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We explain the appearance of magic angles and fractional Chern insulators in twisted K-valley
homobilayer transition metal dichalcogenides by mapping their continuum model to a Landau level
problem. Our approach relies on an adiabatic approximation for the quantum mechanics of valence band
holes in a layer-pseudospin field that is valid for sufficiently small twist angles and on a lowest Landau level
approximation that is valid for sufficiently large twist angles. It provides a simple qualitative explanation
for the nearly ideal quantum geometry of the lowest moiré miniband at particular twist angles, predicts that
topological flat bands occur only when the valley-dependent moiré potential is sufficiently strong
compared to the interlayer tunneling amplitude, and provides a convenient starting point for the study of
interactions.
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Introduction.—Recent experiments [1–5] have reported
the first observations of fractional Chern insulator (FCI)
states, exotic states of matter that display a fractional
quantum Hall effect in the absence of a magnetic field
[6]. It has been understood for some time [8–13] that FCI
states do occur in artificial theoretical model systems. In
this Letter, we address FCI states in the hole fluids of AA-
stacked K-valley transition metal dichalcogenide (TMD)
twisted homobilayers, where the effect was first observed
[1,2]. Earlier theoretical work had hinted that FCI states
might appear in this type of two-dimensional electron
system by showing that their moiré minibands could carry
Chern numbers [14,15], that the moiré band width could
mysteriously vanish [16–18] near a magic twist angle, and
that the bands have almost ideal quantum geometry [19]
when flat [20]. There are, however, many open questions;
for example, the FCI states so far appear at a few hole
filling fractions and they appear over a wider regime of
twist angle than theoretically expected. In this Letter, we
address the most baffling question—why do the magic
angles appear in the first place? Our answer points to a
strategy for quantitative descriptions of these moiré FCI
states.
Continuum models of TMD moirés [14,21] are expected

to give an accurate description of their low-energy physics.
In bilayers, the layer-dependent terms can always be
expressed in terms of an effective field that acts on the
layer pseudospin. For AA-stacked K-valley homobilayers
[14–16] the effective field has a topologically nontrivial
spatial structure with one Skyrmion for each moiré period.
It is natural to suspect that there is a connection between the
real space Skyrmion lattice and the momentum space Chern
numbers, although it was recognized from the beginning

[14] that the correspondence is not universal. Instead the
Chern number of the topmost valence moiré miniband
depends on the phenomenological parameters ðVm;ψ ;ωÞ
that enter the continuum model, whose values vary from
system to system [14–16,19,22,23], and can vanish even
though the Skyrmion lattice is always present. Here Vm, ψ ,
and ω, respectively, specify the strength and shape of the
moiré potentials in each layer, and the strength of interlayer
tunneling.
In this Letter, we exploit an approximation to the TMD

continuum model that is motivated by the presence of the
Skyrmion lattice, one that maps it to holes in Landau levels
subject to a periodic potential, to explain the magic angle
behavior. We start by using an adiabatic approximation for
the layer pseudospin to transform the continuum
Hamiltonian into one for layerless holes under the effect
of a periodic potential and a periodic magnetic field with a
nonzero mean. By separating the effective magnetic field
into average and sinusoidal contributions, we further
project the problem to the lowest Landau level (LLL)
induced by the average effective magnetic field, whose
strength is one flux quantum per moiré unit cell. Within the
LLL, both field and potential variations can be grouped into
an effective potential with honeycomb lattice symmetry
that is accurately characterized by a single real parameter
ξ1, whose value is determined by the continuum model
parameters. We show that the magic angle behavior occurs
when ξ1 vanishes. At the magic angle, our series of
transformations has mapped the bilayer Hamiltonian to
the ordinary fractional quantum Hall problem, making the
fractional Hall effect inevitable.
Adiabatic approximation.—We start from the continuum

model Hamiltonian for TMD homobilayers [14],
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HTMD ¼ −
ℏ2k2

