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Calculating perturbation response properties of materials from first principles provides a vital link
between theory and experiment, but is bottlenecked by the high computational cost. Here, a general
framework is proposed to perform density functional perturbation theory (DFPT) calculations by neural
networks, greatly improving the computational efficiency. Automatic differentiation is applied on neural
networks, facilitating accurate computation of derivatives. High efficiency and good accuracy of the
approach are demonstrated by studying electron-phonon coupling and related physical quantities. This
work brings deep-learning density functional theory and DFPT into a unified framework, creating
opportunities for developing ab initio artificial intelligence.
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Material discovery accelerated by artificial intelligence
(AI) is an emerging interdisciplinary field that would
profoundly change future research of materials science.
An important task of this field is to create big data of
materials containing comprehensive properties, preferably
via high-throughput ab initio calculations. Density func-
tional theory (DFT) is the most widely used ab initio
method, by which material databases of ground-state
properties are built. However, in experiments or device
applications the electronic systems are inevitably perturbed
away from the ground state. Density functional perturba-
tion theory (DFPT) has been developed to predict pertur-
bation response properties [1–3], such as phonons and
electron-phonon coupling (EPC) [4], which play critical
roles in a wide variety of physical phenomena, including
Bardeen-Cooper-Schrieffer (BCS) superconductivity,
ferroelectricity, electronic and thermal transport, infrared
and Raman spectroscopy, and so on. Unfortunately, DFPT
calculations are computationally quite expensive, hindering
high-throughput materials research. For instance, ab initio
studies of BCS superconductors typically consider systems
with the number of atoms per primitive cell (N) no larger
than 10–20 [5], which limits the computational search of
high-Tc superconductors. In this context, methodological
developments of DFPT are urgently demanded.
In DFPT, responses of the occupied-state manifold to

perturbations are calculated by solving a set of coupled
Sternheimer equations self-consistently [6]. Take perturba-
tions of lattice vibrations for example, the complexity of
solving the Sternheimer equations for each perturbation is
of the same order as that for DFT, typically OðN3Þ in the

Kohn-Sham scheme, and the number of relevant perturba-
tions is proportional to N, leading to an overall scaling of
OðN4Þ. Moreover, a dense sampling of momentum space is
needed to ensure convergence, which also significantly
increases the computational overhead [4]. Intensive re-
search effort has been devoted to optimizing the method
[7–13], such as developing low-scaling algorithms to reduce
the computational complexity of DFPT and applying
Wannier interpolation or real-space techniques for efficient
momentum-space sampling. These improvements help
reduce the computational cost, whereas DFPT study of
moderate-size systems remains challenging. Recently, AI
has showngreat potential to change the landscapeofab initio
calculations, as demonstrated by deep-learning DFT calcu-
lations of atomic and electronic structures [14–27]. The use
of AI approaches to improve or even replace DFPT
algorithms is promising but largely unexplored.
In this Letter, we propose a general framework to

perform DFPT calculations by deep learning, which
employs equivariant neural networks to learn the key
quantity of DFPT—the induced change of Kohn-Sham
potential per unit perturbation, trains neural networks with
DFT data of random perturbations, and computes deriva-
tives of physical quantities via automatic differentiation.
We numerically implement the method for EPC calcula-
tions, and demonstrate the high efficiency and good
accuracy of deep learning by example studies. The work
not only paves the way for high-throughput DFPT calcu-
lations, but also unifies deep-learning DFT and DFPT into
one framework, broadening the research scope of deep-
learning ab initio calculation.
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Perturbations are pervasive in the research of physics and
materials. For instance, information of materials is detected
bymeasuring their responses to experimental probes; devices
are designed by controlling material properties with external
fields. Thus, calculating perturbation response properties of
materials from first principles is of fundamental importance,
for that DFPT is developed [1]. In the language of Kohn-
Sham DFT, a perturbation is a change of external potential
ΔVext, caused by lattice vibrations, strains, electric or
magnetic fields, etc. The responses of electronic systems
are described by the induced change of effective Kohn-Sham
potential ΔVKS or charge density Δn [6]. Compared to the
bareΔVext,ΔVKS incorporates additional changes ofHartree
and exchange-correlation potentials related to Δn. Note that
the variation of exchange correlation is neglected in the
random phase approximation, which will not be used here.
Thisworkwill focus on perturbations of lattice vibrations,

