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This Letter presents a nonlocal study on the electric-field-tunable edge transport in h-BN-encapsulated
dual-gated Bernal-stacked (ABA) trilayer graphene across various displacement fields (D) and temper-
atures (T). Our measurements revealed that the nonlocal resistance (RNL) surpassed the expected classical
Ohmic contribution by a factor of at least 2 orders of magnitude. Through scaling analysis, we found that
the nonlocal resistance scales linearly with the local resistance (RL) only when the D exceeds a critical
value of ∼0.2 V=nm. Additionally, we observed that the scaling exponent remains constant at unity for
temperatures below the bulk-band gap energy threshold (T < 25 K). Further, the value of RNL decreases in
a linear fashion as the channel length (L) increases. These experimental findings provide evidence for edge-
mediated charge transport in ABA trilayer graphene under the influence of a finite displacement field.
Furthermore, our theoretical calculations support these results by demonstrating the emergence of
dispersive edge modes within the bulk-band gap energy range when a sufficient displacement field is
applied.
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The emergence of gapless edge modes at the physical
boundaries of a two-dimensional system is one of the most
fascinating phenomena in condensed matter physics.
Usually, these edge modes are related to the bulk topo-
logical order of the system [1–6] and play a significant role
in electronic transport. Some notable examples are the
helical edge modes in Z2 topological insulators [7–10],
chiral quantum Hall edge modes [11,12], valley-helical
edge modes in graphene [13–17], kink states [13,18], and
so on. These edge modes are also believed to be key
ingredients for the observation of electric field-induced
magnetism [19,20], valley-dependent transport [16,17],
and half-metallic behavior in graphene or multilayer
graphene [19,20].
Recently, trilayer graphene (TLG) has emerged as a

novel two-dimensional material, where several electronic
phases, for example, spin-polarized half-metal [21],
spin and valley polarized quarter metal [21], superconduc-
tivity [22], correlated Chern insulators and ferromagnetism
[23], have been realized experimentally. To completely
understand the electronic properties of these phases, it is
essential to study both bulk and edge transport. Usually, in
the absence of a perpendicular displacement field, the band
structure of Bernal-stacked TLG is described by a set of
linear and quadratic bands, which are similar to the low-
energy bands of single and bilayer graphene, respectively,
as shown in Fig. 1(b). However, under the application of the
large displacement field, the interplay of layer asymmetry
and trigonal warping leads to the formation of new sets of
Dirac cones, as shown in Fig. 1(c). In addition to

modification in the bulk-band structure, the application
of displacement field also induces a nontrivial valley
Hall state, where the energy gap at the emergent Dirac
points is filled by chiral edge modes which propagate in
opposite directions between two valleys [24]. Although the
emergence of the new sets of the Dirac cones has been
experimentally observed in a quantum capacitance meas-
urement [25], an experimental manifestation of the pre-
dicted edge modes [24] is still lacking.
Nonlocal transport measurements have been widely used

to study the unconventional transport mechanism in two-
dimensional systems like the detection of bulk spin and
valley transports [26–32]. Along with that, the nonlocal
resistance measurement is believed to be an important tool
to probe the edge states in the topological insulator [33–35]
and has been widely used to explore the edge transport
mechanism in several electronic systems [36,37] including
the twisted bilayer system [38].
In this work, we have carried out nonlocal resistance

measurements in a h-BN-encapsulated dual-gated ABA
TLG device. The measured nonlocal resistance was found
to be at least 2 orders of magnitude larger than the classical
Ohmic contribution. More importantly, the nonlocal resis-
tance RNL scales linearly with the local resistance RL,
suggesting that the charge transport is edge mediated
[34,35,39–42]. The scaling exponent αðRNL ∝ Rα

LÞ was
found to be close to 1 beyond a critical displacement
field D. Below the critical field, the edge states are not
dispersive and do not contribute significantly to nonlocal
transport. Similarly, for temperatures (T) smaller than the
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scale of the band gap, α remains close to 1. On further
increasing the temperature, α starts deviating from 1 due to
the contribution of bulk transport. Moreover, we have
measured the RNL at different distances between the
injected and measured probes, and found that the value
of RNL decreases in a linear fashion as the distance L
between the probes increases. This is expected for the edge-
mediated transport as described in [42]. To further establish
our findings, we perform a theoretical calculation of the
edge-mode dispersion for different displacement fields, and
found that the edge modes become dispersive only above a
critical displacement field, which is consistent with our
experimental findings.
For the nonlocal resistance measurement, we fabricated a

