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We study noise amplification by asymmetric dyads in freely expanding non-Hermitian optical
systems. We show that modifications of the pumping strengths can counteract bias from natural
imperfections of the system’s hardware while couplings between dyads lead to systems with nonuniform
statistical distributions. Our results suggest that asymmetric non-Hermitian dyads are promising
candidates for efficient sensors and ultrafast random number generators. We propose that the integrated
light emission from such asymmetric dyads can be efficiently used for analog all-optical degenerative
diffusion models of machine learning to overcome the digital limitations of such models in processing
speed and energy consumption.

DOI: 10.1103/PhysRevLett.132.096901

For open quantum and classical systems, it can be
justified to consider effective Hamiltonians that are non-
Hermitian or non-self-adjoint. The non-Hermiticity of the
Hamiltonian implies that energy eigenvalues are generally
complex numbers. In classical optical systems, where
resonant frequencies and modes represent energy eigen-
values and eigenstates, non-Hermiticity arises from gain
and dissipation. Non-Hermitian systems driven by gain and
dissipation provide a versatile platform for exploring
pattern forming in mechanical and electronic systems,
photonics, optics, atomic systems, optomechanics, fluids,
biological transport, and acoustics [1–3]. The competition
between conservative and nonconservative processes in
photonics has led to disparate artificial structures such as
optical fibers [4], photonic crystals [5], metamaterials [6],
and Bose-Einstein condensates formed from either exciton-
polaritons [7] or photons [8]. Such non-Hermitian systems
display a range of unexpected and unique behaviors [9],
from topological energy transfer [10,11] and single-mode
lasing [12–14] to robust biological transport [15]. A
dramatic manifestation of non-Hermitian physics is the
macroscopic response to small perturbations, e.g., global
spiral wave asymmetry in Belousov-Zhabotinsky chemical
reactions [16], patterns induced by thermal fluctuations just
below convection onset in fluids [17], or the global
direction of vortex rotation or wave chirality in disparate

systems governed by the complex Ginzburg-Landau
equations [18–20].
Another practical use of noise-sensitive amplification

lies in (true) hardware random number generation (hRNG),
where system noise should be statistically random, sampled
sufficiently fast, and able to be macroscopically amplified
to a measurable level and suitably processed. In contrast,
pseudorandom number generation is implemented by a
computer algorithm. Thermal or quantum noise, the photo-
electric effect, involving a beam splitter, and other quantum
phenomena (e.g., shot noise [21], nuclear decay [22],
and spontaneous parametric down-conversion [23]) can
all generate low level, statistically random signals used for
hRNG. Random numbers are obtained after randomly
varying hardware noise is repeatedly sampled with the
system-dependent output data rate. True, efficient, and fast
random number generation is crucial for a variety of
industries, from cryptography and finance [24–27] to
large-scale parallel computation [28–30]. It is, therefore,
essential to search for novel hardware systems that have
nontrivial, statistically controllable, and easily detectable
macroscopic reactions to background noise while providing
an ultrafast output rate. The intensive use of digital noise
generation is expected in diffusion models in machine
learning, which have recently become the state-of-the art
choice for image synthesis [31–36]. However, the digital
diffusion process is computationally and energy intensive,
requiring significant processing power, memory bandwidth
and high throughput times, especially when dealing with
high-resolution images or large datasets. Using optical
analog hardware in the forward and reverse stages of the
diffusion process can allow us to perform computations
with significantly lower energy consumption and faster
times, generate less heat compared to electronic systems
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and avoid physical limitations of electronic circuits, such as
electron mobility and heat dissipation.
In this Letter, we propose that freely expanding non-

Hermitian condensates, such as microcavity exciton-
polariton or photon condensates, have potential use as
sensors, detectors, or hRNGs since they fulfill the neces-
sary criteria for efficient operation: macroscopic response
to small system noisy perturbations, capacity for calibration
of system imperfections, fast output data rate, and compat-
ibility with all-optical transmission. These properties could
supply the Gaussian noise all-optically to implement
diffusion models in machine learning.
Unlike conservative systems, gain-dissipative optical

nonequilibrium systems can have peculiar asymmetric
states resulting from completely symmetric conditions,
even in an ideal system. One such state is an asymmetric
dyad: two geometrically coupled non-Hermitian conden-
sates with macroscopic, unequal occupations, and a phase
difference, despite having equal pumping intensities (and
other identical conditions) [37]. The degree of population
asymmetry and phase difference varies depending on the
losses, nonlinearities, gain intensity and shape, and the
distance between the condensates and can be made arbi-
trarily large or small—the asymmetry orientation forms
spontaneously in response to any (even insignificant) bias
in the system.
We first demonstrate that, starting from random ultra-

