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Photonic Which-Path Entangler Based on Longitudinal Cavity-Qubit Coupling
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We show that a modulated longitudinal cavity-qubit coupling can be used to control the path taken by
a multiphoton coherent-state wave packet conditioned on the state of a qubit, resulting in a qubit—which-
path (QWP) entangled state. QWP states can generate long-range multipartite entanglement using
strategies for interfacing discrete- and continuous-variable degrees of freedom. Using the approach
presented here, entanglement can be distributed in a quantum network without the need for single-photon

sources or detectors.
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Fault-tolerant quantum computing will require redun-
dancy to identify and correct errors during a computation.
In most architectures, the physical qubits will therefore
vastly outnumber the logical qubits. The need to scale up
existing architectures has motivated a network approach
where remote qubits, grouped into nodes, are connected by
quantum-photonic interconnects [1-5]. These quantum
networks naturally require entanglement distribution across
nodes. Consequently, significant effort has gone towards
generating both heralded [6—12] and deterministic [13-20]
qubit-photon entanglement.

In this Letter, we present a photonic which-path entangler
that correlates the path of an incoming multiphoton coherent-
state wave packet with the state of a cavity-coupled control
qubit (Fig. 1). The resulting which-path degree of free-
dom, consisting of a coherent-state wave packet traveling
in one of two transmission lines, can be reencoded in
the photon-number parity of a continuous-variable degree
of freedom, then used to generate entanglement with
one or more distant qubits. The entangler presented here
therefore provides a natural interface between discrete- and
continuous-variable approaches to hybrid quantum com-
putation [21-26]. The qubit-which-path (QWP) state gen-
erated by the entangler also has greater potential sensitivity
for phase measurements than either the comparable entan-
gled coherent state (ECS) [27,28] (consisting of a super-
position of coherent states, one in each interferometer arm)
or NOON state [29-31] (an analogous superposition of
N-photon Fock states). Quantum-enhanced interferometry
has applications in, e.g., biological imaging [32-34] and
gravitational wave detection [35-38].

A key requirement for the entangler is a modulated
longitudinal (qubit-eigenstate preserving) cavity-qubit cou-
pling. Longitudinal coupling has attracted significant theo-
retical and experimental attention in recent years, as it is
currently being realized and leveraged in a number of pro-
mising quantum-computing architectures [39-49]. Though
many current implementations of, e.g., cavity-coupled spin,
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charge, and superconducting qubits make use of the
(transverse) Rabi coupling, longitudinal cavity-qubit cou-
plings are no less fundamental. They can be engineered
for single-electron-spin qubits in double quantum dots
(DQDs), which can be coupled to cavity electric fields via
magnetic-field gradients [42], as well as for hole-spin
qubits in semiconductors [47,49,50], which interact with
electric fields via their large intrinsic spin-orbit coupling.
Two-electron-spin singlet-triplet qubits in DQDs can be
longitudinally coupled to electric fields by modulating a
gate voltage controlling the strength of the exchange
interaction [45,48]. Longitudinal coupling can also be
engineered in various superconducting-qubit architec-
tures [39-41,43,44]. Moreover, even in systems where
the dominant source of cavity-qubit coupling is intrinsi-
cally transverse, an effectively longitudinal interaction
can be engineered (in some rotating frame) by modulating
the coupling strength at both the cavity and qubit
frequencies [46], making the theory presented here widely
applicable.

Model.—A longitudinal cavity-qubit interaction arises,
e.g., from the dc Stark shift due to electric dipole coupling
(x Ey for a cavity electric field E polarized along ).

