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We demonstrate the simultaneous estimation of signal frequency and amplitude by a single quantum
sensor in a single experimental shot. Sweeping the qubit splitting linearly across a span of frequencies
induces a nonadiabatic Landau-Zener transition as the qubit crosses resonance. The signal frequency
determines the time of the transition, and the amplitude its extent. Continuous weak measurement of this
unitary evolution informs a parameter estimator retrieving precision measurements of frequency and
amplitude. Implemented on radio-frequency-dressed ultracold atoms read out by a Faraday spin-light
interface, we sense a magnetic signal with estimated sensitivities to amplitude of 11 pT=

ffiffiffiffiffiffi
Hz

p
, frequency

0.026 Hz=Hz3=2, and phase 0.084 rad=
ffiffiffiffiffiffi
Hz

p
, in a single 300 ms sweep from 7 to 13 kHz. The protocol

realizes a swept-sine quantum spectrum analyzer, potentially sensing hundreds or thousands of channels
with a single quantum sensor.

DOI: 10.1103/PhysRevLett.132.093401

The quest for ever more sensitive measurements, espe-
cially of signals emanating from micro- and nanoscale
sources, leads inexorably to quantum sensors free from
thermal noise and calibration drift [1]. Instruments that
measure directly in the frequency domain—spectrum,
signal, or wave analyzers—have been central to advances
in physics, engineering [2] and speech science [3] amongst
many other fields, for over a century [4,5]. A quantum
spectrum analyzer is a quantum sensor measuring directly
in the frequency domain, indicating both the amplitude and
frequency of harmonic components within a frequency
span. To date this has been realized by either incoherent
noise spectroscopy [6] or coherent filter banks, where each
measurement senses a distinct, fixed frequency. Continuous
arrays of qubits formed by large ensembles in magnetic
bias gradients have demonstrated multigigahertz spans but
with intrinsic and inhomogeneous broadening limiting
resolution to order 1 MHz [7,8]. Discrete arrays of qubits
have the potential to achieve higher spectral resolution and
sensitivity in reduced volume by using dynamical decou-
pling to render each qubit sensitive to a single frequency
[9–18], harmonics series [19–22], or frequency band [23],
and insensitive elsewhere. Analyzing a wide span at high
resolution is a formidable scaling challenge for this
approach, requiring many qubits with long coherence
times, individually addressed for quantum control, and
individually read out. To date such discrete filter banks
have sensed four distinct frequencies [24]. In this Letter, we
present an alternative approach to quantum spectrum
analysis, with a spectral resolution equivalent to a filter
bank with sixty channels, realized in a single-shot meas-
urement of a single sensor under homogeneous control.

Instead of parallelizing across many qubits each sensing
at a fixed frequency, we subject a single sensor comprising
many atoms to time-dependent but spatially homogeneous
control. We continuously sweep the sensing frequency of
this single long-decoherence-time sensor across the span,
while making a continuous weak measurement [25] of its
unitary evolution. An unknown oscillating magnetic field
within the frequency span induces a Landau-Zener tran-
sition between the diabatic eigenstates. Continuous meas-
urement reveals the resonance time and hence signal
frequency, while the deviation from the initial state encodes
interaction strength and hence signal amplitude. Landau-
Zener transitions are widely used in quantum control to
generate rotations insensitive to shifts in resonance [26].
Here we show that Landau-Zener transitions open a new
perspective on quantum measurement.
Our sensing qubit consists of Zeeman states dressed by

resonant radio frequency radiation. The dressed state
splitting is simply the Rabi frequency of this drive, and
we realize the Landau-Zener spectrum analyzer by linearly
increasing the drive amplitude over time. Dressed states
have two important advantages for time-dependent sensing.
First, dressing realizes continuous dynamical decoupling
[10,11,15,16] from magnetic noise outside the span,
including static detuning error and low-frequency technical
noise. Second, the on-going Rabi flopping orthogonal to
the Larmor precession enables a single-axis weak meas-
urement to perform continuous state tomography [27] on
the evolving dressed qubit.
The protocol can be understood by considering a spin-1

2

system with laboratory frame Hamiltonian Ĥ0ðtÞ ¼
−ℏωLσ̂z=2 þ ℏΩcðtÞ cosðωctÞσ̂x þ ℏΩs cosðωst þ ϕsÞσ̂z,
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comprising constant Zeeman splitting ωL, time-dependent
control by resonant drive at radio frequency ωc with swept
amplitude ΩcðtÞ, and a weak test signal parameterized by
amplitude Ωs, oscillation frequency ωs and phase ϕs.
We increase the control amplitude at constant sweep rate
λ, realizing the continuously varying Rabi frequency
ΩcðtÞ ¼ Ωi þ λt.
Transforming into the first rotating frame by Ĥ1I ¼