which are relevant to the study of phonons and EPC-related
properties [4]. In DFPT, a set of coupled Sternheimer
equations involving occupied states are solved self-
consistently for obtaining ΔVKS and Δn to linear order in
ΔVext [1–3]. In contrast to the finite difference method and
the standard perturbation theory, DFPT computes deriva-
tives of physical quantities analytically without invoking
supercells or unoccupied states [6], and is thus more
advantageous in accuracy and efficiency. A key quantity
of DFPT is the derivative of ΔVKS with respect to perturba-
tion, namely ∂VKS. One should consider 3N × Nq indepen-
dent periodic perturbations for crystalline materials, when
Nq wave vector points are sampled in the momentum space
of phonons. This is the most computationally intensive part
of DFPT. Once the full set of ∂VKS is known, the perturba-
tion response properties can be derived for any physical
quantities in the single-particle picture.
We notice that the above problem has a special feature

suitable for deep learning: a large set of ∂VKS for varying
perturbations are calculated about the equilibrium configu-
ration. Such kind of perturbation information could be
effectively encoded into deep neural networks, as inspired
by recent studies [23,24]. Importantly, derivative calcula-
tions can be efficiently and accurately on neural networks
due to their differentiable nature. Considering that DFT
data are more accessible than DFPT ones, we suggest to
train neural-network models with DFT data of ΔVKS for
random perturbations, and then perform automatic differ-
entiation to compute the derivative quantity ∂VKS. By this
strategy, the most time-consuming calculations of DFPTare
accomplished with neural networks. This is the essential
idea of deep-learning DFPT, as illustrated in Fig. 1.
The major task of deep learning is to represent the

dependence of ∂VKS on atomic structure fRg by neural
networks. By the Hohenberg-Kohn theorem [28], VKS is a
function of fRg, and so is ∂VKS. For solids ∂VKS is often
expressed in the Bloch picture: gmnνðk;qÞ ¼ humðkþ qÞ
j∂qνVKSjunðkÞi, where gmnνðk;qÞ is the so-called EPC

matrix element, junðkÞi is the initial Bloch state of the nth
electronic band with wave vector k, jumðkþ qÞi is the
final Bloch state of the mth electronic band with wave
vector kþ q, and the perturbation refers to atomic dis-
placements induced by the νth phonon mode with wave
vector q [4]. Since the Bloch eigenstates are sensitive to
distant perturbations, gmnνðk;qÞ depends on the global
atomic structure, which is difficult, if not impossible, to be
described by neural networks. Instead, one may employ the
nearsightedness principle of electronic matter [29,30] to
make the problem tractable. For that, we use localized
atomiclike orbitals ϕiαðrÞ as a basis set, where r is the
coordinate choosing the ith atom as the origin, α≡ ðplmÞ,
p is the multiplicity index of radial function, l and m are
indices of spherical harmonics Ylm used as angular func-
tion. This gives the real-space EPC matrix element:
gIJKðRj;RkÞ ¼ hϕiα;R0

jð∂VKS=∂Rka;Rk
Þjϕjβ;Rj

i, where
I ≡ iα, J ≡ jβ, and K ≡ ka, ϕiα;R0

(ϕjβ;Rj
) denotes the

localized orbital centered at the ith (jth) atom in the unit
cell with lattice vector Ri (Rj) using Ri ≡R0 as the
reference, Rka;Rk

denotes the displacement of the kth atom
in the unit cell with lattice vector Rk along the ath (a ¼ x,
y, z) direction. The two kinds of EPC matrix elements are
related by the formula

gmnνðk;qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ
2MkωνðqÞ

s X
Rj;Rk

exp ½iðk ·Rj þ q ·RkÞ�

×
X
IJK

U�
Imðkþ qÞgIJKðRj;RkÞUJnðkÞeKνðqÞ;