FIG. 1. In the presence of a longitudinal cavity-qubit coupling
modulated at the cavity frequency with envelope §,(7), an
incoming coherent state with waveform u(z) is reflected (trans-
mitted) into a coherent state with waveform v,(¢) [v,(f)] for
control-qubit state |1) (|0)). This effect requires symmetric decay
rates k; = k, = k/2 for cavity ports i = 1, 2.
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Quantizing the cavity field (focusing on a single cavity
mode of frequency @, and annihilation operator a),
and in adiabatic perturbation theory, we find an interaction
proportional to the product of E « i(a’ — a) and the dipole
matrix element (s(¢)|y|s(7)) taken with respect to the
instantaneous qubit energy eigenstate |s(z)) (s=0, 1) [51].
This gives an effective Hamiltonian Hg (1) = >, ig,(?)
(a" —a)l|s)(s|, where |s) is a time-independent state in
the adiabatic frame, and where g (7) = g,[{x;(?)}]
(s(7)]y|s(¢)) inherits time dependence from a collection
of control parameters {x;} that determine |s(7)). For spin
qubits, the spin-dependent electric dipole matrix elements
[and consequently g¢,(7)] can be modulated through ex-
ternal electric fields or gate voltages [42,47,49]. An ana-
logous mechanism exists for flux-tunable supercon-
ducting transmon qubits, in which the couplings g,(7)
can instead be tuned by modulating a flux [41]. In what
follows, we assume a time-independent value gy(f) = gy
and a sinusoidal modulation of g¢;(7) at the cavity
frequency, ¢,(1) = g, + 2|3,(¢)| cos [w.t — I(¢)], where
g1(t) = ®D|g,(£)| is a slowly varying envelope with
31(0) 20 and duration 7. (See the Supplemental Material,
Ref. [51], for a sufficient condition on the parameters {x;}
in general, as well as specific conditions to achieve this
coupling modulation for double-quantum-dot charge and
spin qubits.) A polaron transformation can then be used to
eliminate the term o g, by incorporating a small shift
~G/w,. in the qubit frequency w4 Going to an inter-
action picture with respect to the decoupled Hamiltonian
wea'a+ w4o,/2 (o, =|0)(0] —[1)(1]), and within a rotat-
ing-wave approximation requiring that |g,], |7, (#)| < @,
the cavity-qubit Hamiltonian is then given by [51]

£(1)

Ho(1) = ==o. +il)(1[[g:(1)a" =Hel, (1)

where we have introduced a stochastic noise parameter
£(r) leading to qubit dephasing. In general, the dipole
approximation also produces a transverse Rabi term
lig,o.(a’ —a)], which, in the regime |g,| <5 (6=
Wy — @), leads to a dispersive coupling yo.a'a, where
x = g% /5. Any effects due to transverse coupling can be
suppressed by operating in the regime |g, | < |4|.

The longitudinal interaction « g, (¢) displaces the cavity
vacuum into a finite-amplitude coherent state for s = 1. A
similar effect is studied in Ref. [41] to design a fast
quantum nondemolition (QND) qubit readout. Relative
to Ref. [41], we additionally consider driving of the cavity
by an input field. In particular, we assume that the cavity is
coupled to external transmission lines at input (i = 1)
and output (i = 2) ports (Fig. 1). An input spatiotemporal
mode (wave packet) with normalized waveform u(r)
[ [ dt|u(z)]> = 1] can be represented by the mode operator
b, = [dtu*(t)ry,(t) [63,64], where ry,,(t) satisfies the

input-output relation 7oy ;(f) = rin; () + \/Ka(t) [65].
Here, 7,y ;(?) is the output field, and ; is the rate of decay
from cavity port i. We assume that the quantum state of the
incoming wave packet is a coherent state with initial
amplitude (b,) = ap, giving (ry 1), = u(t)ag. Where it
appears, the notation (), indicates an average with respect
to the initial state p(0): (O), = Tr{O(t)p(0)} for operator
O. The reflected and transmitted waveforms are given in
the frequency domain by v;(w) = R(w)u(w) and v, (@) =
T(w)u(w), respectively, where R(®) = (Tou1)w/{Tin1)e
and T(a)> = <rout.2>w/<rin,1>w = \/K_2<a>a)/a0u(w) are
the reflection and transmission coefficients with (O),, =
[ dt e (O),.

To derive the transmission 7'(w) conditioned on the qubit
state |s), we now find (a), from the quantum Langevin
equation for {(a),,

K

(@), = =5 (@), + (s - VRiau(.  (2)

The displacement of the cavity vacuum due to the inter-
action o §;(¢) can therefore be canceled exactly, condi-
tioned on the qubit being in state |1), by ensuring that
VKiagu(t) = g (t). Destructive interference then precludes
a transfer of photons to the output transmission line,
leading to perfect reflection of the input field. Evidence
of such destructive interference was recently observed
experimentally in Ref. [66], where a modulated longi-
tudinal coupling and a cavity drive were both generated
with a common voltage source (acting as a common phase
reference). Because the input state is a coherent state [and
coherent states are eigenstates of ry, ()], there are no
quantum fluctuations about the average dynamics
(Fin.1); = aou(t). For a nonideal input, however, fluctua-
tions about the average (o — ay + éa) lead to imperfect
cancellation for s = 1.

