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The valley Hall effect arises from valley-contrasting Berry curvature and requires inversion symmetry
breaking. Here, we propose a nonlinear mechanism to generate a valley Hall current in systems with both
inversion and time-reversal symmetry, where the linear and second-order charge Hall currents vanish along
with the linear valley Hall current. We show that a second-order valley Hall signal emerges from the electric
field correction to the Berry curvature, provided a valley-contrasting anisotropic dispersion is engineered.
We demonstrate the nonlinear valley Hall effect in tilted massless Dirac fermions in strained graphene and
organic semiconductors. Our Letter opens up the possibility of controlling the valley degree of freedom in
inversion symmetric systems via nonlinear valleytronics.
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Introduction.—Comprehending and controlling diverse
degrees of freedom in quantum materials not only enriches
our understanding of fundamental physics, it also paves
the way for novel applications. For example, the fields of
electronics and spintronics emerged from understanding
and exploiting the charge and spin degree of freedom [1,2],
respectively. Beyond these, the valley degree of freedom
has attracted significant attention giving birth to the field
of valleytronics [3–5]. Valleys are the degenerate energy
extrema of the electronic bands in momentum space.
Valleys become well-defined degrees of freedom when
they are well separated in momentum space with negli-
gible intervalley scattering. The primary focus of valley-
tronics is to control and manipulate the valley degree of
freedom by using electrical [6–9], optical [10–13], and
magnetic [14–16] means.
The linear valley Hall effect (VHE) introduced by Xiao

et al. [6] enables electrical control and manipulation of the
valley degree of freedom. VHE is the accumulation of
electrons with opposite valley indices on opposite sides of a
sample, transverse to the direction of the applied electric
field. It is induced by the valley-contrasting Berry curvature
and anomalous Hall velocity in materials with broken
inversion symmetry. It offers a way to probe the Berry
curvature in time-reversal-preserving systems where the
anomalous charge Hall response vanishes. VHE has been
measured via nonlocal resistance measurements in hex-
agonal graphene superlattices [7–9] and in monolayer
transition metal dichalcogenides [17]. However, in systems
with inversion and time-reversal symmetry, the Berry
curvature vanishes for each point in momentum space,
leading to the absence of VHE in such systems. This raises

a fundamental question. How can we probe and manipulate
the valley degree of freedom in nonmagnetic and inversion
symmetric materials by electrical means?
Here, we demonstrate that the nonlinear valley Hall

effect (NVHE) can probe and manipulate the valley degree
of freedom in inversion and time-reversal symmetric
systems. We show that materials with both fundamental
symmetries exhibit a finite NVHE that is second order in
the electric field (see Fig. 1), provided their band dispersion

FIG. 1. Schematic of the nonlinear valley Hall effect. A
longitudinal electric field induces a nonlinear valley Hall current
(jV ∝ E2). Because of the Berry-connection-polarizability-
(BCP) induced Hall velocity, electrons near the Fermi surface
with different valley degrees of freedom accumulate on opposite
sides of the sample. The elliptical density shows the BCP-induced
Hall velocity distribution, and the contours show the Fermi
surfaces. The nonlinear valley Hall effect is finite in inversion and
time-reversal symmetric systems such as tilted gapless graphene,
where the linear valley response and linear and nonlinear charge
responses vanish.
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is anisotropic and valley contrasting [18–20]. Such a
dispersion can be engineered by reducing crystalline
symmetries while retaining inversion and time-reversal
symmetry, via strain or other means. The NVHE originates
from the electric-field-induced correction to the Berry
curvature, which results in a nonlinear anomalous Hall
velocity. Since the electric field correction is determined
by the Berry connection polarizability (BCP) [21,22], the
NVHE can be used to investigate the quantum metric in
systems with both fundamental symmetries.
We demonstrate that the charge carriers of opposite