ð1Þ
where Mk is the mass of atom k, ℏ is the reduced Planck’s
constant, ων is the phonon frequency, eKν denotes

FIG. 1. Schematic of deep-learning DFPT. The derivatives of
Kohn-Sham potential, Kohn-Sham eigenstates, and charge den-
sity with respect to perturbation (∂VKS, f∂ψ ig, ∂n) are computed
by solving Sternheimer equations self-consistently in DFPT.
Perturbation of atomic structure (ΔR) about the equilibrium
configuration (fR0g) is illustrated. Using DFT data of Kohn-
Sham potential matrix ½VKS� and Pulay correction terms
hϕjVKSj∂ϕi for varying atomic structures, two neural network
models are trained, which in combination with automatic differ-
entiation give the electron-phonon coupling matrix ½∂VKS�.
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component of phonon eigenmode, UIm and UJn denote
components of Bloch eigenstates under the localized basis.
A similar formula has been derived for calculating EPC
using Wannier functions [7].
By the nearsightedness principle, gIJKðRj;RkÞ depends

on the neighboring atomic structure only, which is more
suitable for deep learning than gmnνðk;qÞ. In principle, one
may compute gIJKðRj;RkÞ indirectly from gmnνðk;qÞ via
Eq. (1) by the conventional DFPT, or directly by the real-
space DFPTor finite-difference method. A critical problem
is that gIJKðRj;RkÞ explicitly involves coupling between
three sites, which has a finite but long-range cutoff in the real
space, giving rise to a large amount of nonzero elements for
each atomic structure. Moreover, many atomic structures
will be considered in training calculations. Furthermore,
even if the training data are available, training neural
networks with huge amount of data is not a simple task.
All these challenge the deep-learning study of gIJKðRj;RkÞ.
There is an elegant way to circumvent the above diffi-

culties: employ neural networks to learnVKSðfRgÞ and then
make automatic differentiation on neural networks to get
∂VKSðfRgÞ. Automatic differentiation is a programming
paradigm widely applied in scientific computation [31–34],
which constructs programs in a fully differentiable manner
and calculates derivatives of complex functions through a
computation graph with machine precision. Because of the
differentiable nature of neural networks, derivatives with
respect to input variables of neural networks can be easily
and accurately calculated by automatic differentiation. This
not only simplifies the deep-learning problem, but also
overcomes the disadvantages of calculating derivatives
numerically by finite difference or analytically by DFPT.
The real-space EPC matrix element is written as

gIJKðRj;RkÞ ¼
∂

∂Rka;Rk

hϕiα;R0
jVKSjϕjβ;Rj

i

−
�
ϕiα;R0

jVKSj
∂ϕjβ;Rj

∂Rka;Rk

�

−
�
∂ϕiα;R0

∂Rka;Rk

jVKSjϕjβ;Rj

�
: ð2Þ

The first term corresponds to the derivative of Kohn-Sham
potential matrix (½VKS�≡ hϕjVKSjϕi), namely ∂½VKS�,
which will be calculated by neural networks and automatic
differentiation. The second and third terms (abbreviated as
hϕjVKSj∂ϕi and h∂ϕjVKSjϕi) correspond to the Pulay
corrections caused by movement of localized basis with
atoms. They are complex conjugate to each other, and thus
only one of them will be considered. Since ∂ϕjβ;Rj

=∂Rka;Rk

vanishes when k ≠ j, the Pulay correction only involves
explicit coupling between two sites, which will be com-
puted by postprocessing of DFT results and used for
deep learning.

