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We introduce a general framework of phase reduction theory for quantum nonlinear oscillators. By
employing the quantum trajectory theory, we define the limit-cycle trajectory and the phase according to a
stochastic Schrödinger equation. Because a perturbation is represented by unitary transformation in
quantum dynamics, we calculate phase response curves with respect to generators of a Lie algebra. Our
method shows that the continuous measurement yields phase clusters and alters the phase response curves.
The observable clusters capture the phase dynamics of individual quantum oscillators, unlike indirect
indicators obtained from density operators. Furthermore, our method can be applied to finite-level systems
that lack classical counterparts.
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Introduction.—The last decade has witnessed a remark-
able shift in the interest in synchronization, extending
from classical dynamics to the quantum regime [1–4].
Numerous studies have been reported on the synchroniza-
tion of nonlinear oscillators that show quantum effects,
such as spins [5,6], optomechanical systems [7,8],
cold atoms [9,10], quantum heat engines [11–14], and
(discrete or continuous) time crystals [15–17]. In fact,
synchronization in quantum systems is critical for consid-
erable advances in future quantum technologies, including
quantum communication and cryptography [18,19]. For
example, recent studies have shown that quantum synchro-
nization helps addressing important security issues in
quantum key distribution protocols [20]. Therefore, explor-
ing synchronization in the quantum regime holds great
technological promise. In this direction, theoretical models
of limit cycles (i.e., self-sustained oscillators adaptable to
weak perturbations) have been proposed in open quantum
systems, such as quantum van der Pol oscillators [21–25]
and spin oscillators [26]. Furthermore, several experimental
reports have demonstrated quantum synchronization of
limit cycles in laboratory settings [6,17,27,28].
Against this background, we propose a quantum phase-

reduction theory for continuous measurement to describe
quantum limit cycles in phase dynamics. The phase
reduction theory [29,30] reduces the multidimensional
dynamics of a weakly perturbed limit cycle to one-
dimensional phase dynamics. By continuously monitoring
the environment to which oscillatory systems are coupled,
quantum trajectories of the system come to obey a
stochastic Schrödinger equation (SSE) [31–33]. When
the effect of quantum noise is sufficiently weak, these
trajectories fluctuate around a deterministic trajectory.
However, since a perturbation in quantum limit-cycle
dynamics differs from that in classical dynamics and is

represented by a unitary transformation, we calculate the
phase response to a perturbation within the Lie-algebraic
framework. Thus, we can derive a quantum phase equation
from a Lindblad equation that describes a weakly perturbed
dissipative system. Note that the proposed approach repro-
duces the conventional phase-reduction theory in the
classical limit. Using quantum van der Pol oscillators,
we show the proposal approach recovers the definitions of
the limit-cycle trajectory, the phase, the perturbation,
and the phase response curve (PRC) of the conventional
phase-reduction theory. Whereas Ref. [34] relies on the
semiclassical approximation, we develop a fully quantum
phase-reduction approach. Thus, our approach captures
the dynamics of quantum oscillators, even in the deep
quantum regime and physically corresponds to the con-
tinuous measurement scheme. Moreover, it is applicable to
quantum oscillators that lack classical counterparts, such as
qubits and spins. In the quantum regime, the trajectories
of quantum states are obtained by continuous measure-
ments, where the measurement itself affect the dynamics.
Our approach captures this measurement backaction and
reveals that the measurement yields phase clusters and
alters the PRC in the quantum regime, through simulations
of quantum van der Pol oscillators. The resulting clusters
visualize phase dynamics unique to individual quantum
oscillators and cannot be captured by the indirect indicators
obtained from density operators.
Derivation.—In open quantum dynamics, quantum limit-

cycle oscillators are usually described by a Lindblad
equation [35,36]. Let ρðtÞ be a density operator at time t
whose time evolution is governed by