valleys carry opposite signs of the electric-field-induced
orbital magnetic moment (OMM). Thus, the NVHE sep-
arates carriers with opposite electric-field-induced OMM,
even though the total field-induced orbital magnetization
vanishes in the system. Additionally, we highlight the
intrinsic (scattering-time-independent) nature of the
NVHE and show that the dominant part of the disorder-
induced extrinsic contributions in NVHE vanish for the
tilted Dirac Hamiltonian. Experimentally, the NVHE can
be probed via nonlocal resistance measurements using the
scaling of the nonlocal resistance with the longitudinal
Ohmic resistivity, which is different from the linear VHE. As
specific examples, we demonstrate the existence of NVHE in
strained graphene, which hosts tilted massless Dirac fer-
mions, and in the organic semiconductor αðBEDT-TTFÞ2I3
[BEDT-TTF = bis(ethylenedithio) tetrathiafulvalene].
Theory of nonlinear valley Hall effect.—The linear

valley Hall current (jVa ) is defined in terms of the linear
valley Hall conductivity (σVab) as j

V
a ¼ σVabEb. Here, jVa ¼

jKa − jK
0

a and σVab ¼ σKab − σK
0

ab, with the distinct valleys
specified by K and K0. Under time reversal, the valley
current (jKa → −jK0

a and jK
0

a → −jKa ) and the electric
field do not change sign. However, under space inversion,
the valley current remains unchanged, but the electric field
changes sign. These symmetry considerations force the
linear valley Hall current to vanish in an inversion
symmetric system. In this background, we introduce
the notion of NVHE originating from the nonlinear

charge response specified by jð2Þa ¼ χa;bcEbEc. We define
the valley-resolved nonlinear charge conductivity as

jVð2Þa ¼ χNLVa;bc EbEc, where

χNLVa;bc ¼ χKa;bc − χK
0

a;bc: ð1Þ

In an inversion symmetric system, the second-order non-
linear charge current vanishes, and the dominant valley
response is the nonlinear valley Hall current [23].
The origin of the NVHE can be understood from the

semiclassical electron dynamics by incorporating correc-
tions up to second order in the electric field [21,24]. In the
nonlinear regime, the anomalous Hall velocity vAHE ¼
ðe=ℏÞE ×Ωn arising from the interband coherence gets a
nonlinear correction induced by the external electric field.

The modification yields vAHE → vEAHE ¼ ðe=ℏÞE × ðΩn þ
ΩE

nÞwhereΩn ¼ ∇k ×An is the usual Berry curvature, and
ΩE

n is an electric-field-induced correction given by

ΩE
n ¼ ∇k ×AE

n ; AE
n;a ¼ 2e

X
m≠n

Re½Ra
nmRb

mn�
εn − εm

Eb: ð2Þ

Here, AE
n is an electric-field-induced correction to the

Berry connection. The quantity Ra
nm represents the band-

resolved Berry connection, and εn is the eigenvalue of the
unperturbed Hamiltonian. To facilitate interpretation,
the correction to the Berry connection is expressed as
AE

n;a ¼ G̃ab
n Eb, where the BCP, G̃ab

n , is defined as [25]

G̃ab
n ¼ 2e

X
m≠n

Re½Ra
nmRb

mn�
εn − εm

: ð3Þ

We emphasize that the BCP contains the band-resolved
quantum metric [26,27] Gab

mn¼Re½Ra
nmRb

mn�, which quan-
tifies the distance between wave functions in the para-
meter space.
In the second order in the electric field, two Hall responses

originate from the Berry curvature and the electric-field-
induced correction to it. The anomalous Hall velocity
combined with the linear nonequilibrium distribution
function gives rise to the Berry-curvature-dipole- (BCD)
induced nonlinear Hall conductivity [28,29]. It is given
by χBCDa;bc ¼ gsðe3τ=ℏ2Þϵabd