h-BN-encapsulated Bernal-stacked TLG device using the
standard dry transfer technique with a high mobility of
∼300 000 cm2 V−1 s−1. Our device is gated by a graphite
back gate and a metal top gate. The details of the device
fabrication are described in the Supplemental Material [43].
Figure 1(a) shows the schematic of the device structure.
The electrical resistance was measured using the standard
low-frequency lock-in technique. Before discussing details
of the nonlocal measurement, we first discuss the quantum
Hall response of the device, which establishes the Bernal-
stacked trilayer character of the graphene. Figure 1(d)
shows a plot of Rxy as a function of the top gate voltage
VTG. The various color traces correspond to different values
of the magnetic field as shown in the legend. One can see
that at a low magnetic field, well-developed robust quan-
tum Hall plateaus appear at h=6e2; h=10e2; h=14e2;…,
which are the characteristic plateaus of TLG [55–59]. We
also observe other symmetry broken intermediate plateaus,
suggesting the high quality of the device. To further
confirm the Bernal-stacked trilayer nature of the graphene,
in Fig. 1(e), we plot a two-dimensional color map of
dRxy=dVTG as a function of the magnetic field (B) and the
top gate voltage VTG. The crossing between the Landau

levels of the monolayer and bilayer-like bands, whose
energies scale differently with the magnetic field, can be
seen as discontinuities in the Quantum Hall (QH) plateau
structure (blue strips) along the white dashed lines in
Fig. 1(e). The positions of the crossing points are similar
to the earlier experimental observations suggesting the
ABA character of the TLG [57,60,61].
The dual gate architecture of the device allows us to tune

the carrier density n and the displacement field D inde-
pendently. Figure 2(a) shows a color map of the local
resistance ðRLÞ as a function of the displacement field
D and total density n. The resistance at the Dirac point at
higher displacement fields does not change significantly,
suggesting a small band gap of the ABA TLG consis-
tent with the earlier observations [58,62,63]. Similarly,
Fig. 2(b) shows a color map of the nonlocal resistance
RNL, (defined as VNL=I) as a function of the displacement
fieldD and total density n. In Fig. 2(c), we plot the line cuts
ofRL (red) and RNL (black) as a function of the total density
atD ¼ −0.4 V=nm. The RNL (black) curve is multiplied by
20 to show it on the same resistance scale axis. To rule out the
origin of the Ohmic contribution due to a classical diffusion
of charge transport, we calculate the Ohmic contribu-
tion using the equation RNL ¼ ðWRL=πLÞ expð−πL=WÞ,
[26,30,31,64,65] with L ¼ 4 μm and W ¼ 1.8 μm. The
measured RNL is 2 orders of magnitude larger than the
theoretically calculated Ohmic contribution, suggesting a
nontrivial origin of the observed RNL.
Motivated by the earlier nonlocal resistance measure-

ments in the graphene=h-BN superlattice and gapped
bilayer graphene devices, we perform a scaling analysis
of RNL against RL. We look for a simple scaling relation
RNL ∝ Rα

L to determine the value of α. We plot lnRNL
versus lnRL in Fig. 2(d) as a function of D for different
values of n from −3.2 to 5.6 × 1014m−2, and in Fig. 2(e) as
a function of n for different values of D from −0.25 to
−0.50 V=nm. The data points for these plots are extracted

FIG. 1. (a) Schematic of the device configuration: Bernal-stacked trilayer graphene (TLG) is encapsulated between two h-BN
substrates and is gated by a graphite back gate (VBG) and a metal top gate (VTG). (b),(c) Band dispersions of Bernal-stacked TLG at zero
and finite (Δ ¼ 200 meV) displacement field, respectively. (d) Rxy response of the device as a function of VTG for several values of the
magnetic field. (e) ðdRxy=dVTGÞ is plotted as a function of VTG and magnetic field. The observation of the crossing points between
the different Landau levels, depicted as discontinuities in the QH plateau structure (blue strips) along the white dashed lines, confirms
the ABA character of the TLG.
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along the vertical dashed black arrows and the horizontal
dashed yellow arrows shown in Figs. 2(a) and 2(b),
respectively. The scaling analysis of both Figs. 2(d) and
2(e) shows that linear fitting of the plot lnRNL versus lnRL
gives a slope equal to one (α ≈ 1).
To further investigate the linear scaling of RNL with RL,

we extract the thermal activation gap by measuring the
temperature dependence of the local and nonlocal resis-
tances. As shown in figure S6 in [43], RNL also follows an
activated behavior at high temperatures similar to the RL.
The temperature dependence of RL in the activation trans-
port regime is proportional to eEg=kBT . If the nonlocal
resistance follows the scaling relation RNL ∝ Rα