dρ
dt

¼ −i½H; ρ� þ
XM
k¼1

D½Lk�ρ; ð1Þ
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where H is a Hamiltonian operator and Lk are jump
operators, and D½O� is the dissipator defined by
D½O�ρ≡OρO† − ð1=2ÞðO†Oρþ ρO†OÞ. To obtain a gen-
eral phase-reduction approach that can be applied to
quantum limit cycle models, we do not specify the jump
operators Lk. Note that a Lindblad equation describes a
density operator, not the dynamics of the measurable
quantum state. The latter are described using quantum
trajectory theory [37], which describes the stochastic
evolution of a pure state of the system jψi, obtained by
continuously monitoring the environment. In the homo-
dyne detection scheme, the continuous measurement can
be experimentally implemented mainly by one of two
approaches: detection of homodyne currents by physical
detectors [32] and continuous application of weak Gaussian
measurements [38]. In fact, quantum trajectories have been
observed with various physical platforms, such as super-
conducting devices [39–41], trapped ions [42], and
mechanical resonators [43,44]. In the homodyne detection
scheme, the evolution can be described by the following
diffusive SSE in the Stratonovich form [31–33,45].

djψi ¼
�
−iHeff þ

XM
k¼1

1

2
hL†

kLki þ hXki
�
Lk −

hXki
2

�

þ 1

4

�
−2L2

k þ hL2
ki þ hL†2

k i�
�
jψidt

þ
XM
k¼1

�
Lk −

hXki
2

�
jψi ∘ dWkðtÞ; ð2Þ

where ∘ denotes the Stratonovich calculus, Heff ≡H −
ði=2ÞPM

k¼1 L
†
kLk is a non-Hermitian operator (i.e., an

effective Hamiltonian), and Xk ≡ Lk þ L†
k are quadratures

of the system. Here, hOi denotes the expectation value
of O with respect to state jψi, i.e., hOi≡ hψ jOjψi.
Random variables dWk are Wiener increments that satisfy
E½dWk� ¼ 0, and E½dW2

k� ¼ dt, where E½·� denotes the
average over all possible trajectories. The homodyne
currents Jk are defined as JkðtÞ≡ hXki þ ξkðtÞ, where
ξkðtÞ≡ dWk=dt. In general, a limit-cycle trajectory in
quantum dynamics and the phase along it is not well
defined. In the classical stochastic dynamics of limit
cycles, a stochastic differential equation is represented
by adding noise terms to a given deterministic differential
equation [48–51]. In contrast, quantum dynamics are
stochastic in nature and the deterministic equation is not
given. To realize a quantum phase reduction, the deter-
ministic limit cycle and the phase along it should be
defined. The classical deterministic limit-cycle dynamics
corresponds to an equation obtained by removing noise
terms from a stochastic differential equation in the
Stratonovich form. As an analog of classical cases, we
propose here to remove noise terms from an SSE in the
Stratonovich form and define the resulting equation as the

deterministic limit-cycle dynamics:

djψi ¼
�
−iHeff þ

XM
k¼1

1

2
hL†

kLki þ hXki
�
Lk −

hXki
2

�

þ 1

4

�
−2L2

k þ hL2
ki þ hL†2

k i�
�
jψidt: ð3Þ

An SSE is usually represented and calculated in the Ito
form for computational and statistical convenience. It is
worth emphasizing that noise terms should be removed
from an SSE in the Stratonovich interpretation, rather than
in the Ito interpretation for the following reasons. The first
is related to the chain rule of differentiation calculation. In
fact, the phase reduction requires a coordinate transforma-
tion between a state vector and a phase coordinate. The
transformation is performed via the chain rule of differ-
entiation, which holds only in the Stratonovich form (not
in the Ito form). The second reason is related to norm
preservation. To ensure that the limit cycles represent
physically observable trajectories of pure states, it is
essential to satisfy norm preservation. Note that the norm
of Eq. (3) is preserved, dkψk ¼ 0, where kψk≡ ffiffiffiffiffiffiffiffiffiffiffiffihψ jψip

