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We present a nonlinear field theory of a three-sublattice hexagonal antiferromagnet. The order parameter
is the spin frame, an orthogonal triplet of vectors related to sublattice magnetizations and spin chirality. The
exchange energy, quadratic in spin-frame gradients, has three coupling constants, only two of which
manifest themselves in the bulk. As a result, the three spin-wave velocities satisfy a universal relation.
Vortices generally have an elliptical shape with the eccentricity determined by the Lamé parameters.
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The theory of magnetic solids is often described as a
lattice problem, exemplified by the Heisenberg model of
atomic spins. However, discrete models are notoriously
difficult to solve outside of the simplest tasks, such as
finding the spectrum of linear spin waves. An analytic
theory of nonlinear solitons—such as domain walls or
vortices—in the framework of a lattice model is often not
feasible or cumbersome [1]. Continuum theories have the
clear advantage of being more amenable to analytic treat-
ment. By design, they focus on the physics of long
distances and times, capturing the universal aspects of
low-energy physics at the expense of microscopic details.
In magnetism, a well-known example is micromagnetics,

the continuum theory of a ferromagnet going back to
Landau and Lifshitz [2]. It is usually formulated through
the equation of motion for the magnetization fieldm of unit
length parallel to the local direction of spins,

S
∂m
∂t

¼ −m ×
δU
δm

: ð1Þ

Here S is the spin density, U½m� ¼ R
ddrU is a potential-

energy functional, whose functional derivative −δU=δm
acts as an effective magnetic field. The energy density is
usually dominated by the Heisenberg exchange interaction
of strength A,

U ¼ A
2
∂im · ∂imþ… ð2Þ

Doubly repeated indices imply summation. The omitted
terms represent weaker anisotropic interactions of dipolar
and relativistic origin. We use the calligraphic font to
indicate intensive quantities (densities).
The Landau-Lifshitz equation (1) provides a starting

point for understanding the dynamics of ferromagnetic
solitons. A further coarse-graining eliminates fast internal
modes of a soliton and focuses on its slow collective motion
seminal achievements; primary examples are Thiele’s

equation of rigid motion [3] and Walker’s dynamical model
of a domain wall [4].
The continuum approach has also been applied to simple

antiferromagnets, in which adjacent spins are (nearly)
antiparallel and can be split into two magnetic sublattices
1 and 2, each with its own magnetization field m1 and m2

of unit length. Because at low energies the sublattice
magnetizations are (nearly) antiparallel, both can be
approximated by a single field of staggered magnetization
n ≈mA ≈ −mB, whose dynamics is described by an Oð3Þ
σ model with the Lagrangian density [5–7]

L ¼ K − U ¼ ρ

2
∂tn · ∂tn −

A
2
∂in · ∂in −… ð3Þ

The first term K ¼ ðρ=2Þ∂tn · ∂tn is the kinetic energy of
staggered magnetization and ρ is a measure of inertia. The
second potential term comes from the Heisenberg exchange
energy and has the same functional form as in a ferro-
magnet (2). The omitted terms represent various weak
anisotropic interactions. Minimization of the action with
the constraint n2 ¼ 1 yields the equation of motion

ρ∂tðn × ∂tnÞ ¼ −n ×
δU
δn

: ð4Þ

As with ferromagnets, the antiferromagnetic Landau-
Lifshitz equation (4) can be translated into equations of
motion for solitons [8,9] and extended to include the effects
of spin transfer and dissipation [10,11].
The primary goal of this Letter is to introduce a universal

field theory for magnets where antiferromagnetic
Heisenberg exchange and nonbipartite lattice geometry
lead to the formation of three magnetic sublattices with
(nearly) zero net spin, m1 þm2 þm3 ≈ 0. Such magnetic
states are typically realized in antiferromagnetic solids of
hexagonal symmetry with triangular motifs. Although such
magnets have been studied for decades [12,13], recent
experimental studies of metallic antiferromagnets Mn3Sn
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and Mn3Ge [14,15] have rekindled theoretical interest in
these frustrated magnets [16–18].
The existing field theory for 3-sublattice antiferromag-

nets by Dombre and Read [12] has a couple of drawbacks.
First, it is formulated specifically for the triangular lattice,
which has a higher spatial symmetry than other hexagonal
lattices (such as kagome) and therefore misses some of the
universal features of 3-sublattice antiferromagnets. Second,
their mathematical formalism represents the magnetic order
parameter as a 3 × 3 rotation matrix, not a very intuitive
mathematical object.
We derive a nonlinear field theory of a three-sublattice

antiferromagnet with the order parameter represented
by a spin frame, i.e., a triad of orthonormal vectors
n̂≡ fnx;ny;nzg, directly related to sublattice magnetiza-
tions m1, m2, and m3. At low energies, the magnetization
dynamics reduce to rigid rotations of the spin frame,
∂tni ¼ Ω × ni, at a local angular frequency Ω. One of
our main results is the Landau-Lifshitz equation for a three-
sublattice antiferromagnet,