The workflow of deep-learning DFPT is shown in Fig. 2.
First, the DFT Hamiltonian matrix under localized basis
hϕjHDFTjϕi is learned by neural networks using the Deep
learning DFT Hamiltonian (DeepH) approach [23–25]. The
generalized eigenvalue problem HDFTU ¼ ϵSU determines
the Kohn-Sham band structure ϵðkÞ and eigenstates UðkÞ.
Here, the overlap matrix S and the kinetic energy matrix
hϕjTjϕi are calculated efficiently by two-center integrals
[35]. ½VKS� is obtained from hϕjHDFT − Tjϕi, and then
automatic differentiation is applied to get ∂½VKS�. Second,
neural networks are applied to learn the dependence of
hϕjVKSj∂ϕi on atomic structure, as to be discussed below.
gIJKðRj;RkÞ is then obtained by Eq. (2). Third, the phonon

FIG. 2. (a) Workflow of deep-learning DFPT. Three neural
network models are applied to predict the DFT Hamiltonian
matrix hϕjHDFTjϕi, the Pulay correction hϕjVKSj∂ϕi, and the
force constant matrixΦ, respectively. Automatic differentiation of
the first model plus the second model gives hϕj∂VKSjϕi. Fourier
transformation of Φ yields the dynamical matrix DðqÞ, which
determines the phonon dispersion ωðqÞ and eigenmode eðqÞ.
These combined with the information of Kohn-Sham eigenstates
UðkÞ give gmnνðk;qÞ, as described by Eq. (1). (b) Equivariant
neural networks used for representing the energy, Hamiltonian
matrix, and Pulay correction terms, which are scalar, matrix, and
third-order tensor, respectively. Equivariant vectors with different
angular momentum quantum number l (denoted by different
colors) are employed to construct the matrices and tensors.
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dispersion and eigenmodes can be calculated by using force
constants predicted via neural network force fields [36].
Finally, the EPC matrix element gmnνðk;qÞ is determined
by Eq. (1). Thus, the deep learning of DFPT is completed.
Technique details are described in the Methods [37].
Incorporating of a priori knowledge into deep learning is

of critical significance to the design of neural networks [49].
Important prior knowledge for deep learning ab initio
methods includes the nearsightedness principle and the
symmetry principle [23,24]. The nearsightedness principle
has been taken into account above. The symmetry principle
requires that the physical quantities and equations are
equivariant under transformations of coordinate or basis,
so that the laws of physics are the same for different frames
of reference. This helps improve the training efficiency
and prediction accuracy of neural networks. A relevant
symmetry group is the Euclidean group in three dimen-
sional space, called the Eð3Þ group, which includes trans-
lations, rotations, and inversion. To satisfy the fundamental
symmetry requirements, equivariant neural networks
(ENNs) [50–52] have been designed for the studies of
DFT energy [21,22] and Hamiltonian matrix [23,24]. The
ENN representation of Pulay correction term is rarely
discussed before. In the language of group theory,
hϕjVKSj∂ϕi is composed of three-order tensors l1⊗ l2⊗1

(five-order tensors l1 ⊗ 1
2
⊗ l2 ⊗ 1

2
⊗ 1) when neglecting

(including) the spin degree of freedom, where l1 and l2
denote the angularmomentumof basis orbitals.Wegeneral-
ize the DeepH-E3 method [24] to represent hϕjVKSj∂ϕi by
ENNs (see details in Supplemental Material [37]). This
generalized DeepH model employs equivariant vectors as
feature vectors of neural networks, and uses the output

vectors of varying angular momentum to represent high-
order tensors via the Wigner-Eckart theorem, as illustrated
in Fig. 2(b). Up to here, a general framework of deep-
learning DFPT has been established.
Next, we test the reliability of the deep-learning method