.
Therefore, Eq. (3) stands on its own as pure-state dynamics,
which is not the case for the Ito interpretation. Even
when considering an arbitrary stochastic calculus, the
norm preservation is satisfied only in the Stratonovich
calculus [45]. It is a nontrivial property that an SSE with
noise terms removed also stands as pure-state dynamics
because, unlike the case for classical dynamics, the
deterministic dynamics Eq. (3) is not given.
When Eq. (3) satisfies limt→∞jhψðtÞjψðtþ TÞij ¼ 1 for

a period T, jψi has a limit-cycle solution jψ0i to which jψi
converges. Since Uð1Þ has no physical effect on the state
jψi [52], the Uð1Þ transformation has no effect on the
phase. We define the phase on a quantum limit cycle
using the deterministic trajectory jψ0i. There are several
schemes for the phase reduction in classical stochastic
systems [49,50,53]. For simplicity, we derive the phase
equation by following the procedure in [49]. The phase θ is
defined along the limit-cycle solution jψ0i using Eq. (3) as
to change at a constant frequency ω ¼ 2π=T. Furthermore,
by virtue of the convergence to the limit-cycle solution
jψ0i, the phase θ outside of it is defined by an isochron
under Eq. (3) as ΘðjψðtÞiÞ≡ Θðlimn→∞jψðtþ nTÞiÞ,
where the phase function ΘðjψiÞ represents the phase at
the state jψi. Here, we assume that the perturbation is
sufficiently weak, i.e., the state jψi is in the vicinity of the
limit-cycle solution jψ0i.
It should be mentioned that our definition of the PRC

differs from that of the classical counterpart. While the state
is defined in the Euclidean space for the classical limit
cycle, the unitary group in the Hilbert space defines the
state of a quantum limit cycle. Therefore, the corresponding
bases are the generators of the unitary group UðNÞ [54].
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They can be decomposed into the generators of Uð1Þ and
those of the special unitary group SUðNÞ. Uð1Þ represents
the scalar multiplication, while SUðNÞ is a unitary group
with a determinant det½U� ¼ 1. For example, the generators
of SUð2Þ correspond to Pauli matrices. By the definition of
the phase, Uð1Þ has no effect on it. Thus, only SUðNÞ
should be considered for the phase dynamics. In quantum
limit cycles, the perturbation is represented by an infini-
tesimal unitary transformation and the PRC is calculated
for it. Based on a Lie algebra, an arbitrary infinitesimal
unitary transformation is represented by the Taylor ex-
pansion as Ujψi ¼ exp

�P
N2−1
l¼1 −iglEl − ig0I

�jψi ≃ jψi−P
N2−1
l¼1 iglEljψi − ig0jψi, where El are generators of

SUðNÞ, I is the identity matrix, and real coefficients gl
satisfy jglj ≪ 1. The PRCs for the generators El are
represented as

ZlðθÞ≡ lim
gl→0

Θ½expð−iglElÞjψ0ðθÞi� − Θ½jψ0ðθÞi�
gl

; ð4Þ

where jψ0ðθÞi represents the state jψi on the limit-cycle
solution jψ0i with phase θ. Equation (4) describes the
partial derivative with respect to a unitary transformation by
generator El. This formulation defines the quantum PRC.
For the case of high-dimensional systems, e.g., semi-
classical systems, PRCs with respect to N2 − 1 generators
of a Lie algebra demand large computational resource.
In such a case, we can calculate PRC either by a direct
method with respect to an arbitrary Hamiltonian or an
adjoint method in the Euclidean space [45]. While the SSE
[Eq. (2)] and Eq. (3) are described as non-Hermitian
dynamics, owing to their nonlinearity, they can also be
represented as Hermitian dynamics [45]. Thus, the sto-
chastic terms in an SSE can be represented by traceless
Hermitian operators as djψi¼−i

P
M
k¼1Hkjψi ∘ dWk [45],

where traceless Hermitian operators Hk are defined by

Hk ≡ iðLk − hLkiÞjψihψ j þ H:c: ð5Þ

Because of the trace-orthogonal property of the Lie algebra,
traceless Hermitian operators Hk can be decomposed
into a linear combination of SUðNÞ generators as Hk ¼P