L, then its
temperature dependence will be proportional to eαEg=kBT .
As a result, the activation gap extracted from the nonlocal
resistance ðEg;NLÞ should be α times of the gap obtained
from local resistance ðEg;LÞ, i.e., Eg;NL ¼ αEg;L. In
Fig. 2(f), we have plotted the activation gap extracted
from nonlocal resistance against the gap extracted from
local resistance. The filled circles correspond to the gaps
extracted at displacement fields ranging from −0.29 to
−0.50 V=nm. The red line is the linear fit of these data
points with slope ∼1.1, again establishing the scaling

exponent α close to 1. Note that though the scaling analysis
in Fig. 2 is limited (the range of RL) due to the small band
gap opening in ABA TLG [as seen in Fig. 2(f)], further
scaling analysis for various displacement fields, tempera-
tures, and channel lengths, which will be discussed in
the next section, shows that linear scaling is robust for
ABA TLG.
The linear scaling of RNL with RL resembles the edge-

mediated charge transport by the helical edge modes
observed earlier in several two-dimensional electronic
systems [34,35,39–41,66]. Thus, we attribute the linear
scaling of RNL with RL to an edge-mediated charge
transport in TLG. To strengthen the claim of our findings,
we study the effect of the displacement field, temperature,
and separation between the probes as described below.
It can be seen from Fig. 3(a) that only above a critical
jDj≳ 0.2 V=nm the α become close to 1. Figure 3(b)
shows how α varies with T atD ¼ −0.45 V=nm, and it can
be seen that T ≳ 25 K α starts deviating from 1. This is
consistent with the edge-mediated charge transport in ABA
TLG. Above 25 K, which corresponds to an energy scale
similar to the band gap opened in ABA TLG, the bulk states
start contributing to the transport, and α deviates from 1.

FIG. 2. Color map of RL (a) and RNL (b) as a function of total carrier density n and the displacement field D. (c) The line cuts of RL
(red) and RNL (black) are plotted with density at D ¼ −0.4 V=nm. The RNL is multiplied by a factor of 20. The magenta and green
curves (both multiplied by 20) represent the theoretically expected nonlocal contributions from the charge accumulation (near the edge)
and classical Ohmic one, respectively. (d),(e) Log-log plots of RNL with RL. Open circles are extracted from Figs. 2(a) and 2(b) for
different values of n (along vertical black arrows) near the Dirac point, (d) and (e), for different values of D (along horizontal yellow
arrows). The solid lines correspond to the linear fitting of the data points with slope ∼1. (f) The activation gap extracted from RNL is
plotted versus the gap extracted from RL. The red line is the linear fit to these data with slope ∼1.1. Different filled circles correspond to
the gap extracted at D ranging from −0.29 to −0.50 V=nm. Error bars correspond to the standard deviation associated with the slope of
the linear fit.
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Figure 3(c) shows RNL for different L, and it can be seen
from the inset that RNL decreases linearly with L, which is
in accordance with edge-mediated transport as reported for
the quantum spin Hall phase and topological insulators
[34,35,39–42]. Note that similar results (critical D) are
obtained for positive displacement fields. However, due
to the limited range of D on the positive side, as seen in
Fig. 2(b), we have presented the data for negative D. We
have repeated the experiment in different thermal cycles,
which is summarized in Sec. 8 in [43], and it shows similar
results with scaling exponent 1.
To understand edge-mediated nonlocal charge transport,

we now perform theoretical calculations to confirm the
presence of edge states in TLG in the presence of the
desired displacement field. We consider a potential drop of
2Δ between the top and bottom layer of TLG due to
applying the external displacement field. The magnitude Δ
is related to the experimentally applied displacement
field D via the relation 2Δ ¼ −½ðd⊥=ϵTLGÞ ×D�e, where
d⊥ ¼ 0.67 nm is the separation between the top and bottom
layers of TLG, ϵTLG is the dielectric constant of the TLG,
and e is the electronic charge. Considering the electric field,
the Hamiltonian for this system has a form described in
detail in [43]. The presence of Δ opens up a gap in the bulk
dispersion but, more interestingly, also gives rise to six new
Dirac points each around the Dirac points K and K0.
These play a major role in hosting the edge states in this
system.