For a cavity that is initially empty, we have (a), = 0.
Integrating the quantum Langevin equation [Eq. (2)] with
this initial condition gives

(@) = xe(@)[G1(@)s = V/kiapu(w)], 3)

where y. (@) = (k/2 — iw)~". For \/kjapu(w) = §(w), the
transmission can then be written as

B KK

() = (1-5) Y25, @)
The input pulse u(w) has support for @ < 1/7 localized
about the cavity frequency (corresponding to @ = 0 in the
rotating frame). Near-perfect transmission can then be
achieved for s = 0 and x; = k, = /2 by operating in the
regime of large k7, where y.(w) is much broader in frequ-
ency than u(w). Finite-bandwidth effects for a Gaussian
input waveform u(f) may be neglected provided [51]
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= |ap|? < (k7)*. Given T(w) for a fixed value of s, R(w)
is related to T(w) through the input-output rela-
tion, /i [R(w) — 1] = /&, T(w).

An alternative way to condition the cavity transmission on
the state of a qubit would be to engineer a qubit-state-
dependent shift of the cavity frequency using dispersive
coupling yo.a’a, where 2|y| > k. A narrow-band input
tone at frequency y would then be transmitted conditioned
on state |0) and reflected for state |1). However, in
the dispersive regime (¢ = |g, /5| < 1), this necessarily
requires (very) strong coupling |g, | > «/e. The entangler
presented here, by contrast, can be operated even if |§;| < k.
Dipole-induced transparency [67] and reflection [68] also
result in perfect steady-state transmission or reflection of a
weak input pulse conditional on the presence of a resonant,
transversally coupled dipole. These effects are not, however,
QND in the state of the decoupled dipole and furthermore
require that the cavity be driven with an average of N,, < 1
intracavity photon [69]. For the entangler presented here, by
contrast, the transmission vs reflection of a transient pulse is
QND; it is conditioned on the decoupled qubit state |s).
Moreover, the entangler works in the regime N~
N/(kz) > 1, provided the finite-bandwidth condition is
satisfied [N < (x7)* for a Gaussian waveform].

The qubit-state-conditioned transmission [Eq. (4)] can be
used to generate entangled states. To describe the states
associated with the reflected and transmitted fields, we use
the virtual-cavity formalism of Refs. [63,64] to recast the
input, reflected, and transmitted wave packets as the fields
emitted from—or absorbed into—fictitious (virtual) single-
sided cavities coupled to the transmission lines via time-
dependent couplings. This formalism allows for an efficient
description of the scattering of an input pulse into prespe-
cified spatiotemporal modes, which can be modeled as the
modes of virtual cavities. Accounting for the input pulse,
cavity field, reflected pulse, and transmitted pulse, the
evolution of the cavity and transmission lines is then fully
described by an effective four-mode model. The quantum
master equation governing this evolution is [63,64]

pe = —i[Hy(t) + V(t), pe] + ZD[LJP& (5)

where p; is the density matrix conditioned on a realization of
the noise £(¢), and where

V(t) = [\/_ﬂ*(taua—i—z\/_/l (na'a,

i=12
+ 25(1) Ay, (t)aba,, — H.c.]. (6)
InEq. (5), D[L]p = LpL" — 1 {L'L, p} is a damping super-

operator. The operators L; = 3, , 4,(t)a, + \/kja and
L, = A, (t)a,, + \/k;a model decay from the virtual cavity

modes a,, as well as decay out of the cavity mode a with
rate Kk = Ky + K. The couplings to the virtual cavities are
given by Au(t) = u(t)/([& df |u(?)|*)V/? and A, (1) =
(=) (0)/ (f¢ at'|vi(t )\ )12 [63,64,70]. The i-dependent
sign in /lv,_ reflects the fact that in our model, a transmitted
pulse undergoes a z phase shift [cf Eq. (4)]. The couplings
A,(t) and 4, (t) have singularities at # — co and 7 =0,
respectively, and, for real cavities, both 1,(f) and 4, (1)
would have to be truncated to finite values to realize
absorption (emission) into (out of) a chosen spatiotemporal
mode [70]. In the virtual-cavity formalism, however, these
unphysical couplings are abstractions used to calculate the
dynamics into (or out of) of a chosen mode. No additional
(real) cavities or time-dependent couplings are required to
realize the entangler.