N2−1
l¼1 gk;lEl, where the coefficients gk;l are defined by

gk;l ≡ Tr½HkEl�. Therefore, the following quantum phase
equation is derived from the chain rule

dθ
dt

¼ ωþ
XM
k¼1

XN2−1

l¼1

ZlðθÞgk;lðθÞ ∘ ξkðtÞ; ð6Þ

where gk;lðθÞ is evaluated at jψi ¼ jψ0ðθÞi on the limit
cycle. The phase equation (6) in the Stratonovich form can
be converted into an equivalent equation in the Ito form [55]

dθ
dt

¼ ωþ 1

2

XM
k¼1

dYkðθÞ
dθ

YkðθÞ þ
XM
k¼1

YkðθÞξkðtÞ; ð7Þ

where YkðθÞ ¼
P

N2−1
l¼1 ZlðθÞgk;lðθÞ. As long as the quantum

dynamics is represented by the SSE [Eq. (2)], arbitrary weak
perturbations can be considered in our framework [45]. In
the following, we shall elaborate on the difference between
our approach and that in Ref. [34], which is the extant
phase-reduction approach for quantum systems. In a semi-
classical approximation, Ref. [34] reduces quantum
dynamics to a classical one based on a quasiprobability
distribution [32,56], and applies the conventional phase-
reduction theory to it. In contrast, based on a Lie algebra,
our approach proposes the original framework of phase
reduction theory directly applicable to the pure state jψi of
quantum limit cycles. To explain the difference in detail, we
examine the quantum van der Pol oscillator defined by

dρ
dt

¼ −i½H; ρ� þ γ1gD½a†�ρþ γ1dD½a�ρþ γ2dD½a2�ρ; ð8Þ

where H ¼ a†a is the Hamiltonian and a and a† are
annihilation and creation operators, respectively. The quan-
tum van der Pol model describes the limit-cycle dynamics
at a quantum scale. In quantum systems, the measurement
outcomes are stochastic in nature. Thus, the position x¼
ð1= ffiffiffi

2
p Þðaþ a†Þ and the momentum p ¼ −ði= ffiffiffi

2
p Þða − a†Þ

are evaluated through their expectation values as hxiρ and
hpiρ, respectively, where hOiρ ≡ Tr½Oρ�. In the classical
limit, ha†aiρ ≫ 1 (i.e., the system is at a macroscopic
scale), Eq. (8) gives the equation as follows:

dα
dt

¼ −iαþ ϵ

2
α − γ2djαj2α; ð9Þ

where α≡ ðhxiρ þ ihpiρÞ=
ffiffiffi
2

p
and ϵ≡ γ1g − γ1d corre-

sponds to the difference between one-particle gain and loss
rates. Differentiating the real part of Eq. (9) with respect
to time and substituting the imaginary part of Eq. (9) into it,
the classical van der Pol model is recovered up to Oðϵ2Þ as
hẍiρþhxiρ ¼ ϵ

	
1− ðhxi2ρþhẋi2ρÞ=A2

c


hẋiρþOðϵ2Þ, where
Ac ≡

ffiffiffiffiffiffiffiffiffiffiffi
ϵ=γ2d

p
[25]. For the semiclassical approximation,

the previous work in [34] can be applied only to systems
near the classical limit γ1g ≫ γ2d. In contrast, our approach
can be applied to an arbitrary regime, including the deep
quantum regime γ2d ≫ γ1g. Similarly, our approach differs
from Ref. [57], which is a feedback control scheme to
enhance synchronization by applying the semiclassical
phase reduction to a homodyne detection scheme.
Thus far, we have been concerned with regimes ranging

from the semiclassical to the quantum regime. Historically,
the phase reduction theory was demonstrated in the context
of classical deterministic dynamics. In the following,

