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We experimentally investigate the statistics of zero-height isolines in gravity wave turbulence as physical
candidates for conformal invariant curves. We present direct evidence that they can be described by the
family of conformal invariant curves called stochastic Schramm-Löwner evolution (or SLEκ), with
diffusivity κ ¼ 2.88ð8Þ. A higher nonlinearity in the height fields is shown destroy this symmetry, though
scale invariance is retained.
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Symmetries in physics underpin fundamental laws and
reveal profound connections between seemingly unrelated
phenomena. Scale invariance, for instance, establishes links
between disparate processes, ranging from phase transi-
tions, galaxy clustering, and crack propagation to ava-
lanches in granular media, and social networking. In certain
systems exhibiting critical behavior, conformal invariance
emerges as a broader symmetry in which the properties
remain unaltered under conformal transformations, i.e.,
geometrical transformations that preserve angles and allow
for nonuniform rescaling of distances.
Conformal symmetry plays a central role in understand-

ing critical phenomena, scaling behaviors, and emergent
properties across classical and quantum field theory
domains—from particle physics to condensed matter,
turbulence, and string theory [1,2]. In 2D, conformal
invariance completely determines the scaling exponents
and correlation functions of a wide class of theories at
criticality [3], enabling a thorough classification of univer-
sality classes of critical phenomena.
In recent years, the discovery of Schramm-Löwner

Evolution (SLE) has provided physicists with a powerful
and versatile framework for the statistical characterization
of conformal invariance in physical systems [4–7]. SLE is a
class of non-self-intersecting random planar curves that can
be mapped into a one-dimensional Brownian walk with
diffusivity κ, and thus have conformal invariant statistics.
Moreover, SLEκ gives rise to a natural classification (by the
value of κ) of conformal curves in the plane, such as the
boundaries of clusters in 2D critical processes described by
conformal field theories.
Studies based on the SLE formalism have revealed

surprising connections between diverse branches of phys-
ics. Pioneering research showed, for example, that the
zero-vorticity lines in the inverse cascade of 2D Navier-
Stokes turbulence are conformal invariant and statistically

equivalent to the boundaries of percolation clusters [8,9],
whereas temperature isolines in surface quasigeostrophic
turbulence were found to belong to the same universality
class as domain walls in the O(2) spin model [10].
Conformal invariance was also reported for nodal lines
of random wave functions [11,12], domain walls of spin
glasses [13,14], rocky shorelines [15], isoheight lines on
growing solid surfaces [16,17], avalanche frontiers in
sandpile models [18], a class of active scalar turbulence
[19], isovorticity lines in 3D rotating turbulence [20],
watersheds dividing drainage basins [21], graphene sheets
[22], and critical percolation clusters [23,24].
Turbulence is defined as the state of a physical system

with many interacting degrees of freedom deviated far from
equilibrium. The main fundamental inquiry in turbulence
concerns the degree of universality and the symmetries of
the turbulent state; particularly which symmetries remain
broken and which ones are restored in the developed stage
[25]. In this context, the aforementioned SLE-based studies
demonstrated the emergence of conformal invariance in
various dual cascade turbulent systems, all characterized by
the prevalence of vortices [8,9,19,20]. Since wave turbu-
lence systems are known to exhibit properties similar to
those of their vortex counterparts (such as scale invariance,
universality, and dual cascades), the question naturally
arises: can conformal invariance be observed in wave
turbulence scenarios, i.e., in turbulent systems dominated
by the coupling between random nonlinear waves? This
subject is particularly important for its potential implica-
tions, as wave turbulence is present in a vast range of
physical processes and scales; from the ocean state to
nonlinear optics, from quantum fluids to gravitational
waves [26–29].
In this Letter, we address this question experimentally

for the case of water-wave turbulence, a dual cascade
system [26] theorized to present conformal invariance [3].