P
n;k ð∂cΩd

nÞfn. Here, fn is the
equilibrium Fermi-Dirac distribution function, τ is quasi-
particle scattering time, ϵabd is the antisymmetric tensor of
rank three, and gs ¼ 2 accounts for the spin degeneracy
factor. See Sec. S1 of the Supplemental Material [30] for a
detailed derivation. The electric field correction to the
Berry curvature gives rise to an intrinsic nonlinear Hall cur-
rent specified by ja ¼ −ðe2=ℏÞϵabl

P
n;k Ebð∇k ×AE

nÞlfn.
The corresponding intrinsic nonlinear conductivity is given
by [36–41]

χBCPa;bc ¼ −gs
e2

2ℏ

X
n;k

�
2∂aG̃

bc
n − ∂bG̃

ac
n − ∂cG̃

ab
n

�
fn: ð4Þ

In the presence of inversion symmetry, both of these
contributions to the Hall charge current vanish. Below, we
show that although the charge current vanishes in systems
with both time-reversal and inversion symmetries, the valley-
resolved intrinsic contribution survives and generates a
finite NVHE.
To understand this, we note that in a spinless system the

Berry curvature satisfiesΩnð−kÞ ¼ −ΩnðkÞ in the presence
of time-reversal symmetry, and Ωnð−kÞ ¼ ΩnðkÞ in the
presence of inversion symmetry. As a consequence, when
both symmetries are present, ΩnðkÞ ¼ 0 at each point in
the momentum space. This forces the linear VHE to
vanish. The contribution from the Berry curvature dipole
also vanishes for each valley. However, the intrinsic
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contribution originating from Eq. (4) for each valley does
not vanish and can be finite. The BCP transforms as
G̃ab
n ð−kÞ ¼ G̃ab

n ðkÞ under the action of both the space
inversion and time reversal. Therefore, unlike the Berry
curvature, it can be finite at each point in momentum space
in the simultaneous presence of both of these symmetries.
As a consequence, we can have a nontrivial NVHE. This
opens up the potential for controlling the valley degree of
freedom in systems with both fundamental symmetries.
This is the main highlight of this Letter. The subtle point is
that even though both symmetries are preserved globally,
they must be broken in the individual valleys (or locally) to
obtain a finite NVHE.
Electric-field-induced orbital magnetic moment.—

Similar to the spin Hall effect that separates opposite spins,
the linear VHE segregates carriers with valley-contrasting
OMM in real space by pushing the oppositely OMM
polarized carriers to different transverse edges. However,
in the presence of both fundamental symmetries, the OMM
vanishes in the whole Brillouin zone. This raises a question.
What physical quantity distinguishes the carriers separated
by the NVHE in real space?
We find that the electric field can induce a correction to

the OMM. The ath component of the field-induced OMM
for nth band carriers is given by [42,43]

mE
aðnÞ ¼

X
l≠n

�
2e

Re½Ma
lnR

d
nl�

εn − εl
þ e2

2ℏ
ϵabcð∂bGcd

ln Þ
�
Ed: ð5Þ

Here, Mln ¼ ðe=2ÞPj≠nðvlj þ vnδljÞ ×Rjn is the inter-
band OMM with vlj the matrix element of the velocity
operator v̂a ¼ ð1=ℏÞ∂aH, and we have defined vn ≡ vnn.
The NVHE separates carriers with valley-contrasting field-
induced OMM given in Eq. (5). We find that materials
possessing a valley-contrasting orbital magnetization show
the NVHE. See Fig. S1, and Secs. S2 and S3 of the
Supplemental Material [30] for a detailed discussion.
Below, we show this explicitly for strained graphene and
in organic conductors.
Nonlinear valley Hall effect in tilted Dirac systems.—We

now demonstrate the NVHE in a two-dimensional tilted
Dirac system with two valleys [44]. The system is
described by the Hamiltonian,