PHYSICAL REVIEW LETTERS 132, 093602 (2024)

093602-3



we show that our approach reduces to the conventional
phase-reduction theory in the classical limit. In the classical
limit, the state jψi is considered coherent and satisfies
ajψi ¼ αjψi, a†jψi ¼ α�jψi þ jxi, and jαj ≫ 1, where
jxi≡ a†jψi − α�jψi. Substituting these conditions into
Eq. (2), we obtain

dα
dt

¼
h
−iαþ ϵ

2
α − γ2djαj2α

i
þ ffiffiffiffiffiffi

γ1g
p ∘ ξðtÞ: ð10Þ

In Eq. (10), the deterministic term, which equals Eq. (9), is
Oðjαj2αÞ whereas the stochastic term isOð1Þ. Hence, in the
classical limit, the dynamics can be considered as deter-
ministic and its limit cycle is equivalent to the classical one.
In the classical limit, the proposed and semiclassical
methods give the same limit cycle not only for quantum
van der Pol but also in general cases [45]. Moreover, this
equivalence applies also to the perturbation and phase
response. In the conventional method, the perturbation is
represented by basis vector dx in the Euclidean space. It can
be reproduced by the momentum operator p in the Hilbert
space as follows: By the unitary perturbation djψi=dt ¼
−ipjψi, the derivative of the expectation value of the
position is unity, i.e., dhxi=dt ¼ −ih½x; p�i ¼ 1. The same
argument holds for dp. Because the same perturbation can
be reproduced, the PRC in the conventional method can
also be replicated similarly in the classical limit. The
conventional PRC is defined as ZclðθÞ≡ fΘ½αðθÞ þ dx�−
Θ½αðθÞ�g=dx, and it can be reconstructed by the unitary
transformation as ZðθÞ ¼ limh→0fΘ½expð−ihpÞjψ0ðθÞi�−
Θ½jψ0ðθÞi�g=h.

Example.—As an example, we consider the quantum van
der Pol oscillators [Eq. (8)] in a rotating frame [22], where
H ¼ −Δa†aþ iΩða† − aÞ þ iη½a2 expð−iλÞ − a†2 expðiλÞ�
is the Hamiltonian, Δ ¼ ωd − ω0 is the detuning between
the system’s natural frequency ω0 and a harmonic drive
frequency ωd,Ω is the strength of the harmonic drive, and η
and λ are the strength and phase of squeezing, respectively.
In a rotating frame, the system rotates with a harmonic
drive frequency ωd. First, we numerically validate the
accuracy of the approximation by comparing the derived
phase equation to the semiclassical phase equation.
Figure 1 shows the Wigner function in the steady state
and the limit-cycle trajectory of each phase-reduction
method in the quantum regime. We calculate the recon-
structed density operator ρre ≡ R

dθPðθÞjψ0ðθÞihψ0ðθÞj,
where PðθÞ is a probability density function of the phase
θ, for each phase-reduction method. Furthermore, we
compare their fidelity level to those of the true density
operator [34]. Our method provides a better approximation
than the semiclassical method (see the caption of Fig. 1 for
details), because it reduces a pure state to the phase without
the semiclassical approximation. Note that we cannot
calculate fidelity for the semiclassical method in Fig. 1(b)
because diffusion matrices of a semiclassical Langevin
equation are not positive-semidefinite in some points.
Next, we investigate the effect of the measurement

and the harmonic drive on quantum synchronization in

FIG. 1. Wigner function and limit-cycle trajectories of quantum
and semiclassical phase-reduction approaches in the two-
parameter settings quantum regime, (a) ðΔ;Ω; ηeiλ; γ1g; γ1dÞ=
γ2d ¼ ð1; 0; 0; 0.1; 0Þ and (b) ðΔ;Ω; ηeiλ; γ1g; γ1dÞ=γ2d ¼ ð1; 0;
−0.2; 0.1; 0Þ. Color intensity is proportional to the quasiprob-
ability of the Wigner function. The limit-cycle trajectory of the
quantum phase reduction (red line) passes through the high
quasiprobability region of the Wigner function, while that of the
semiclassical phase reduction (green line) does not. The fidelity
Fðρ1; ρ2Þ≡ Tr½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ1
p

ρ2
ffiffiffiffiffi
ρ1

pp �2 between the true density operator
and those reconstructed from the phase distribution are (a) 0.958,
(b) 0.979 in our method, and (a) 0.812 in the semiclassical
method.