low-level noisy initial conditions, simulating hardware
noise, the two possible directions of the final orientation
of the dyad asymmetry are equally likely. We develop an
error correction scheme and demonstrate that slight mod-
ifications of the pumping strength at one condensate site
can ensure both orientations are equally likely even in the
presence of small asymmetries in the physical sample itself.
We show how a lattice of such dyads can be used to
generate the Gaussian noise using integrated light intensity
superimposed with the image to perform the forward part of
diffusion process in machine learning.
We model the photonic non-Hermitian system by the

following system of N equations describing a network of N
optically excited and interacting nonequilibrium conden-
sate centers (CCs):

ψ̇ i ¼ −ijψ ij2ψ i − ψ i

þ ð1 − igÞ
��

γ

1þ ξjψ ij2
�
ψ i þ

X
j≠i

Jijψ j

�
; ð1Þ

where ψ iðtÞ ¼ ffiffiffiffi
ρi

p
exp ½iθi� is the complex amplitude of

the ith CC (and ρi and θi are its occupation and phase,
respectively), γ is the pumping strength, g is the detuning
strength (blueshift), ξ characterizes the relative strength of
the system’s nonlinearities, and Jij is the coupling strength
between the ith and jth CCs. The parameter g is often
referred to as the “cavity blueshift” since it provides a

measure of the polariton-exciton interaction strength,
which induces a blueshift in the frequency of the light
emitted from the microcavity [38]. Typically, jJijj < 1 in
these dimensionless units. These equations describe a
variety of coupled oscillator systems with saturable non-
linearity, from nonequilibrium condensates (such as
exciton-polariton or photon condensates) to lasers and
nonparametric oscillators [18,37,39,40]. These equations
can be derived using the tight-binding approximation of
the mean-field complex Ginzburg-Landau equation in the
fast reservoir regime [37,40] or using the full mean-field
Maxwell-Bloch equations for laser cavities [41]. The
system exhibits a range of behaviors depending on system
parameters, such as evolution to a stationary state, periodic,
or chaotic oscillations [37,39]. The combination of non-
linearity, gain, and dissipation results in a region of
parameter space in which the density and phase asymmetry
of stationary states appears even with identical site con-
ditions, due to quantum or classical noise amplification.
Figure 1(a) shows the region in g − jJj − ξ space in which
asymmetric states occur for the system described by
Eq. (1), for three γ values. The three surfaces bound the
region from above (in terms of ξ) in each case. For a dyad in
such a parameter regime, the two possible configurations
are equally likely under ideal conditions and correspond to
two possible directions for the asymmetry. This asymmetry
can be defined as the direction from the higher to the lower
density condensate. Dyads oriented in one direction can be
labeled as a “1” state, with those in the opposing orientation
labelled as a “0” state.
Error correction.—The physical sample on which the

condensates are prepared will likely have some intrinsic
asymmetry, which may result in a slight preference for the
higher-density component of the asymmetric dyad to con-
dense at one site in particular. This would create a nonuni-
form distribution for the initial noise, leading to a biased
distribution for the dyad orientations. Below we show how to
counteract such intrinsic asymmetry by modifying the
pumping strength applied to one of the condensates.
We model asymmetry in the physical sample by con-

sidering a small perturbation ϵ to g for one of the
condensates given by Eq. (1). We show it is possible to
modify the pumping strength of this condensate γ̃ to again
achieve an equally likely distribution of asymmetry in the
dyad. The steady state satisfies

−iμψ1 ¼ −ijψ1j2ψ1 − ψ1 þ ð1 − igÞ

×

��
γ

1þ ξjψ1j2
�
ψ1 þ Jψ2

�
; ð2Þ

−iμψ2 ¼ −ijψ2j2ψ2 − ψ2 þ ð1 − iðgþ ϵÞÞ

×

��
γ̃

1þ ξjψ2j2
�
ψ2 þ Jψ1

�
; ð3Þ
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where μ is the chemical potential defined by iψ̇ i ¼ μψ i
and ψ i are the new condensate wave functions modified
from their steady-state values of Eq. (1). We will consider
small deviations from the unperturbed values marked by

superscript 0 by writing ψ1 ¼ a01 þ ϵa11;ψ2 ¼ ða02 þ
ϵa12Þ expðiθ0 þ iϵθ1Þ with the chemical potential μ ¼
μ0 þ ϵμ1 and pumping γ̃ ¼ γ0 þ ϵγ1. We then linearize
Eqs. (2) and (3) for small ϵ. To the leading order we recover
the steady states of Eq. (1),