HðsÞ ¼ ℏvFðskxσx þ kyσyÞ þ sℏvtkxσ0: ð6Þ

Here, vF is the Fermi velocity, and σi’s are the Pauli
matrices representing the sublattice degree of freedom. In
Eq. (6), s ¼ �1 denotes the valley index, and the k for each
valley is measured from the two Dirac points located at the
K or K0 point. The vt term tilts the Dirac cone along the kx
axis in opposite directions for the two valleys. The tilt term
breaks the space-inversion and time-reversal symmetries
for each valley as εð−kÞ ≠ εðkÞ. However, the pair of

oppositely tilted Dirac nodes preserves both the funda-
mental symmetries globally.
The energy dispersion for this two-band model is

given by ελ ¼ sℏvtkx þ λℏvFk, with k ¼ ðk2x þ k2yÞ1=2, and
λ ¼ �1 denotes the band index. The z component of the
Berry curvature for this system vanishes in the entire
Brillouin zone. We calculate the elements of the quantum
metric to be Gxx

cv ¼ Gxx
vc and Gyy

cv ¼ Gyy
vc, with

Gxx
cv¼

k2y
4k4

; Gyy
cv¼ k2x

4k4
; and Gxy

cv¼Gxy
vc¼−

kxky
4k4

: ð7Þ

We note that the quantum metric is independent of the tilt
velocity and the valley index. Furthermore, in contrast to
the Berry curvature, the sublattice (or inversion) symmetry-
breaking gap parameter is not needed to have a finite
quantum metric.
We calculate the valley and band-resolved nonlinear Hall

conductivity to be χBCPx;yy ðs; λÞ ¼ −sλðe3vt=4πμ2Þ. This is in
the limit of small tilt velocity vt ≪ vF for the chemical
potential μ measured from the Dirac point. The valley
dependence (captured by s ¼ �1) in the valley-resolved
nonlinear intrinsic Hall current leads to the accumulation of
the electrons with opposite valley index on the opposite
side of the samples. This results in NVH conductivity,

χNLVx;yy ¼ −λ
e3vt
2πμ2

: ð8Þ

The NVHE depends on the tilt velocity and vanishes as
vt → 0. This highlights that for each valley, the rotation
symmetry (in the continuummodel) or the C3 symmetry (in
the lattice model) has to be broken to have a finite NVHE.
In experiments, this is achieved via strain or substrate
effects. See Sec. S4 of the Supplemental Material [30]
for details. To get an estimation of the strength of the
NVHE, we define the NVH angle as θNLV ¼ jVð2Þ=jL,
where jL is the linear longitudinal current. For the typical
value of model parameters vt ¼ 0.3vF with vF ¼ 106 m=s,
μ ¼ 0.1 eV, τ ¼ 1 ps, and E ∼ 1 V=μm, we find that the
NVH angle is θNLV ≈ 0.006%. See Sec. S4(C) in the
Supplemental Material [30] for details. The NVHE with
a different type of band anisotropy and trigonal warping
has been demonstrated in Sec. S5 in the Supplemental
Material [30].
We can interpret our result of Eq. (8) as an accumulation

of carriers with valley-contrasting electric-field-induced
OMM along the edge of the sample. For E ¼ Eyŷ, using
Eq. (7) in Eq. (5), we calculate

mE
z ðs; λÞ ¼ −

e2

8ℏ
kx
k4

�
1 − 2λs

vt
vF

kx
k

�
Ey: ð9Þ

Integrating this equation, we find that the total electric-field-
induced OMM for the two valleys is equal in magnitude with
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opposite signs, ME
aðs; nÞ ¼

