (gwd and gwesp). Experimental data
(circles) are closely tracked by our simulations (dashed line, diamonds highlighting the observed time points t�). The trajectory of a null
model with ρ ¼ 0 is also shown (dotted line, squares). Inset: the simulated and experimental time course of F in time. (d) Feature
generalization. The temporal trajectory of the average clustering coefficient and global efficiency, markers as described in (c). See also
Supplemental Material, Sec. VI C [3].
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This hints that (i) given the model in Eq. (5), the
assumption of functional homogeneity for the worm brain
wiring dynamics holds true and (ii) the EE graph dynamics,
informed about birth and adulthood, capture the entire
developmental trajectory.
To further investigate this result, we can fix μ�; ρ� and

look at individual simulations of the brain growth, as in
Fig. 2(c). For comparison, we also plot the results of a null
model where ρ ¼ 0, i.e., a random graph growth with
exploration rate μ�. As could be expected, the adult stage is
correctly reached in terms of the model statistics in Eq. (3)
and, by consequence, of the F metric. Notably, however,
our simulations approximate en passant the other observed
developmental ages, which we have used nowhere in
inferring the parameters. This opens up the possibility of
using our framework to reconstruct also those stages of
brain maturation for which no data are available.
The model described so far is a simple, low-dimensional

model of the underlying biological dynamics. Almost by
construction, a choice as simple as Eq. (3) is unlikely to
capture the finer-scale topological details of the observed
graphs. Analogously, an exploration dynamics as simple as
Eq. (6) cannot capture transient dynamic patterns. Yet, we
can meaningfully ask to what extent the EE graph dynamics
based on the features in Eq. (3) reproduces other network
properties not included in the model formulation (see
Supplemental Material, Sec. VI C [3]). In Fig. 2(d),
we show that our model retrieves the propensity of the
C. elegans brain networks to exhibit relatively high
efficiency (like random graphs) and clustering (unlike
random graphs) [15].
Discussion.—In summary, we have presented a parsi-

monious, interpretable framework for the dynamics of
networked biological systems. It is built upon the dynami-
cal principle of the exploration-exploitation paradigm,
which is general. It serves as theoretical scaffolding for
formulating specific dynamical models, which must be
tailored to the biological system. We have used it here to
model the growth of the C. elegans connectome, from birth
to adulthood. Notably, our results suggest that the knowl-
edge of the birth and adult age is sufficient for the EE graph
dynamics to describe the whole developmental trajectory.
We speculate that the same may be true for the connec-
tomes of other living systems [38–40], for which no such
data as the developmental trajectory are available to date.
This hypothesis is poised for experimental validation in the
near future.
Our model should be regarded as a first step toward a

more detailed understanding of the brain maturation.
To this end, the framework here presented supports
straightforward extensions to more complex exploration
schemes, accounting for nonuniform synapse addition,
directed flow of synaptic information, neuron-specific
information, homophily effects, and physical or functional
constraints [5,11]. A detailed discussion of the possible

model extensions can be found in Supplemental Material,
Sec. VII A [3]. Beyond structural connectivity, it would be
interesting to study under the same lens the C. elegans
brain functional connectivity, recently mapped for the adult
stage [41], where there exists a closer correlation between
the notion of biological function and the topology of the
graph.
Zooming out, our framework can be broadly used to

study the dynamics of complex systems arising from the
interplay between (i) the variability fueled by a stochastic
search of the configuration space and (ii) the state-
dependent optimization of an objective function—we
propose three examples in Supplemental Material,
Sec. VII B [3]. Importantly, as showcased here, this can
be done by introducing only a very limited number of
interpretable parameters [3,42].
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