2m� σ0 þ ΔðrÞ · σ þ Δ0ðrÞσ0; ð1Þ

where Δ ¼ ½ReΔT; ImΔT; ðΔb − ΔtÞ=2�, ΔT is the com-
plex interlayer tunneling amplitude, Δ0 ¼ ðΔb þ ΔtÞ=2,
where Δt and Δb are the potential energies in the top and
bottom layers, σ ¼ ðσx; σy; σzÞ are the Pauli matrices and
σ0 the identity matrix. Equation (1) is a valley-projected
single-particle Hamiltonian; the full Hilbert space includes
two valleys that are related to each other by time reversal.
For details on the continuum model see the Supplemental
Material [24].
Next we apply a unitary transformation UðrÞ that rotates

ΔðrÞ to the z direction at each position [28–31]

U†ðrÞ½ΔðrÞ · σ�UðrÞ ¼ jΔðrÞjσz: ð2Þ

Because the transformation is position dependent, the kinetic
energy term includes coupling between the up and down
pseudospin sectors. Projection to the up pseudospin sector
can, however, be justified when the r dependence is slow.
After projection to the up pseudospin sector, which we
will refer to as the adiabatic approximation, the matrix
Hamiltonian operator reduces to a scalar. Because of the real
space Berry phases associated with the Skyrmion lattice
[14] in the pseudospin field, the kinetic-energy operator
gains an effective periodic magnetic field with nonzero
mean. Additionally, there is a contribution from the off-
diagonal part of the matrix Hamiltonian, the kinetic potential

D ¼ ðℏ2=8m�ÞPi¼x;y ½∂in�2, which is the local increase in
kinetic energy due to the position-dependence of the layer
spinor, with nðrÞ ¼ ΔðrÞ=jΔðrÞj. The effective Zeeman
energy is Δ̃ ¼ jΔj þ Δ0, yielding [32–36]

H ¼ −
1

2m� ½ℏkþ eÃðrÞ�2 −DðrÞ þ Δ̃ðrÞ: ð3Þ

The adiabatic approximation is valid when jΔðrÞj ≫
ℏ2=ðm�AMÞ, where AM is the moiré unit cell area. The
emergent magnetic field in Eq. (3) is proportional [15] to the
Pontryagin index density of nðrÞ,

BeffðrÞ ¼ ∇ × ÃðrÞ ¼ ℏ
2e

n · ð∂xn × ∂ynÞ; ð4Þ

and therefore has one flux quantum per moiré period. In
magnetic thin films with noncollinear spin textures a simi-
lar effective magnetic field is responsible for the topological
Hall effect [28–31]. See Supplemental Material for details on
how to obtain Eq. (3) [24].
Figure 1(a) shows the spatial dependence of the effective

magnetic field for continuum model parameters corre-
sponding to unstrained MoTe2. Beff has three sharp peaks
per period centered on the m points of the Wigner-Seitz
cell. We separate the effective magnetic field into an
average value, B0 ¼ Φ0=AM, where Φ0 is the magnetic
flux quantum, and a position-dependent part, denoted by
BðrÞ, that has zero average. The corresponding vector
potential can be split in a similar way so that

FIG. 1. Spatial distribution of the (a) effective magnetic field BeffðrÞ generated by the layer pseudospin skyrmion in units of flux
quantum per unit cell area, (b) the kinetic potentialD in units of ℏωc, and (c) the effective Zeeman field Δ̃ðrÞ in meV. Black dots indicate
moiré superlattice sites. TheWigner-Seitz cell boundary is marked by solid lines and the κ,m, and γ high symmetry points that are key to
magic angle behavior (see main text) are indicated. (d)–(f) The corresponding Fourier expansion coefficients. The inset in (f) shows the
first six shells of reciprocal lattice vectors. The magnetic form factors have the numerical values 1; 0.163; 4 × 10−3; 7 × 10−4;
3 × 10−6; 8 × 10−8 for the six plotted shells. These illustrative plots are for unstrained MoTe2 [14] model parameters: Vm ¼ 8 meV,
ψ ¼ 89.6°, and ω ¼ −8.5 meV.
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BeffðrÞ ¼ B0 þ BðrÞ ¼ ∇ × A0 þ ∇ × AðrÞ; ð5Þ