−iμ0¼−iða0jÞ2−1

þð1− igÞ
�

γ0

1þξða0jÞ2
þJ

a0l
a0j

expðið−1Þjθ0Þ
�
; ð4Þ

where j ¼ 1, l ¼ 2 or j ¼ 2, l ¼ 1. At the first order in
small ϵ, we get four real linear equations that we can solve
for a11; a

1
2; γ

1 and θ1, while keeping μ1 as a free parameter.
The expression for γ1 should be invariant under the change
a01 ↔ a02, θ

0 ↔ −θ0. This consideration fixes the μ1 value
and shows it is possible to modify the pumping by γ1 to
compensate for the asymmetry in g. Simpler analytics can
be obtained by considering the limit of small asymmetry
between the condensates: a02 ¼ ð1þ δÞa01, δ ≪ 1. To the
leading order in δ, Eq. (4) gives the unperturbed solutions
ða01Þ2 ¼ ðγ0 þ jJj − 1Þ=ð1 − jJjÞξ, θ0 ¼ 0 (for J > 0) and
θ0 ¼ π (for J < 0) and μ0 ¼ gþ ða01Þ2. These states
correspond to the equal occupancy states. Considering
the leading order expansions in δ of the first order equations
in small ϵ, we get

γ1 ¼ −
gγ0

ð1þ g2Þð1 − jJjÞ ;

μ1 ¼ 1

2
−

γ0g
2ð1þ g2Þð1 − jJjÞ2ξ ;

θ1 ¼ 1

2ð1þ g2ÞjJj : ð5Þ

Figure 1(b) shows the ratios rg ≡ ðgþ ϵÞ=g and rγ ≡ γ̃=γ0

required to maintain equal occupation. Values derived
using the analytical approximation of Eq. (5) are shown
alongside numerically-calculated values.
When δ is not small, we numerically investigate the

effect of rg and rγ on the proportion of “1” states produced,
p1 ≡ n1=ðn0 þ n1Þ, where n1 (n0) is the total number
of 1 (0) states the system converges to after 1000 trials.
Figure 1(c) shows a series of curves depicting this pro-
portion as a function of rg for a range of rγ values, while
Fig. 1(d) shows the standard deviation of the set of spin
values (i.e., 0,1) collected. When rg¼ rγ ¼1, p1¼σ¼0.5,
as expected from a binomial distribution with p ¼ 0.5, i.e.,
a fair coin toss. Increasing rg, causes p1 to increase towards
a plateau at which all states are 1 states. Decreasing rγ ,
however, counteracts this effect, shifting the starting point
of the curve such that p1 < 0.5 when rg ¼ 1. Since p1

increases as rg increases, this ensures there is always an
optimum pair of values ðr�g; r�γÞ at which p1 ¼ σ ¼ 0.5.