The Hamiltonian is time-reversal symmetric, implying
that the total Hall conductivity σxy summed over all the
valleys must be zero. But if we look at a particular valley,
the system has a nonzero σVxy. We estimate this quantity by
numerically calculating the valley Chern number using the
method of Fukui et al. [67] in the discretized Brillouin zone
close to a Dirac point (see [43] for details). Although the
total Chern number summed over valleys is zero, the valley
Chern number CV equals 2.5 for all the values ofΔ relevant
to the corresponding experimental values of D. This
implies that there is a nonzero valley Hall conductivity
of σVxy ¼ −2.5ðe2=ℏÞ, which agrees with the theoretically
predicted value in Ref. [24]. The nonzero valley Chern
number suggests that there is a possibility of having edge
modes in the system. However, the edge modes would not
be robust to perturbations since the counterpropagating
modes from K and K0 valley can hybridize.
In TLG, for Δ from 20 meV to 50 meV, we find that for a

zig-zag edge configuration, the edges host gapless modes in
the bulk gap. The method used for determining these edge
modes is given in [43]. Figure 3(d) shows plots for
Δ ¼ 20 meV and Δ ¼ 40 meV with the edge modes in
green (red) for the right (left) edge of the system. Since they
are present in the bulk gap, they participate in transport
along the edges. However, we note that these edge modes
are not protected from backscattering. Hence, there can be
intervalley scattering between the states, and a simple
dissipative model for edge transport can mimic this and
explain the linear scaling between local and nonlocal
resistances as described using a resistor network circuit
model in Ref. [42]. Further, the circuit model (equation S20
of Ref. [42]) as explained in Sec. 4 in [43] captures linear
decay of the nonlocal resistance with the channel length (L)
as seen in our experiment [the inset of Fig. 3(c)]. We would
like to point out that this is unlike the experimental results
for bilayer graphene [42], where the bulk valley Hall effect
dominates and gives a cubic relation between RNL and RL
as reported in Refs. [31 and [42]. From our theoretical
calculation, we also find that for small values of the
displacement field below 20 meV (see Fig. S10 in [43]),
the edge modes are approximately flat and nondispersive,
thus not contributing to the nonlocal charge transport
significantly. This is consistent with the experimental
results, where we find that as a function of the displacement
field, α deviates from one for values of jDj below
0.15 V=nm (Δ < 20 meV) as shown in Fig. 3(b). This is
also consistent with Zibrov et al. [25], where at the similar
displacement field, the Fermi surface undergoes a Lifshitz
transition from one electron pocket to multiple isolated
Dirac cones.
In general, the nonlocal signal can originate from mainly

three different sources: (i) classical contribution, (ii) a
new kind of topological effect—bulk valley Hall effect
[30,31,42], or (iii) edge transport due to either topological
[24,68,69] or nontopological (charge accumulation) [70]

FIG. 3. (a) The scaling exponent α plotted as a function of D at
T ¼ 5.2 K. For jDj < 0.2 V=nm, α deviates significantly from
unity. (b) α plotted as a function of T for D ¼ −0.45 V=nm. For
T ≳ 25 K α starts deviating from unity. (c) RNL is plotted with
density for channel lengths of L ¼ 4 μm (black), 8 μm (blue),
and 12 μm (red). Inset: The peak value of RNL (blue circles)
plotted for different L. The red line is a linear fit. (d) The
dispersion of TLG, along with the zigzag edge, is plotted for
Δ ¼ 20 meV (top) and Δ ¼ 40 meV (bottom). The green (red)
curves correspond to modes on the right (left) edge of the system.
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edge modes. These three mechanisms have also been
highlighted in Refs. [71,72]. Although the nonlocal meas-
urement is not a smoking gun to distinguish its origin,
estimating the nonlocal contributions from the different
sources can help to find its dominant contribution.
As shown in Fig. 2(c) by the green solid line, the classical
Ohmic one is ruled out, and similarly, as mentioned
before, the linear scaling between RNL with RL in specific
parameter spaces of temperature and displacement field,
rule out the bulk valley Hall effect. Now, the question is
whether the observed edge transport in our experiment
originated from a topological or nontopological effect. To
figure it out, we estimate the contribution from the non-
topological charge accumulation effect (Rch) [70], which is
shown by the solid magenta line in Fig. 2(c) (detail in Sec. 7
in [43]), which is one order of magnitude smaller than the
measured nonlocal signal [solid black line in Fig. 2(c)].
Further, the linear decay of RNL with L [Fig. 3(c)] rules
out the charge accumulation contribution, which would
have scaled exponentially with the length [70] (see Sec. 7
in [43]). Thus, the dominant contribution to our nonlocal
signal presumably comes from the dispersive edge modes
of TLG as predicted in Ref. [24] and shown by our
theoretical calculation (beyond a critical displacement
field). Our findings are in sharp contrast to Ref. [70] on
a nonaligned single-layer graphene device, where the
dominant contribution to the nonlocal signal was the charge
accumulation effect [70], and is expected due to the
absence of dispersive edge modes [73].
In conclusion, the consistent linear scaling of nonlocal

resistance across temperature variations, displacement field
changes, and a threefold variation in channel length
corresponds to the dispersive edge mode transport in
correlation with our theoretical calculations.
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