PHYSICAL REVIEW LETTERS 132, 094001 (2024)
Editors' Suggestion

0031-9007=24=132(9)=094001(6) 094001-1 © 2024 American Physical Society

https://orcid.org/0000-0003-1864-5408
https://orcid.org/0000-0003-2968-1877
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.132.094001&domain=pdf&date_stamp=2024-02-28
https://doi.org/10.1103/PhysRevLett.132.094001
https://doi.org/10.1103/PhysRevLett.132.094001
https://doi.org/10.1103/PhysRevLett.132.094001
https://doi.org/10.1103/PhysRevLett.132.094001


Our results show that the zero-height isolines of weak
water-wave turbulence are, within experimental uncer-
tainty, compatible with stochastic Schramm-Löwner evo-
lutions, with statistics remarkably close to those of domain
walls in the critical 2D Ising model [30].
In our experiments, water-wave turbulence is generated

by the horizontal motion of two piston-type wave maker
paddles (150 mm in width, 30 mm immersed) within a
ð1000 × 800Þ mm2 open-top PMMA transparent tank
filled with the working fluid up to a rest height of
50 mm. The wave makers are independently controlled
by two linear servomotors, with a positional repeatability of
�0.05 mm and 44 N peak force. Their motion is subjected
to a random forcing (both in amplitude and phase) with a
white frequency spectrum bandpass-filtered in the 0–4 Hz
range, with adjustable maximum amplitude. This forcing
scheme is known to produce cascades of water-wave
turbulence in laboratory experiments [31–34]. In this study,
we investigated the effects of two peak forcing amplitudes:
5 mm (AMP5) and 10 mm (AMP10); the latter representing
a fourfold increase in driving power relative to the former.
We employ diffusive light photography (DLP) to obtain

3D measurements of the topography of the wave field. This
optical technique [35,36] allows us to measure the local free-
surface height hðx; y; tÞ in a region of ð241.5 × 241.5Þ mm2.
The surface dynamics is recordedby a high-speed camerawith
a resolution of ð1024 × 1024Þ px2, at 60 Hz and 1=3000 s
shutter speed (for experimental details, see Supplemental
Material, Sec. I [37], which includes Refs. [38–43]). Each
experimental realization comprises 1700 consecutive frames,
covering a duration of 28.3 s. Throughout our experimental
campaign, each dataset consists in five independent realiza-
tions conducted under identical experimental conditions.
Figure 1 shows an example of free-surface reconstruction

obtained by the DLP technique. Individual isocontours of

zero height, depicted in the figure as black curves over the
z ¼ 0 plane, are derived from the reconstructed fields using
the contour function in MATPLOTLIB [44]. This function
employs a marching squares algorithm and linear interpo-
lation to define the isolines as a series of discrete points in the
ðx; yÞ plane. By construction, each contour line is oriented so
that positive height sites are consistently positioned to its left.
From the complete set of zero-height isolines, candidate

SLE traces are identified as follows. First, for each free-
surface reconstruction, a horizontal line representing a real
x axis in the complex plane is drawn across the height field.
Any contiguous portion of a zero-height isoline that lies
between two successive intersections with the real axis is
considered a candidate trace. This process is repeated for all
four possible orientations of each height map, correspond-
ing to incremental rotations in steps of π=2 radians.
To avoid using time-correlated paths, we only select

candidate traces corresponding to height fields separated by
n frames, using n ¼ 10 and only keeping traces that exceed
lengths of l ¼ 500 points (larger values of both n and l
yield similar results). Following this procedure, we col-
lected a total of 1154 candidate traces for AMP5, with an
average of 1908 points per trace. Similarly, AMP10 yielded
1337 putative traces, each consisting of an average of 1637
points.
Figure 2 shows an example candidate trace belonging to

the AMP5 dataset. An initial observation reveals a rich and
intricate structure, hinting at the existence of underlying
complexity. Moreover, a close-up view on an arbitrarily
chosen part of it (depicted in the upper-left inset) evinces
the persistence of such structures across different scales,
suggesting the presence of self-similarity or fractal-like
characteristics.

FIG. 1. Snapshot of the reconstructed height field hðx; yÞ. As a
visual reference, the position of the free surface at rest (corre-
sponding to z ¼ 0) is represented by a translucent blue plane.
Zero-height isocontours of hðx; yÞ are depicted, onto the free
surface, by solid black lines.