(a) (b)

(c) (d)

FIG. 2. Phase distribution PðθÞ in steady state and PRC ZðθÞ.
(a), (b), and (c) Phase distribution (a) in the quantum regime,
(b) in the deep quantum regime, and (c) subjected to harmonic
drive as weak perturbation. (d) PRCs with respect to harmonic
drive. The gray histograms are computed from SSE simulations
and the red lines are computed from simulations of the proposed
phase equation for (a), (b), and (c). The solid blue line is obtained
from the proposed method and the dashed green line is obtained
from the semiclassical method for (d). The strength of the
weak perturbation is Ωp ¼ 0.05 for (c). The parameters are
ðΔ;Ω; ηeiλ; γ1g; γ1dÞ=γ2d ¼ ð1; 0; 0; 0.5; 0Þ for (a), (c), and (d),
ðΔ;Ω; ηeiλ; γ1g; γ1dÞ=γ2d ¼ ð1; 0; 0; 0.1; 0Þ for (b).
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the quantum regime. In contrast to classical dynamics, the
measurement affects the system’s trajectory in the quantum
regime. For brevity of expression, we here approximate the
quantum van der Pol oscillator by limiting the bosonic Fock
state to the lowest N levels [24]. In Fig. 2, N ¼ 6 for (a),
(c), and (d), and N ¼ 4 for (b). In the quantum regime, the
proposed method yields a good approximation, as shown in
Fig. 2(a). Although clusters diminish for the deep quantum
regime in Fig. 2(b), in both cases, the measurement
generates the clusters in the rotating frame in Figs. 2(a)
and 2(b). Furthermore, as a weak perturbation Hamiltonian
Hp ¼ iΩpða† − aÞ, a harmonic drive is added to the
Hamiltonian H and enhances synchronization in Fig. 2(c),
where Ωp is the strength of the weak perturbation. In
Fig. 2(d), the PRC of the proposed method appears distorted
due to the measurement, unlike that of the semiclassical
method, which exhibits a sinusoidal wave pattern. Moreover,
in the quantum regime, the limit cycle shrinks due to the
classical approximation, resulting in larger amplitude for the
PRC in the semiclassical method. Some indicators have been
proposed as signatures of quantum synchronization, such
as mutual information [59], quantum discord [60,61], and
entanglement [62]. The observable clusters describe the
synchronization dynamics of individual oscillators under
the measurement backaction, unlike the indirect indicators
obtained from a density operator.
Additionally, we demonstrate the applicability of our

method to finite-level systems. Qubits and spins hold a
central place in the field of quantum synchronization;
however, they lack classical limit-cycle counterparts. We
apply the proposed method to two-level systems [58],
spin-1 oscillators [26] at finite temperature, and spin-3=2
oscillators, and derive the phase equations [45]. Figure 3
displays the quasiprobability distributions for each model
and the expected values of observables evaluated on the
limit cycles. As shown in Figs. 3(a) and 3(b), the trajecto-
ries for the qubit and spin-1 pass through regions of high
probability. Since we plot expectation values, as shown in
Fig. 3(c), the trajectories for spin-3=2 pass between two
regions of high probability. Yet, the Wigner distribution

is reconstructed from the phase distribution with fidelity
F ¼ 0.998 in Fig. 3(d).
Conclusion.—In this Letter, we proposed a quantum

phase-reduction formulation of a Lindblad equation in a
continuous measurement scheme. We consider the case of
synchronization among multiple quantum oscillators with
the proposed method in [63].
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