R
Ks

mE
aðs; nÞfn ∝ s. Here,

R
Ks

represents the integration near the valleys. Going beyond the
low energy description, we also demonstrate the opposite
orbital magnetization of the two valleys for an organic
conductor in Fig. 2(c) and in the tight-binding model of
strained graphene in Fig. S7(c) of the Supplemental
Material [30].
Extrinsic contributions to the valley Hall effect.—For the

linear VHE, in addition to the Berry-curvature-induced
intrinsic contribution, there are also finite extrinsic contri-
butions induced by asymmetric scattering due to disorder
[45]. Such extrinsic contributions arise from the side-jump
and skew-scattering mechanisms [46,47]. Intriguingly, these
extrinsic contributions are known to sometimes partially
compensate, if not cancel, the intrinsic contribution. This
motivates us to explore extrinsic disorder-induced contribu-
tions to linear VHE, as well as NVHE predicted in this
Letter. Although a detailed disorder calculation within the
quantum kinetic theory [48] is deferred to a future pub-
lication, we find that both the skew-scattering and side-jump
semiclassical contributions vanish in the linear and nonlinear
regimes for the Hamiltonian in Eq. (6).
The extrinsic side-jump contribution is determined by

the positional shift δrl0l caused by the side-jump process,

which subsequently affects the side-jump velocity vsj ¼P
l0 ω̄

sy
ll0δrl0l. Here, l and l0 represent the quantum state

involved in scattering, and ωsy
ll0 is the symmetric scattering

probability. Interestingly, the side-jump positional shift is
determined by the Berry curvature [45,49]. Hence, in
systems with both fundamental symmetries, the principle
part of the side-jump contribution is expected to vanish
along with the Berry curvature. See Sec. S6(B) of the
Supplemental Material [30] for details. On the other hand,
the contribution from the skew-scattering mechanism con-
tribution is determined by the asymmetric scattering rate,
and it is proportional to the cubic and quartic powers of the
scattering potential. This asymmetric scattering also van-
ishes for the Hamiltonian in Eq. (6) [45,50]. Therefore, in
contrast to the linear VHE, the NVHE does not have any
contribution from the disorder-induced asymmetric scatter-
ing mechanisms for the tilted Dirac model Hamiltonian.
Experimental signature.—The linear VHE has been ex-

perimentally probed via two types of measurements. The
first approach is based on measuring the anomalous charge
Hall response in valley-polarized systems [17,51–53].
The NVHE can be probed via a similar strategy of inducing
valley polarization by similar or other means.
Another approach for detecting the VHE is via the

nonlocal resistance measurement [7–9,54]. In the presence
of a long-range charge neutral valley Hall signal, the
nonlocal resistance generated by the inverse VHE scales
as the cubic power of the longitudinal charge resistivity,
ðρCxxÞ3. We show that a similar nonlocal Hall measurement
setup can also measure the NVHE. However, the scaling
of the nonlocal resistance generated by the NVHE will be
different from that generated by other means. We calculate
the nonlocal resistance originating from the NVHE to be

RNVHE
NL ðxÞ ¼ W

2lv
ðρCxxÞ5ðχVx;yyÞ2j2e−jxj=lv : ð10Þ

Here, W is the width of the sample, lv is the intervalley
scattering length, j is the bias current density used for
measurement, and x is the distance from the nominal
current path. The calculation details are presented in
Sec. S7 of the Supplemental Material [30]. This has to
be contrasted with the case when there is no VHE at all, for
which we have Rno−VH

NL ∝ ρCxx, and with the case for linear
VHE for which we have Rlinear−VH

NL ∝ ðρCxxÞ3σVxy. In contrast
to these cases, the nonlocal resistance induced by NVHE is
measurement current dependent, and it is proportional to
ðρCxxÞ5j2. We predict that the NVHE manifests as a second
harmonic signal in the nonlocal measurement setup, even
though the system has inversion symmetry [55].
Material realization.—As a realistic material example,

we calculate the NVHE for the organic conductor
αðBEDT-TTFÞ2I3 [61,62] and graphene (graphene results
are shown in Sec. S8 of the Supplemental Material [30]) in
the presence of uniaxial strain [63,64]. Under strain,

(a) (b)

(c) (d)