ρ∂tΩ ¼ −ni ×
δU
δni

: ð5Þ

A sum over doubly repeated Roman indices, i ¼ x, y, z, is
implied hereafter. Like its analogs (1) and (4), it equates the
rate of change of the local density of angular momentum
with the torque density from conservative forces expressed
by a potential energy functional Uðn̂Þ. The transparent
physical meaning of the Landau-Lifshitz equation makes it
easy to add other relevant perturbations.
To define the spin frame n̂, we first switch from the three

unit-vector fields of sublattice magnetizations m1, m2, and
m3 to uniform magnetization m and two staggered mag-
netizations nx and ny (Fig. 1):

m ¼ m1 þm2 þm3;

nx ¼ ðm2 −m1Þ=
ffiffiffi
3

p
;

ny ¼ ð2m3 −m2 −m1Þ=3: ð6Þ

To them, we add the vector spin chirality [19]

nz ¼
2

3
ffiffiffi
3

p ðm1 ×m2 þm2 ×m3 þm3 ×m1Þ: ð7Þ

As long as m ¼ 0, sublattice fields m1, m2, and m3 are
coplanar and thus define the spin plane. Staggered mag-
netizations nx and ny lie in the spin plane, whereas spin
chirality nz is orthogonal to it. The three unit vectors ni
form a right-oriented orthonormal spin frame:

ni · nj ¼ δij; ni × nj ¼ ϵijknk: ð8Þ

The spin frame n̂ can be obtained from a fixed frame êwith
the aid of the Dombre-Read rotation matrix R [12]:

nj ¼ eiRij; ei ¼ Rijnj; Rij ¼ ei · nj: ð9Þ

To derive the dynamics of the spin frame, we follow the
standard Lagrangian approach [6,12,20] and integrate out
the hard field of uniform magnetization m to obtain the
dynamics of the spin frame. Our starting point is the
Landau-Lifshitz equations for sublattice magnetizations,

S∂tm1 ¼ −m1 ×
δV
δm1

; ð10Þ

and similarly for sublattices 2 and 3. Like in two-sublattice
antiferromagnets [21], the potential energy functional V is
dominated by the antiferromagnetic exchange interaction
imposing a penalty for m ≠ 0 [22],

Vðm; n̂Þ ¼ m2

2χ
þ Uðn̂Þ; ð11Þ

where χ is the paramagnetic susceptibility. The subdomi-
nant term U½n̂�, expressing the energy of the antiferro-
magnetic order parameter, will be discussed below.
With the aid of Eqs. (6), (10), and (11) we find that, like

in two-sublattice antiferromagnets [5], staggered magne-
tizations nx and ny precess about the direction of uniform
magnetization m at the angular velocity [20]

Ω ≈
m
χS

: ð12Þ

The linear proportionality between the precession fre-
quency and uniform magnetization (12) can be derived
as the equation of motion for uniform magnetization m
from the following Lagrangian for fields m and n̂ [20]:

Lðm; n̂Þ ¼ Sm ·Ω −
m2

2χ
− Uðn̂Þ: ð13Þ

The angular velocity can be expressed explicitly in terms of
n̂ via the kinematic identity

(a) (b)

FIG. 1. (a) A ground state of the kagome antiferromagnet and
its sublattice magnetizations m1, m2, and m3. (b) The corre-
sponding spin-frame vectors nx, ny, and nz.
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Ω ¼ 1

2
ni × ∂tni: ð14Þ

The first term in the Lagrangian (13) is linear in the
velocities ∂tni, so its action represents the spin Berry phase.
It yields the expected density of angular momentum Sm.
Lagrangian (13) is quadratic in uniform magnetization

m. Integrating out this field with the aid of its equation of
motion (12) yields an effective Lagrangian for the remain-
ing fields n̂ endowed with kinetic energy of rotation with
the inertia density ρ ¼ χS2:

Lðn̂Þ ¼ ρΩ2

2
− Uðn̂Þ ¼ ρ

4
∂tni · ∂tni − Uðn̂Þ: ð15Þ

Minimizing the action in the presence of holonomic
constraints (8) yields equations of motion with undeter-
mined Lagrange multipliers [23] Λij ¼ Λji:

ρ

2
∂
2
tni ¼ −

δU
δni

− Λijnj: ð16Þ

Finally, we take a cross product with ni, sum over i, and use
Eq. (14) to obtain the Landau-Lifshitz equation (5).
The energy functional U½n̂� is usually dominated by the