FIG. 1. (a) Surfaces defining upper bounds (in terms of ξ) of the
regions of g − jJj − ξ space in which asymmetric dyads form, for
three γ values. The regions are symmetric with respect to the sign
of J. For each value of γ, the set of N equations described by
Eq. (1) was solved for N ¼ 2 (with random initial conditions) for
12500 sets of parameters within the g − jJj − ξ space shown.
A smooth surface was fitted at the boundary of the set of points at
which asymmetric states were stable. For a dyad with equal
occupations, (b) shows the relationship between the ratios rg ≡
ðgþ ϵÞ=g and rγ ≡ γ̃=γ0 required to maintain equal occupation.
rg (rγ) represents the ratio of the blueshift (pumping strength)
between the two condensation sites. The analytical approxima-
tion of Eq. (5) for small ϵ (i.e., rg ≈ rγ ≈ 1) is compared against
numerically-calculated values. For (b), J ¼ 0.45, γ ¼ 1.8,
g ¼ 0.4, and ξ ¼ 2. (c) and (d): The proportion of times the
system converges to a 1 state, p1, as a function of rg for a variety
of rγ values is shown in (c). p1 ≡ n1=ðn0 þ n1Þ, where n1 (n0) is
the total number of 1 (0) states. The standard deviation of the set
of final states, σ, as a function of rg is shown in (d) for the same rγ
values. Each data point was calculated by running 1000 simu-
lations of the set of N equations described by Eq. (1) for N ¼ 2
with random initial conditions and a single coupling J between
the two condensates. For each value of rγ , there is a critical point
rg ¼ r�g at which p1 ¼ σ ¼ 0.5. The inset of (d) shows a plot of
these critical points ðr�γ ; r�gÞ determined empirically using cubic
spline methods from (c) when p1 ¼ 0.5 (blue triangles) and
(d) when σ ¼ 0.5 (red squares). For (c) and (d), J ¼ 0.55,
γ ¼ 2.8, g ¼ 0.5, and ξ ¼ 5=3.
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Cubic spline methods were used to empirically determine a
set of six ðr�g; r�γÞ values in the case when p1 ¼ 0.5 and
when σ ¼ 0.5, respectively. An inset in Fig. 1(d) shows a
plot of r�γ against r�g calculated using p1 ¼ 0.5 intersection
points (blue triangles) and σ ¼ 0.5 intersection points (red
squares). For this range of perturbed g, the analytics
obtained to the first order in ϵ gives the correct, numeri-
cally-observed slope of −0.448. Thus, any intrinsic asym-
metry in the physical sample can be counteracted by
modifying the pumping strength at one site. The system
can, therefore, be engineered to ensure the resultant
orientation of population asymmetry behaves as a fair coin
toss. A lattice of such dyads, constructed with zero
coupling between condensates in different dyads, would
ensure the orientation of each dyad is independent of all the
others. These two facts (the system’s unbiased choice of
dyad asymmetry orientation and the independence of
individual dyads) enable a lattice of such dyads to produce
a normal distribution with a given mean and variance (as
demonstrated later). It also means such a system could be
used as a sensitivity device. Non-Hermitian systems have
recently shown promise in exploiting exceptional points for
sensing [42], including in microcavities [43,44]. In our
system, once the unbiased platform is set up, any subsequent
asymmetry in the orientation statistics could be attributed to
some internal defect in the sample or (if one condensate is
shielded) an external effect (e.g., low-intensity radiation)
which temporarily biases the results. This would allow one
to map when such external effects impact the dyad. For
certain dyad locations, some defects may have an equivalent
impact on both condensates, yielding no change in orienta-
tion statistics. However, a change in the statistics could be
detected by conducting several trials with different dyad
locations (by varying the locations of laser light). In the
Supplemental Material we consider the chains of coupled
asymmetric dyads that allow the generation of biased
distributions [45].
Next, we consider a particular application of the lattice

of polariton dyads in the generative diffusion models of
machine learning. Such models, also known as score-based
diffusion models [31], have rapidly evolved to become the
leading member of deep generative models, surpassing the
long-standing dominance of generative adversarial net-
works [47]. Diffusion models have not only excelled in
producing high-quality images [48,49], but have also
shown versatility across various domains such as audio
generation [50], video content creation [51,52], and
beyond. A diffusion model consists of a forward process
that gradually transforms data into noise and a generative
denoising process that reverses the effect of the forward
process and learns to transform the noise back into data.
Both processes use iterative sampling that slowly change
data information by adding or subtracting normal noise.
The mean of the distribution is derived from the image at
the previous step while the variance is equal to the one used
in the forward process.

The unbiased distributions of noise generated in our
scheme could generate the Gaussian noise required for
diffusion models in machine learning [31–36]. The fine
control over the coupling between individual dyads means
that a square lattice of independent dyads can be created
that can map to a set of pixels. The Gaussian noise could
then be generated as follows. Initially, the number of pixels
required to adequately represent the granularity of the
desired noise distribution must be determined. If the desired
distribution has a broad dynamic range, multiple pixels can
be used to represent each sample. If we have N dyads
(pixels), each firing þ1 or −1 with equal probabilities, the
sum of their values will follow a binomial distribution. By
scaling and shifting appropriately, this can be made to
approximate a standard normal distribution (by the central
limit theorem) for large N. This allows for a transformation
from binary noise to an (approximately) Gaussian distri-
bution. The transformed noise from our analogue dyad
platform could be used to replace or augment the noise
term. However, this scheme requires time-resolved exper-
imental measurements and many digital readouts of the
individual dyads for a single step of the noise injection.
Instead, in the case of polariton dyads, the density-resolved
time-averaged photoluminescence can be directly mea-
sured in the near field. The optical transmission of such
integrated light intensities of polariton lattices can dramati-
cally reduce the number of digital conversions or eliminate
them in favour of all-optical diffusion processes, as we
now show.
Polariton condensates have a coherence lifetime that