A0 is a linear function of position while AðrÞ has the moiré
superlattice periodicity. The adiabatic Hamiltonian
becomes

H ¼ −
ℏ2

2m�

�
Πþ e

ℏ
AðrÞ

�
2

−DðrÞ þ Δ̃ðrÞ; ð6Þ

where we have defined Π ¼ kþ eA0=ℏ. The shape of D in
Fig. 1(b) is similar to that of Beff . Both quantities are
peaked near the m points of the Wigner-Seitz cell, midway
between the chalcogen on metal (XM) and metal on
chalcogen points (MX) at the κ Wigner-Seitz cell corners.
The spatial distribution of the effective Zeeman field Δ̃ is
shown in Fig. 1(c). The peaks at κ are due to large potential
difference between layers, whereas those at γ are due to
peaks in interlayer tunneling at metal on metal (MM)
positions. As we will explain, the magic angle behavior is
intimately related to the spatial pattern of the effective
Zeeman field.
Because Beff , D and Δ̃ are periodic functions, they have

the moiré lattice Fourier expansion

BeffðrÞ ¼
X
G

βðGÞeiG·r; ð7Þ

DðrÞ ¼
X
G

δðGÞeiG·r; ð8Þ

Δ̃ðrÞ ¼
X
G

ΔðGÞeiG·r; ð9Þ

where G are reciprocal lattice vectors. Since these three
functions have C6 rotational symmetry, the Fourier coef-
ficients are identical within reciprocal lattice vector shells
and real. Figures 1(d)–1(f) show the Fourier expansion
coefficients for the first six shells of Beff , DðrÞ, and Δ̃,
respectively. The kinetic momentum term in Eq. (6) can
then be expressed in terms of the Landau level ladder oper-
ators a and a† and the complex vector potential A�¼
Ax�iAy, see Ref. [24]. Using AðkÞ¼ ik×BðkÞ=jkj2, we
find that A�ðGÞ ¼

P
G α�ðGÞeiG·r, with the Fourier coef-

ficients given by

α�ðGÞ ¼
�Gx þ iGy

jGj2 βðGÞ: ð10Þ

It follows that the Landau level representation of the
adiabatic Hamiltonian is

H ¼ −ℏωc

�
a†aþ 1

2

�

þ ieℏffiffiffi
2

p
m�l

X
G

ðaαþðGÞ − a†α−ðGÞÞeiG·r

−
e2

2m�
X
G;G0

αþðGÞα−ðG0ÞeiðGþG0Þ·r

−
X
G

δðGÞeiG·r þ
X
G

ΔðGÞeiG·r: ð11Þ

In Eq. (11) α� has been expressed in units of Φ0=AM,
ℏωc ¼ 2πℏ2=ðm�AMÞ ≈ 2.1ðθ½deg�Þ2 meV is the effective
Landau level splitting, and θ is the twist angle. The
numerical value here is estimated for MoTe2, but similar
values will hold in WSe2. At typical twist angles the
Landau level splitting is large enough with respect to
Landau level mixing to justify projection of the interacting
electron Hamiltonian onto the lowest effective Landau level
[see Fig. 3(c) below].
Lowest Landau level projection.—Given the periodic

effective fields, it is convenient to examine the lowest
Landau level (LLL) projection of Eq. (11) in a representa-
tion of Landau gauge guiding center states jXi. The
Hamiltonian can be mapped to one for LLL holes experi-
encing a potential [37,38] with moiré periodicity:

hX0jHjXi ¼ −
ℏωc

2
δX0;X þ

X
m;Gm

ξmhX0jeiGm·rjXi; ð12Þ

where m is a reciprocal lattice vector shell label, Gm
belongs to shell m, and

hX0jeiG·rjXi ¼ e−jGj2l2=4e
i
2
GxðXþX0ÞδX0;XþGyl2 ; ð13Þ

where l is the effective magnetic length (2πl2B0 ¼ Φ0). In
Eq. (12) the effective periodic potential has contributions
from both kinetic and potential terms [24]:

ξm ¼ −
ℏe
2m� αþðGmÞGm− − δðGmÞ þ ΔðGmÞ

−
e2

2m�
X
G0

αþðGm − G0Þα−ðG0Þ: ð14Þ

Because the ξ0 contribution yields only a constant energy
and the magnetic form factor e−jGj2l2=4 suppresses contri-
butions from higher shells, the LLL physics is controlled
almost entirely by the Fourier coefficient corresponding to
the first shell of reciprocal lattice vectors, ξ1. The LLL
electronic structure can be calculated analytically when
only ξ1 is nonzero and yields a band width proportional to
jξ1j [24]. We will now demonstrate that magic angle
behavior occurs when ξ1 ¼ 0. When this condition is
satisfied, the transformed Hamiltonian is equivalent to that
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of interacting holes in an ordinary Landau level and states
in the same universality class as the Laughlin state are
expected for fillings 1=m.
Magic angles.—Using Eq. (10) and keeping only the

m ¼ 1 contribution, the coefficient in Eq. (14) simplifies to

ξ1 ¼ ℏωc

�jβ̄1j
2

−
ffiffiffi
3

p
β̄21

8π
− δ̄1

�
þ Δ1; ð15Þ

where β̄1 and δ̄1 are dimensionless [24]. Figures 2(a)–2(c)
show the dependence of Δ1, δ1 and β1 on the shape
parameter ψ and on the ratio Vm=ω. The coefficient of
ℏωc in Eq. (15) is always positive because the pseudospin
field direction changes most rapidly near the m-points in
the unit cell [24]. Since ℏωc ∝ θ2 and Δ1 is independent of
θ, it follows that ξ1 can cross zero as a function of twist
angle only if Δ1 is negative. Because interlayer tunneling is
strong near the γ points in the moiré cell, it makes a positive
contribution to Δ1. In order for Δ1 to be negative, there
must be a large contribution to Δ from the moiré modu-
lation potential at the κ points. These observations explain
the dependence ofΔ1 on Vm=w in Fig. 2(c), from which we
conclude that magic angles will normally appear for
Vm=w≳ 0.6. As seen in Fig. 2(d), Δ1 changes sign at
approximately the same value of ψ as the Chern number of
the topmost moiré band changes from zero to one [15,24],
illustrating that the shape of the Skyrmion texture is critical
for the formation of topological bands in TMD
homobilayers.
In Fig. 3(a) we plot as an example the evolution of ξ1

with twist angle for a model [14] of unstrained MoTe2
bilayers. In Fig. 3(b) the band width of the adiabatic

approximation effective LLL calculated directly from
Eq. (12) is compared to the corresponding continuum
model band width, showing good agreement for the
location of the magic angles. When the continuum model
is improved by accounting for structural relaxation [22], the
resulting magic angle is closer to experimental values [1,2],
θ ≈ 3.75°. The vanishing of ξ1 indicates a local cancellation
between the zero-point kinetic energy of the effective
magnetic field and a Zeeman energy given by the periodic
potential. This effect is reminiscent of a similar cancellation
that occurs for arbitrary magnetic field distributions in two-
dimensional electron gases when the ratio of the Zeeman
spin splitting to ℏωc equals 1, as first observed by
Aharonov and Casher [39]. In the Supplemental Material
[24] we give an alternative version of the magic angle
argument that is related to the Aharonov-Casher cancella-
tion [39,40]. It implies that ideal quantum geometry
develops when the zero-point kinetic energy cancels
identically with the Zeeman energy and that our criterion
for ideal flat Chern band formation is accurate, even when
LL mixing is not negligible.
Finally, we note that the band width of the LLL effective

model goes to a finite value ∝ jΔ1j in the limit θ → 0, while
for the continuum model the band width vanishes in the
same limit, emphasizing that Landau level mixing is
essential at very small twist angles. Figure 3(c) shows
the effective LL splitting ℏωc and the energy scale of LL
mixing with the n ¼ 1 LL, η1, as a function of twist angle.