FIG. 2. Example candidate trace and fractal dimension estima-
tion for the AMP5 dataset. A close-up view on the last points of
the trace is presented in the left inset, highlighting the complex
structures present at smaller scales. The right panel shows, for the
AMP5 dataset, the power-law scaling of the (mean) number of
sticks required for traveling the traces as a function of their length
(circles).
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In order to investigate the scaling behavior of the
candidate traces we estimate their fractal dimension by
means of Richardson’s yardstick method [45]. In this
method, a yardstick of length r is considered and the
length of the candidate trace is defined by the number of
straight yardsticks NðrÞ required to go from one extreme to
the other by jumping from one point on the curve to the
next at a distance r. The fractal (or capacity) dimension D0

is defined as the limit D0 ¼ − limr→0þ logNðrÞ= logðrÞ.
Prior to its application to candidate traces, we validated our
implementation of the yardstick algorithm with synthetic
traces [46,47] (for details, see Supplemental Material [37]).
For each candidate trace (indexed by i), NiðrÞ was

computed across a scale range spanning the dataset mini-
mum to maximum point separation. The ensemble average
at a fixed scale, denoted as hNiiðrÞ, is presented in the top-
right panel of Fig. 2 for the AMP5 dataset. A power-law
relation is evident at small r, spanning a decade of scales
within the available range. The best fit to the data (depicted
as a dotted line), results in D0 ¼ 1.43� 0.08. A similar
analysis for the AMP10 dataset yields D0 ¼ 1.35� 0.07
(not shown). These results indicate that candidate traces
exhibit statistical self-similarity across the resolved scales,
providing strong support for scale invariance in our data-
sets; a necessary (though not sufficient) condition for
conformal invariance.
To probe the conformal invariance of these curves, we

consider a self-avoiding curve γðtÞ, parametrized by the
time t, which begins at the origin and extends to∞. At any
time t, the upper half-plane H minus the curve up to that
point, can be mapped back onto H by an analytic function
gtðzÞ, made unique on imposing the asymptotic condition
gtðzÞ ∼ zþ 2t=zþOð1=z2Þ for z → ∞. The growing tip of
the curve is therefore mapped to a point ξðtÞ on the real
axis. The curve γðtÞ and the conformal map gtðzÞ are
completely parametrized by the driving function ξðtÞ, and
satisfy the chordal Löwner equation [48]:

dgt
dt

¼ 2

gtðzÞ − ξðtÞ : ð1Þ

In the case of random curves, Eq. (1) is called Schramm-
Löwner evolution (SLE), and the driving function is a
random variable. Schramm demonstrated that the statistics
of random curves are conformal invariant if and only if the
driving function is a Brownian walk [49], i.e., a random
function with uncorrelated increments and satisfying
σ2ξ ¼ h½ξðtÞ − hξðtÞi�2i ¼ κt. Here, κ is the diffusivity
which allows for the classification of the conformal
invariant random curves into universality classes denoted
by SLEk.
Therefore, in order to test the conformal invariance of the

zero-height isolines, it is necessary to assess whether their
driving functions are statistically a Gaussian process, and
specifically if it corresponds to Brownian motion (termed

direct test). If this were the case, the diffusivity κ should
also be determined.
The first step consists in extracting the driving functions

of our candidate SLE traces by inversion of the Löwner
equation. As Eq. (1) is valid for chordal curves, the traces
given by the set of points fz0; z1;…; zNg are first translated
to the origin and then mapped using a Möbius trans-
formation of the form φðzÞ ¼ zNz=ðzN − zÞ, to ensure that
the curves start at the origin and end at infinity. We verified
that this procedure does not modify our results greatly.
Assuming that the ensemble of zero-height isolines is

statistically equivalent to SLE curves, we derived the
associated driving functions ensemble using the zipper
algorithm with vertical slits [50,51] (chosen among the
many available numerical algorithms [52]). This algorithm
is based on the solution of Eq. (1) for a simple trace made
of an infinitesimal vertical line segment, given by
gξt;δtðzÞ ¼ ξt þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz − ξtÞ2 þ 4δt

p
. This conformal transfor-

mation maps the upper half-plane, excluding the vertical
slit joining the points ξt and ξt þ 2i

ffiffiffiffi
δt

p
, back into the upper

half-plane. The process begins with z0 ¼ ð0; 0Þ, and all
subsequent points except the first one are mapped by
gξt;δtðzÞ, with δt ¼ 1