Heisenberg exchange interaction. The latter respects the SO
(3) symmetry of global spin rotations and therefore depends
not on the orientation of the spin frame n̂ but rather on its
spatial gradients. Like in ferromagnets and two-sublattice
antiferromagnets, the exchange energy is quadratic in ∂αnβ,
where Greek indices take on values α ¼ x and y only. The
form of these quadratic terms is restricted by the D3 point-
group rotational symmetry of a hexagonal lattice (Fig. 2),
including�2π=3 spatial rotations about aC3 axis normal to
the xy plane and π spatial rotations about C2 axes lying in
the xy plane. Under these transformations, the staggered
magnetizations ðnx;nyÞ transform in terms of each other in
the same way as the in-plane components ðkx; kyÞ of a

spatial vector k do; chirality nz transforms as kz. This
observation helps to construct energy terms quadratic in the
gradients of staggered magnetizations and invariant under
both spin rotations and lattice symmetries. To that end, we
may start with a rank-4 spatial tensor and spin scalar ∂αnβ ·
∂γnδ and contract its spatial indices pairwise to form a
spatial scalar. This procedure yields our second main result,
the three possible gradient terms for the exchange energy
density,

U ¼ λ

2
∂αnα · ∂βnβ þ

μ

2
∂αnβ · ∂αnβ þ

ν

2
∂αnβ · ∂βnα: ð17Þ

This expression resembles the elastic energy density of an
isotropic solid [24], albeit with 3 Lamé constants.
The triangular lattice has an extra spatial symmetry.

Under lattice translations, sublattice indices undergo cyclic
permutations, see Fig. 2(b). Staggered magnetizations nα

effectively undergo �2π=3 spatial rotations, whereas gra-
dients ∂α do not. Thus translational symmetry forbids the λ
and ν terms for a triangular lattice.
The Landau-Lifshitz equation (5) for a three-sublattice

Heisenberg antiferromagnet reads

ρ∂tΩ ¼ ðλþ νÞnα × ∂α∂βnβ þ μnα × ∂β∂βnα: ð18Þ

Note that the exchange coupling constants λ and ν enter the
equation of motion through a combination λþ ν, rather
than individually. More on that below.
An antiferromagnet with nearest-neighbor exchange

interaction J has λþ ν ¼ 0, μ ¼ JS2
ffiffiffi
3

p
=4, and ρ−1 ¼

9
ffiffiffi
3

p
Ja2=2 on a triangular lattice; on kagome, λþ ν ¼ffiffiffi

3
p

JS2=4, μ ¼ 0, and ρ−1 ¼ 4
ffiffiffi
3

p
Ja2. See Supplemental

Material [25] for a derivation and for contributions of
further-neighbor interactions.
In what follows, we use the spin-frame formulation of

the field theory to obtain the properties of excitations: spin
waves and vortices.
Spin waves.—Linear spin waves on top of a uniform

ground state ni ¼ ei can be parametrized in terms of an
infinitesimal rotation ϕ ¼ ϕe, where ϕ is the angle of
rotation and the unit vector e of polarization defines the
axis of rotation: ni ¼ ei þ ϕ × ei. For a plane wave
ϕðt; x; yÞ ¼ Φeeiðkαxα−ωtÞ, we get three eigenmodes with
ω ¼ ck, whose polarizations e and velocities c are [25]

eI ¼ eαkα=k; cI ¼
ffiffiffiffiffiffiffiffi
μ=ρ

p
;

eII ¼ ez × eI; cII ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλþ μþ νÞ=ρ

p
;

eIII ¼ ez; cIII ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλþ 2μþ νÞ=ρ

p
: ð19Þ

This general result agrees with the earlier ones obtained in
specific lattice models [12,13]; see Supplemental Material
[25] for details. The velocities satisfy the identity

(c)

(b)(a)

FIG. 2. Hexagonal lattices and their magnetic sublattices:
(a) kagome, (b) triangular lattice. (c) Spatial coordinate axes x,
y, and z. Red, green, and blue indicate magnetic sublattices 1, 2,
and 3. Solid triangles and dotted lines denote C3 and C2 rotation
axes, respectively.
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c2I þ c2II ¼ c2III: ð20Þ