FIG. 2. Dependence of the first-shell Fourier coefficients (a) β1,
(b) δ1, and (c) Δ1, on the continuum model parameter ψ and
Vm=ω, the ratio of the potential and tunneling moiré modulation
strengths. The units are the same as in Fig. 1. (d) Chern number of
the topmost moiré band from the continuum model as a function
of ψ and Vm=ω at θ ¼ 2.5°. The regions with CK ¼ �1 coincide
with region where Δ1 < 0.

FIG. 3. (a) First Fourier coefficient of the effective periodic
potential ξ1 as a function of twist angle. (b) Bandwidth of the
topmost moiré valence band from the continuum model and
from our effective LLL in a periodic potential model as a function
of twist angle. (c) Comparison, as a function of twist angle,
between the effective Zeeman splitting ΔZ, the effective Landau

level splitting ℏωc, and the n ¼ 1 LL mixing scale η1 ¼
6jξð1;0Þ1 j ffiffiffiffiffi

2π
p

expð−π= ffiffiffi
3

p Þ=31=4 [24]. The vertical line indicates
the magic angle (ξ1 ¼ 0). These results are for unstrained MoTe2
[14]: Vm ¼ 8 meV, ψ ¼ 89.6°, ω ¼ −8.5 meV.
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Figure 3(c) also shows a lower bound for the effective
Zeeman splitting ΔZ ¼ 2ω, that provides an estimation of
the range of twist angles where the adiabatic approxima-
tion holds.
Discussion.—In this Letter, we have presented an analy-

sis of K-valley twisted TMD homobilayers that is moti-
vated by the presence [14,15] of skyrmions in the layer
pseudospin field of their continuum model Hamiltonians.
In an adiabatic approximation, the skyrmions give rise to a
spatially periodic effective magnetic field in the valley
projected Hamiltonian with one flux quantum per unit cell
and a spacing between Landau levels that grows like the
square of the twist angle. We show by explicit calculation
that the appearance of simultaneous band width minima
and nearly ideal quantum geometry [16–19], thought to be
associated with the recently observed FCI [1–5] states,
occurs when the effective periodic potential within the
lowest effective Landau level vanishes. The transformation
to a Landau level representation explains that the trace
condition is almost satisfied near certain twist angles
because the moiré bands inherit the ideal quantum geom-
etry of the LLL. It also brings the knowledge gained
from decades of studies of the conventional fractional
quantum Hall effect to bear on the moiré FCI problem.
For example, the fractional charge gaps of moiré FCI states
in the absence of disorder should be ∼0.1e2=ϵhBNl∼
0.25e2=ϵhBN

ffiffiffiffiffiffiffi
AM

p
∼ 10 meV.

Our approach allows external magnetic fields, which are
important for the Streda formula identification [1,2] of the
fractional Chern insulator states, to be easily incorporated
in the theory, simply by adding an external potential
contribution to the average field B0. The external field
will add to the Landau level degeneracy in one valley and
decrease the Landau level degeneracy in the other valley,
and add a preference for states that are valley polarized in
the sense that aligns the orbital magnetism with the
magnetic field. At a given effective Landau level filling
factor, increasing the effective magnetic field will increase
the interaction energy scale e2=ϵl, allowing interactions to
compete more strongly against effective magnetic fields.
The Landau level approach to topological moiré TMDs
introduced here also simplifies the treatment of the com-
petition between interactions and both periodic and random
disorder potentials. In general both periodic and random
potentials will give the Landau levels a finite energy width,
which will compete with the electron-electron interactions
to determine the ground state at a particular band filling ν.
This competition likely explains why FCI ground states are
measured only at some filling factors.
It is interesting to speculate on what new frontiers in

quantum Hall physics might follow from the observation of
FCI states in K-valley twisted TMD homobilayers. For
instance, it is natural to expect the competition between
density-wave and incompressible states that is prominent
in higher Landau levels [41–44] to be altered. Most

intriguingly, the effective magnetic field helps decrease
magnetic lengths and increase interaction strengths beyond
what is otherwise achievable. When combined with the
possibility of exposing these two-dimensional electron
systems to scanning probes by eliminating boron nitride
encapsulation, this advance brings the prospects for
manipulation of fractionalized quasiparticles much closer
to reality. We leave all these interesting directions for
future work.
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