We assume a fast z/2 pulse can be used to prepare the
qubit in the (¢ = 0) initial state |+) = (|1) + |0))/+/2, with
the cavity in the vacuum state ((a), = 0). A coherent-state
wave packet then evolves from the input mode a,, to the two
output modes a,, (i = 1, 2). For times 7 > 7 exceeding the
duration of the input pulse, the quantum states associated
with the reflected and transmitted waveforms v;(), con-
ditioned on s, will have been fully transferred into
their respective fictitious cavities: a;; = lim,_ . (a,,), =
(=1)'ay [(dw/2x)|v;(w)|>. The joint state of the qubit
and transmission lines, found from a direct integration of
Eq. (5), is then p(t) = {p(1))), where ()) denotes an
average over realizations of £(t), and where pg(t) =
W) (¥ | with

1
We) = ﬁ(ez £(1) ) + o720 D). (7)
Here, 0:(r) = [1dr'&() is a random phase, |p,) =

[Ii=12 Di(ais)|vac) is the state of the transmission lines

conditioned on s, |vac) is the vacuum, and D;(a) =

exp{aay, —H.c.} is a displacement operator. For k; =
ky =k/2 and up to corrections in N/(kz)* < 1, only
one of a;, is nonzero for each value of s: For s = 1, a;; =
ey} and Ay = O, while for s = O, x| = 0 and ) = —Q.
Equation (7) therefore describes a photonic which-path
qubit entangled with the control qubit (a QWP state). Under
the same finite-bandwidth conditions, imperfections in the
input source such that @y — ay + da will lead instead to
ay = ay, ay = —=da, ajy=0, and ay = —(ag + da).
This follows from integrating the Langevin equation
[Eq. (2)] with oy — ay + da and solving for the reflected
and transmitted fields. If we take da to be a complex-
valued, zero-mean Gaussian random variable, then the
fidelity of the ideal QWP state [Eq. (7) with £ = 0] with
respect to the mixed state obtained by averaging over da is
e~{1%a")5 where here, ()5, describes an average over da.
High-fidelity QWP states therefore require a stable
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FIG. 2. An interferometry setup can be used to entangle the
which-path degree of freedom with a target qubit initialized in
|+) via a conditional phase shift: Z|+) = |—). This can be
accomplished by reencoding the which-path degree of freedom in
the photon-number parity of a cat state (composed of a super-
position of two distinct coherent states occupying the spatio-
temporal mode annihilated by a ) propagating to the right of the
50:50 beam splitter. The symbol labeled M represents a
measurement of the quadrature Q, which can be used to prepare
an m-qubit GHZ state (or Bell state for m = 2) involving the
control qubit and (m — 1) target qubits. Photon loss occurring
with probability p is modeled with fictitious beam splitters
having reflectivity p.

coherent-state source with a low absolute noise level, below
one photon per pulse ({|5a|*)s, < 1).

Entanglement distribution.—The which-path degree of
freedom can be entangled with a second (“target”) qubit for
long-range entanglement distribution. Crucially, this also
provides a direct avenue for quantifying entanglement in
QWP states through measurements of stationary qubits
only. The setup is illustrated schematically in Fig. 2. By
interfering the reflected and transmitted fields at a 50:50
beam splitter, the output modes can be mapped to new
modes a. such that (a, ) = (a;, + ay,)/+/2. This gives

{a_,) = a independent of s, where a = ay/+/2. The a,
mode, by contrast, has s dependence given by
(a, ) = (25 — 1)a. The beam splitter consequently reenc-
odes the which-path degree of freedom in the phase of the
coherent-state amplitude: (a, ;) = +a and (a, o) = —a.
For clarity, we now set £(¢) =0 for the purpose of
explaining the protocol. The effects of dephasing [£(¢) # 0]
are included in the relevant result, Eq. (8), below. Since the
a_ mode does not share entanglement with either the qubit
or a, mode, it can be measured (traced over) without
disturbing the state of the qubit and a, mode. The

postmeasurement state is then (1/2)>, . /N |4, C)),

where |C.) = (| + a) £ | — a))/\/N 1 are cat states (con-
sisting of only even or odd photon-number states) and N
are normalization factors. With the target qubit initialized in
|+), the control and target qubits can be entangled through
a phase flip on the target, |+-) — |—), conditioned on an odd

photon-number parity [51,71-74]. Following such a
phase flip, the state of the qubits and electric field is
(1/2) 34— VN2, 2,C)). In the limit (@] —a) = 0, a
final quadrature measurement of the electric field can then
be used to project the qubits into the Bell state

(| ++) %] =-))/v2, conditioned on outcome |+ a).
Multiqubit Greenberger-Horne-Zeilinger (GHZ) states
|+, +,---,+) £ |-, —,---,—) can also be generated by
allowing the field to interact sequentially with a series of
potentially distant qubits. In contrast to the well-established
single-photon pitch-and-catch approach to long-range
entanglement distribution, involving the emission and
destructive reabsorption of a single photon [13-19], the
approach presented here is QND in the photon number and
therefore provides a clear path towards the generation of
multipartite entangled states.