4
Imðz1Þ2 and ξt ¼ Reðz1Þ. The resulting

set of points is renumbered, resulting in a curve one
element shorter than the original. By repeating this pro-
cedure on the remaining points, the algorithm zips the
entire trace onto the real axis by the composition of
conformal maps. After mapping all points to the real axis,
this results in a sequence of discrete Löwner times tj and
driving values ξtj that approximate the true driving func-
tions. Last, the final Löwner time for all traces is renor-
malized to 1, using the scaling property of SLE [53].
We begin by considering the AMP5 dataset. An ensem-

ble average over the driving functions allows us to observe
a linear growth of the variance σ2ξ ¼ h½ξt − hξti�2i with
Löwner time, as shown in Fig. 3 (circles). To quantify this
observation, we perform a fit of the form σ2ξðtÞ ¼ κtα within
that time range, represented by a solid line in the figure.
Notably, our analysis confirms the initial observation,
yielding a value of α ¼ ð1.00� 0.01Þ, providing strong
support for the linear scaling hypothesis. Moreover, we find
the best estimate for the diffusivity to be κ ¼ ð2.88� 0.08Þ.
The compensated value of the variance, i.e., σ2ξðtÞ=t ∼ κðtÞ,
is shown in the upper-left inset of Fig. 3 in circles, along
with the best estimate from the fit, represented by a solid
line. A plateau that extends throughout the range of Löwner
times is clearly observed.
In contrast, repeating this analysis with the AMP10

dataset yields qualitatively different results. In particular,
for this dataset the variance of the driving functions does
not scale linearly with Löwner time. This is evidenced by
the lack of a plateau in the compensated variance for this
dataset, represented by squares in the top-left inset of
Fig. 3.
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We associate this breakdown of conformal invariance to
an increase in the level of nonlinearity in the interaction
between waves. This becomes apparent when examining
the typical root mean square wave steepness σs, defined as
the standard deviation of the magnitude of the gradient
of h [39]. Remarkably, the AMP10 dataset exhibits a σs
value of 0.21, nearly double that of the AMP5 dataset,
which is characterized by σs ¼ 0.11. The heightened
nonlinearity manifests also in the distribution of wave
height values, with AMP10 displaying a greater departure
from Gaussianity compared to AMP5 (see Supplemental
Material, Sec. II [37]).
We proceed by testing whether ξt is a Gaussian process.

We conducted Kolmogorov-Smirnov tests on the standard-
ized driving ½ξt − hξti�=ðκtÞ2, separately for each (discrete)
Löwner time available within the range where linearity was
established. The results indicate that, at a significance level
of 0.05, the null hypothesis of Gaussianity is not rejected in
any of the individual tests. Upon combining the p values
from these multiple tests using Fisher’s method, the
combined p value of 0.78 does not provide sufficient
evidence to reject the null hypothesis. This suggests that the
driving process ξt appears consistent with a Gaussian
distribution. Correspondingly, the probability density func-
tion (PDF) of the standardized driving collapses onto a
standard Gaussian distribution, as illustrated in the lower-
right inset of Fig. 3 for three Löwner times.
For conformal invariant traces, the fractal dimension and

the diffusivity of the associated SLEk process are related by
D0 ¼ minf2; 1þ κ=8g [54]. As we have independently
determined both D0 and κ for the zero-height isolines, this
theoretical prediction serves as a consistency check for our

findings. Remarkably, the fractal dimension derived from
that expression using κ ¼ 2.88ð8Þ yields a value of

DðκÞ
0 ¼ ð1.36� 0.01Þ, in agreement with the one previ-

ously obtained.
We finally consider the left passage probability (LPP).