FIG. 2. (a) The electronic dispersion showing the two valleys
of organic conductor αðBEDT-TTFÞ2I3. The momentum space
distribution of (b) the band-resolved quantum metric, and (c) the
electric-field-induced orbital magnetic moment for the conduc-
tion band. We have highlighted the valley-contrasting orbital
magnetization (ME) of the valleys. (d) Nonlinear valley Hall
conductivities induced by the Berry connection polarizability for
two representative temperatures: 15 and 40 K. We have offset the
energy axis by −92 meV so that μ ¼ 0 represents the band
touching point. We have used the following Hamiltonian param-
eters: ft1; t01; t2; t02; tnnng ¼ f36;−86;−24;−77;−60g meV for
our numerical calculations.
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αðBEDT-TTFÞ2I3 supports a pair of oppositely tilted and
gapless Dirac cones. It is described by the tight-binding
Hamiltonian of the formHðqÞ ¼ ½ðh0; h�Þ; ðh; h0Þ�. The off-
diagonal elements are given by

hðqÞ¼2
h
t1eiq

þ=2þ t01e
−iqþ=2þ t2eiq

−=2þ t02e
−iq−=2

i
; ð11Þ

where q� ¼ qx � qy. Here, ti and t0i (i ¼ 1, 2) are the
nearest neighbor hopping amplitudes (see Sec. S8 of the
Supplemental Material [30] for more details). The diagonal
elements are given by h0ðqÞ ¼ 2tnnn cos qy, where tnnn is the
next neighbor hopping amplitude. We present the resulting
electronic dispersion and the corresponding Dirac valleys
in Fig. 2(a). In Fig. 2(b), we show the momentum space
distribution of the quantum metric. In Fig. 2(c), we display
the electric-field-induced OMM which gives rise to valley
orbital magnetization. Figure 2(d) illustrates the resulting
NVH conductivity. The NVHE decreases as we increase
the temperature showing the energy window in which the
BCP tensor is finite around the band touching point.
Symmetry and candidate materials.—Nonmagnetic

materials with an inversion center are the most suitable
candidates for observing NVHE. Note that while the
NVHE and intrinsic BCP Hall current [36,37] share the
same physical origin, the fundamental symmetries for these
two phenomena are mutually exclusive. In addition to the
fundamental symmetries, crystalline symmetries like rota-
tion and reflection near the valleys dictate various compo-
nents of the NVHE tensor, as summarized in Table S1 of
Sec. S9 in the Supplemental Material [30]. In gapless
systems, the quantum metric peaks near the band crossings.
Therefore, symmetry-protected gapless systems are likely
to have large NVHE. Furthermore, recent advancements
in device technology have enabled the tunability of the
band gap in graphene superlattices through gate voltages
[8,9,29], facilitating the creation of systems with gapless
Dirac nodes on demand. An additional ingredient for
inducing a significant NVHE signal is large anisotropy
of the Fermi surface. Therefore, strain engineering to distort
the Dirac nodes and introduce anisotropy [65] will help
observe NVHE. Two-dimensional systems with anisotropic
Fermi surface like borophene, the surface states of three-
dimensional crystalline topological insulators [66], surface
states of the crystalline topological insulator SnTe [67] are
good candidates for the observation of NVHE.
Conclusion.—In summary, we have predicted a new

valley Hall effect in materials with spatial inversion
symmetry. Our findings facilitate the control of the valley
degree of freedom in centrosymmetric materials and offer
several exciting possibilities. One interesting direction is
the field of valley caloritronics utilizing the possibility of
the nonlinear valley Nernst effect [68] and nonlinear valley
thermal Hall effect. The NVHE can also be generalized to
bosonic systems, with possibilities of predicting and
observing the magnon contribution to the nonlinear valley

thermal Hall effect [69]. Additionally, nontrivial physics is
likely to emerge in spin-orbit coupled systems where the
spin-valley coupling has been shown to impact both the
spin and valley Hall effect [70].
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