We can quantify the effects of photon loss on the amount
of distributed entanglement by inserting a fictitious beam
splitter, described by the unitary B.. . (¢) = /*(¢ ¢ +He) [28],
into each arm of the interferometer (Fig. 2). With ¢ = a,,
this describes scattering from @, into loss mode a), (in the

environment) with probability p = cos?¢. Tracing over the
loss modes a;, , then yields a reduced density matrix for
the state of the qubit and modes a,, ,. In the presence of such
loss, and for finite coherent-state overlap (a| — a) # 0, the
postmeasurement state of the qubits is not an ideal Bell state,
but is instead mixed: For a measurement of the electric field
along the quadrature Q of coherent-state displacement [75],
the postmeasurement state of the qubits (conditioned on an
inferred displacement along +Q) is an X state [76] whose
concurrence C [77-79] can easily be computed [51]:

C(t) = max{0, erf(\/lvn)e‘Nv"ff(’) - erfc(\/]—\’;)}, (8)

where N, = pN = plag|* and N, = 5(1 — p)N are con-
trolled by the average number of photons lost and detected,
respectively. Here, € (0, 1] is the detector efficiency, and

dw4sin (%)
xe(t) = [

S(w) 9)
results from an average (()) over realizations of the noise
(1), here taken to be stationary, zero-mean Gaussian noise
with spectral density S(w) = [dte ™' (&(1)£(0)). The
concurrence [Eq. (8)] quantifies the amount of entanglement
that can be distributed to a second qubit in the presence of
(symmetric) photon loss in the interferometer, qubit dephas-
ing, and imperfect assignment fidelity at the final measure-
ment of the electric field. In particular, the expression for
C(t) indicates that for fixed values of p and 7, there is an
optimal N that maximizes the entanglement [S51]. In the
presence of asymmetric losses with probabilities p; and p,,
Eq. (8) with p = max{p,, p,} provides a lower bound on
the achievable concurrence.
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The requirement +/k/2aou(t) = g;(t) limits the
average number of photons in the input coherent state.
For a Gaussian u(t), N = |ao|*> = 2/7(3"™)?z/k, where
g7 = max, |g; (7)|. Together with the bandwidth require-
ment N < (k7)*, this implies that N < Ny, = (7% 7)%/3.
A larger 7 therefore increases N,,. However, the pulse
duration is also subject to the requirement = < 77, where T
is the dephasing time of the qubit [defined by y:(7%) = 1].
For example, if ¢ /27 =1 MHz and 7 =1 ps, then
Nmax = 19. For g, /x = 1/8 (weak coupling), we then have
N ~3, close to the value that maximizes the two-qubit
concurrence (C ~0.95) for p = 0.01 [51]. This scenario
may be realistic for, e.g., an electron-spin qubit in a silicon
DQD with a magnetic field gradient. The longitudinal
coupling for this case can be comparable to the transverse
coupling ~1-10 MHz [42]. Dephasing times for electron-
spin qubits in 2%Si quantum dots reach T ~ 100 ps > 7 [80].
The same values of N and N, could also be realized for
flux-tunable transmons, with a longitudinal coupling
~10 MHz [41] and pulse duration 7~ 100 ns < T (for
transmons, coherence times reach 7% ~ 100 ps [81]).

Precision metrology.—The entangler described above can
also be used to perform quantum-enhanced precision mea-
surements of a phase ¢ acquired by the field reflected from
the cavity as it propagates along arm 1 of an interferometer
(Fig. 2). The fundamental precision bound for estimation of
¢ (the quantum Cramér-Rao bound [82,83]) is better for
QWP states than for either NOON states (superpositions
of N-photon Fock states, one in each interferometer arm) or
entangled coherent states [27] (similarly, superpositions
of coherent states) having the same average number N of
photons [84].

Outlook.—The entangler presented here could also be
used to perform measurements of the phase acquired by the
control qubit. Specifically, a modulated longitudinal cou-
pling, followed by a rapid reset [85-88] |0) — |1), can be
used to map the relative phase |0) + ¢|1) of the initial
qubit state onto the state | — a) + e?|a) of the a, mode. A
projective measurement of |C..) then yields a single bit of
information about @ (the maximum achievable for a single-
shot qubit readout). This may be useful in situations where
6 encodes information about dynamics induced by a
classical or quantum environment [89,90].
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