This property quantifies the probability PκðϕÞ of a chordal
SLEκ trace passing to the left of a given point Reiϕ in H,
where R and ϕ are the distance and the angle between the
origin and the point. Because of scale invariance, PκðϕÞ is
independent of R, and SLE theory [49] predicts that

PκðϕÞ¼
1

2
þ Γð4κÞffiffiffi

π
p

Γð8−κ
2κ Þ2

F1

�
1

2
;
4

κ
;
3

2
;−cot2ϕ

�
cotðϕÞ; ð2Þ

where 2F1 and Γ represent the Gauss hypergeometric and
Gamma functions, respectively. For this test, the traces are
regenerated from their individual driving functions with the
ensemble mean hξti substracted. The LPP is calculated as
the (normalized) number of curves passing to the left of a
point in the upper half-plane. Figure 4 presents the results
for PðϕÞ for traces in the AMP5 dataset. To assess its
independence from radial distance, we systematically
computed the LPP for different radii, three of which are
shown in the figure. Those specific radii, chosen to
illustrate the typical behavior observed for the LPP,
correspond on average to Löwner times located at the
initial, intermediate and final stages of the linear scaling
regime shown in Fig. 3. The analytical prediction P2.88ðϕÞ
from Eq. (2) with κ ¼ 2.88 is depicted by a solid line, while
dashed lines represent �10% of this value. The inset
displays the residuals PðϕÞ − P2.88ðϕÞ for the radii consid-
ered in the main figure. Our results for the LPP exhibit good
agreement with the theoretical prediction for κ ¼ 2.88.

FIG. 3. Statistics of the ensemble of driving functions. Main
frame: linear behavior of σ2ξðtÞ for traces in the AMP5 dataset, with
a slope of κ ¼ 2.88ð8Þ. Upper-left inset: diffusivity κ, in circles and
squares for the AMP5 and AMP10 datasets, respectively. Lower-
right inset: PDF of the rescaled driving functions for curves in the
AMP5 dataset, at three different times: t ¼ 0.0015 (inverted
triangles), 0.045 (triangles), and 0.09 (diamonds); the solid line
represents a standard Gaussian distribution.

FIG. 4. Left passage probability PðϕÞ for the zero-height
isolines of wave turbulence, for different radii within the variance
linear regime. The solid line corresponds to the theoretical
prediction for κ ¼ 2.88, the diffusivity value obtained by the
direct test; dashed lines represent the edges of 10% envelopes
around that value. The corresponding residuals PðϕÞ − P2.88ðϕÞ,
are shown in the inset.

PHYSICAL REVIEW LETTERS 132, 094001 (2024)

094001-4



In summary, we presented an experimental study that
shows compatibility between SLEs and zero-height isolines
of water-wave turbulence. This argument is supported by
four mutually independent standardized tests performed on
our data, namely: linearity of the variance with Löwner
time (direct SLE test), Gaussianity assessment through
Kolmogorov-Smirnov testing, fractal dimension of the
traces, and left passage probability. Within the AMP5
dataset, all tests are in agreement with SLE predictions,
and lead to numerically consistent results for the diffusivity.
In particular, our results yield κ ¼ 2.88ð8Þ, a value close to
that of domain walls in the critical 2D Ising model, with
κ ¼ 3 [30]. Although this cannot be interpreted as proof,
the extension of theoretical prediction [3] with our exper-
imental findings constitutes a robust indication for con-
formal invariance in the weakly coupled limit. In contrast,
the AMP10 dataset, characterized by higher forcing, larger
deviations from Gaussianity in the distribution of wave
height, and heightened nonlinearity (as evidenced by its
wave steepness), does not demonstrate compatibility with
the SLE family (yet retains scale invariance).
The observation that the zero-height isolines are con-

formal invariant places the study of water-wave turbulence
within the theory of critical phenomena, and suggests that
at least part of its statistics could be described in terms of a
conformal field theory. Finally, our results naturally bring
forward the question as to whether other systems exhibiting
wave turbulence may also present conformal invariance as
a restored symmetry, and if so, to what universality classes
would they belong. This can open a new approach to the
general study of the broad class of nonlinearly interacting
systems described by wave turbulence.
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