depends on the quality of the microcavity, polariton
lifetime, temperature, strength of polariton-polariton inter-
actions, pump power, etc., and can range from a few
picoseconds to several tens or hundreds of picoseconds
[53–55]. A short coherence time implies that the conden-
sates are created and destroyed during measurements that
give rise to the integrated intensities (II) being observed
I ¼ jPn

i¼1 ψ ij2=n2, where n is set by the time of the
measurement divided by the coherence time. Let us
consider a single polariton dyad with the equally-likely
states ðq1; q2Þ and ðq2; q1Þ where q1 ¼ a exp½iθ=2� and
q2 ¼ b exp½−iθ=2�, where a, b are nonequal amplitudes
of the condensates in the dyad and θ is the phase
difference between them. If out of n independent con-
densation events, the condensate 1 (say, “bottom” con-
densate in a vertically oriented dyad) acquired q1 state k
times, then its II becomes Iðn;kÞ¼ jkq1þðn−kÞq2j2=n2¼
½k2a2þðn−kÞ2b2þ2kðn−kÞabcosθ�n−2. The expectation
μ and the variance σ2 of the distribution of IIs can
be found directly (see Supplemental Material for
details [45]) from μ ¼ 2−n

P
n
k¼0

nCkIðn; kÞ, and σ2 ¼
2−n

P
n
k¼0

nCkIðn; kÞ2 − μ2 and using the weighted sums
of binomial coefficients

P
n
k¼0

nCkkp ¼ Qp
j¼0ðn − jÞ2n−p

for p¼0;…;4. In the limit of large n, we get an approx-
imately normal distribution with μ ¼ ða2 þ b2 þ
2ab cos θÞ=4 and σ2 ¼ jb2 − b4j; see Supplemental
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Material for details [45]. As a, b, and θ are set by the
experimental controls, such as the separation of conden-
sates in the dyad and the shape and intensity of the laser
pump, the mean and the standard deviation of the distri-
bution are experimentally controlled.
The forward stage of the generative diffusion process,

characterized by the iterative addition of noise to data,
poses a substantial computational challenge for electronic
digital hardware that can be effectively addressed by
integrating the polariton platform as analog hardware.
In the forward stage of the generative diffusion process
tailored to polariton dyads arranged in a lattice, one
condensate in a dyad acts as a source of normally
distributed noise; the emitted light can be transmitted
all-optically (e.g., guided by optical waveguides) and
superimposed with the image. Figure 2 depicts the sche-
matics of the incorporation of the polariton dyad lattices
into the generative diffusion process. We estimate the time
of the all-optical generation of the Gaussian noise using the
typical parameters of a short-lived polariton condensate
lattices: 2 cm2 samples can accommodate 107 dyads
separated by 4 μm. With a coherence time of 10 ps the
integral light intensity accumulated over typical 10 ns
corresponds to sampling for n ¼ 1000 which gives an
accurate fit to the normal distribution (as illustrated in
Supplemental Material [45]). In the all-optical transmission
of the integrated light intensity, the time does not depend on
the size of the lattice, giving at least 3 orders of magnitude

improvements in speed and energy consumption compared
to a GPU on 512 × 512 images [56–58].
In summary, we have suggested a macroscopic response

leading to density asymmetry in a photonic non-Hermitian
dyad and suggested these structures can be used in
sensitivity devices, for hRNG, and in generative diffusion
models in machine learning, among many other noise-
dependent applications. Error correction for unbiased
statistics of the dyad orientations is possible with this
system. Any bias resulting from asymmetry in the sample
can be overcome by modifying the pumping strength at one
condensation site. Integral intensities of light emanating
from dyads are shown to be normally distributed and can be
optically transmitted to implement the generative diffusion
models of machine learning. A significant advantage of
constructing this scheme with non-Hermitian optical sys-
tems is the speed and energy efficiency of random number
generation and sampling of the normal distribution. With
potentially millions of asymmetric dyads placed on a chip
and the ultrashort picosecond timescales required for laser
and exciton-polariton condensates to establish coherence,
the sampling of low-level, statistically random signals will
occur in parallel and at an ultrafast timescale. This would
bring the random number generation comfortably to the
THz regime, bounded only by the signal’s conversion speed
to the electronic domain.
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