by calculating EPC-related properties of three model
material systems, including hole-doped monolayer gra-
phene under tensile strain, hole-doped monolayer MoS2,
and hole-doped carbon nanotube. The graphene system was
predicted to show high-Tc BCS superconductivity [53].
The DeepH and generalized DeepH models can be trained
with high accuracy, showing low mean average errors
(MAEs) of 0.21 meV and 0.46 meV=Å (0.25 meV and
0.34 meV=Å) in the study of graphene (MoS2), respec-
tively. Accurate prediction of EPC-related properties thus
becomes feasible. As shown in Figs. 3(a)–3(f), the results
match well with the ab initio benchmark data. Moreover,
neural network models are trained by DFT data of graphene
and applied to study carbon nanotube. The latter has a
curved geometry not contained in the training dataset,
useful for testing the generalization ability of method. As
shown in Figs. 3(g) and 3(h), the predicted phonon line-
width and Eliashberg spectral function of hole-doped
carbon nanotube match with the benchmark results. The
EPC strength λ is predicted to be 0.085 (0.089) by deep-
learning (benchmark) calculations. All these systematically
demonstrate good reliability of neural network methods.
As an example application, we apply the deep-learning

method to study hole-doped twisted bilayer graphene
(TBG) systems (Fig. 4), which have attracted great research
interest recently [54]. Neural networks are trained by
supercells of untwisted bilayer graphene, giving MAEs

(a) (b) (c)

(d) (e) (f)

(g)

(h)

FIG. 3. EPC-related properties of hole-doped materials, including (a)–(c) monolayer graphene under tensile strain, (d)–(f) monolayer
MoS2, and (g),(h) (12, 12) carbon nanotube, whose hole doping concentrations are 4.65 × 1014 cm−2, 4.0 × 1014 cm−2, and
2.3 × 106 cm−1, respectively. The phonon linewidth Γ, Eliashberg spectra α2F as a function of frequency ω, BCS superconducting
transition temperature Tc, and EPC strength λ are computed by SIESTA and deep learning.
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of 0.13 meV and 0.34 meV=Å for the DeepH and gener-
alized DeepH models, respectively. Moreover, neural net-
work force fields are also trained, getting MAEs of
0.31 meV=atom, 6.1 meV=Å, and 2.4 meV=Å3, for energy,
force, and stress, respectively. Then material properties of
TBGs with varying twist angles θ, including the electronic
band structure (Fig. S4), phonon dispersion (Fig. S5), EPC-
related properties [Fig. 4(b)], can be predicted without
invoking ab initio codes but fully by neural networks.
Remarkably, systems containing hundreds of atoms per
primitive cell are beyond the capability of conventional
DFPT algorithms, but can be handled here at relatively low
computational cost [Fig. 4(c)]. A detailed discussion of
computational cost, accuracy, and workflow is included in
Supplemental Material [37].
In summary, we develop a general framework of deep-

learning DFPT, which is able to improve the computational
efficiency orders of magnitude without affecting accuracy,
enabling DFPT computation of large-size systems and
facilitating high-throughput material calculations. The
deep-learning approach not only works for studying per-
turbations of lattice vibrations, but also can be generalized to
investigate other kinds of perturbations, such as strains and
external fields. Moreover, by combining neural networks
with differentiable programming, we unify deep-learning
DFT and DFPT into a coherent framework. This is very
helpful for future method developments, because the
research of deep-learning DFT and DFPT could benefit
from each other. For instance, methods have been recently
developed in the framework of deep-learning DFT to deal
with spin-orbit coupling [24], magnetic materials [25], and
advanced hybrid functionals [55]. Generalizing these meth-
ods to DFPT is expected to be straightforward. Furthermore,
the automatic differentiation of neural networks allows
efficient and accurate computation of high-order derivatives

of physical quantities, which are essential to investigating
various kinds of physical phenomena (like piezoelectric
effects, nonlinear dielectric susceptibility, and anharmonic
effects) [4] but cannot be easily calculated by conventional
methods. It is also natural to generalize the deep-learning
DFPT approach for studying electric field perturbations to
get a more accurate description of van der Waals inter-
action [56]. Overall, the work could significantly expand
the research scope of DFPTand open new opportunities for
developing deep-learning ab initio methods.
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