Vortices.—The existence of topologically stable point
defects—vortices—in a three-sublattice Heisenberg anti-
ferromagnet was first noted by Kawamura and Miyashita
[19]. A 2π rotation of the spin frame corresponds to a loop
in the order-parameter space that cannot be continuously
deformed to a point. It is convenient to parametrize the
orientation of the spin frame by starting with a reference
uniform configuration ni ¼ ei and applying consecutive
Euler rotations through angles ϕ about nz, θ about ny, and
ψ about nz. On a triangular lattice (λþ ν ¼ 0), a vortex
configuration with the lowest energy is described by the
Euler angles ϕ, θ, and ψ given by

eiϕ ¼ xþ iy
jxþ iyj ; θ ¼ π

2
; ψ ¼ const: ð21Þ

This expression agrees well with a numerically obtained
vortex configuration for a triangular lattice, Fig. 3(a).
Although we have not been able to find an exact vortex

solution for a generic hexagonal antiferromagnet, we can
understand the effect of the λþ ν term on the vortex shape
perturbatively. Starting with the isotropic solution (21) for
λþ ν ¼ 0, we keep θ ¼ π=2 and choose for simplicity ψ ¼
π=2 to obtain the following energy density:

U ¼ λþ μþ ν

2
ð∂xϕÞ2 þ

μ

2
ð∂yϕÞ2: ð22Þ

The vortex acquires an elliptical shape with the major axis
ratio b ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðλþ μþ νÞ=μp

:

eiϕ ¼ bxþ iy
jbxþ iyj ; θ ¼ π

2
; ψ ¼ π

2
: ð23Þ

Although this result is obtained in the limit λþ ν ≪ μ, our
numerical calculations on a kagome lattice demonstrate its
accuracy even in the opposite limit. The right panel of
Fig. 3(b) shows a vortex in a kagome antiferromagnet with
the ratio of first- and third-neighbor exchange interactions
J1=J3 ¼ −20, or ðλþ νÞ=μ ¼ 5=3 [26]. Its shape agrees
with the extrapolated semiaxis ratio b ¼ ffiffiffiffiffiffiffiffi

8=3
p

. See Fig. S2
[25] for other orientations of the major axes of a vortex. Our
estimate for Mn3Ge based on the exchange couplings
inferred by Chen et al. [15] yields an axis ratio b ≈ 1.34
in this magnet [25].
Discussion.—In this Letter, we have presented a univer-

sal field theory of a hexagonal antiferromagnet with
3 magnetic sublattices. The order parameter is a spin frame
constructed from the sublattice magnetizations and vector
chirality. Its mechanics is fully specified by the inertia of
the spin frame ρ and three Lamé constants λ, μ, and ν. The
simple and versatile theory yields a Pythagorean identity
for magnon velocities (20) and a generally elliptical shape
for vortices (23).
It is worth noting that the three Lamé constants enter the

equations of motion (18) in the form of two linear
combinations, λþ ν and μ. The Pythagorean identity
(20) follows directly from that. The origin of this behavior
can be understood by examining the exchange energy
density (17). The λ and ν terms in it are related through
integration by parts. Thus their infinitesimal variations are
the same—up to boundary terms—and so they make
identical contributions to classical dynamics. Their differ-
ence can be expressed in terms of a topological (skyrmion)
density of vector chirality nz:

U top ¼
1

2
ð∂αnα · ∂βnβ − ∂αnβ · ∂βnαÞ ¼ nz · ð∂xnz × ∂ynzÞ:

ð24Þ

FIG. 3. Vortices in three-sublattice antiferromagnets. (a) Triangular lattice with nearest-neighbor interactions only. (b) Kagome lattice
with first- and third-neighbor interactions, J3 ¼ J03 ¼ −J1=20. See Supplemental Material [25] for the definition of further-neighbor
interactions. Red, green, and blue arrows are spins of the three magnetic sublattices. Spins on sublattice 3 (blue) point away from the
viewer; spins on sublattices 1 (red) and 2 (green) have components pointing toward the reader. The circle and ellipse reflect the expected
shape of the vortex with the major axis ratio b ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðλþ μþ νÞ=μp

.
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Its area integral is invariant under infinitesimal changes of
the order parameter and thus does not contribute to the bulk
equations of motion (18). However, it reveals itself at the
boundary in the form of edge modes. Indeed, expressing
the energy density U top ¼ ϵαβ∂αAβ as a curl of a gauge
Aα ¼ nx · ∂αny reduces the energy to a boundary term,
Utop ¼

R
d2rϵαβ∂αAβ ¼

H
dxαAα. The altered boundary

conditions give rise to a chiral spin-wave edge mode, as
discussed recently in a different context by Dong et al. [27].
We will address the topological aspects of this field theory
elsewhere [28].
The spin-frame theory can go beyond the exchange

approximation and incorporate anisotropic interactions. For
example, the Zeeman coupling to an external magnetic field
H effectively transforms the system to a reference frame
rotating at the Larmor frequency ΩZ ¼ −γH; the kinetic
term in Eq. (15) then reads K ¼ 1

2
ρðΩ −ΩZÞ2. The

Dzyaloshinskii-Moriya coupling relevant to Mn3X [29]
translates into a Zeeman-like potential term for vector
chirality, UDM ¼ −D · nz.
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