Ŝ†1Ĥ0ðtÞŜ1 − iℏŜ†1
ˆ̇S1 where Ŝ1 ¼ expðiωcσ̂zt=2Þ, and

applying the rotating wave approximation (RWA) yields
Ĥ1 ¼ ðℏ=2Þ½Δcσ̂z þ 2Ωs cosðωstþ ϕsÞσ̂z þ ΩcðtÞσ̂x�. For
convenience only, we now form Ĥ1R by rotating Ĥ1

through −π=2 around ŷ so that, in the absence of both
control errors (Δc ¼ 0) and signal (Ωs ¼ 0), the eigenstates
are of σ̂z, and are split by ΩcðtÞ: this is our swept
sensing qubit.
If we suppose for a moment that the signal frequency

ωs is known, we may transform to a second frame
corotating at ωs and make a second RWA yielding Ĥ2 ¼
ðℏ=2Þ½ðΩi þ λt − ωsÞσ̂z þ Ωs cosðϕsÞσ̂x − Ωs sinðϕsÞσ̂y�.
This is the canonical Landau-Zener Hamiltonian, merely
with a delayed resonance time tres ¼ ðωs −ΩiÞ=λ, i.e.,
ΩcðtresÞ ¼ ωs. A signal of amplitudeΩs induces an avoided
crossing in the instantaneous eigenstates of Ĥ2, as seen in
Fig. 1(a). A sweep that commences from a dressed
eigenstate remains exponentially close to it until just prior
to tres. For a weak signal, and hence a small gap, the
crossing is nonadiabatic and a partial transition to
the other diabatic eigenstate occurs, manifest as a change
in the longitudinal spin projection F1R

z [Fig. 1(b), blue].
Henceforth we denote the time-dependent expectation
value of spin projection on axis i by FP

i ¼ FP
i ðtÞ ¼

hψPðtÞjF̂ijψPðtÞi, where jψPðtÞi¼cþðtÞjþPiþc−ðtÞj−Pi
and j�Pi are the frame-P eigenstates. F̂i are the atomic
hyperfine spin-1 operators, and as described below, at all
times Fi ¼ 2hσ̂ii. Under a nonadiabatic transition through
the avoided crossing, a clear amplitude drop in the oscillating
transverse projectionF1R

y is evident in Fig. 1(c). Minimizing
total residual kF1R

z;measðtÞ − F1R
z ðt;ωs;Ωs;ϕsÞk2 between the

continuously measured spin projection and the Bloch equa-
tions solution yields signal parameters ωs; Ωs, and ϕs
retrieved simultaneously from a single evolution. Probing
the Landau-Zener transition structure in thismanner subverts
the conventional assumption in quantum sensing that the
resonant frequency ωs must be known a priori, or carefully
determined, for sensitive measurement of amplitude.
We realize the protocol on ultracold rubidium-87 atoms in

theF ¼ 1 hyperfine ground state. The ensemble of 1.8 × 106

atoms at 1.0 μK is approximately spherical with diameter
70 μm, held in a crossed optical dipole trap. A static ẑ bias
field yields Zeeman splitting byωL ¼ 2π × 603.5 kHz, with
all atoms initially in theF ¼ 1; mF ¼ −1 state.We cancel the
quadratic Zeeman shift of 53.5 Hz to well below 1 Hz with
the ac Zeeman shift of a microwave field detuned from the

clock transition by 387 kHz, so that the Zeeman triplet is
symmetrically split. The atomic density is sufficiently low
that spin-mixing dynamics do not affect the transverse spin
magnitude [28] appreciably during the sweep. With dephas-
ing and interaction effects nulled, spin projections follow
single-atomspin-1

2
dynamics for at least 1 s [25].A resonant rf

field (Δc ≈ 0) along x̂ creates dressed states j�1i split by
ΩcðtÞ tunable from 4 kHz to 50 kHz. At low amplitudes,
detuning errorsΔcðtÞ generate increasingly large fluctuations
in the splitting while at high amplitudes, Bloch-Siegert shifts
require compensation. We add a test signal with weak
amplitude Ωs at frequency ωs to our bias along ẑ. This is
the sinusoidal signal we will attempt to measure.
We record a time series of the transverse spin projection

with a minimally destructive Faraday spin-light interface,
tuned to the magic-zero wavelength of 790.03 nm and with
photodetected power of 6 mW spatially mode-matched to
the atoms [25]. Digitized at 5 MSa=s, the spin projection is
measured at the photon standard quantum limit (SQL).
Over the 300 ms measurement time, scattering of probe
photons depletes the atom number by ∼20% and to account
for this, we estimate the instantaneous total spin by a
Hilbert transform method in a passband centered on ωL.
Normalized by this amplitude, the Faraday measurement is
proportional to the transverse spin projection per atom.
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FIG. 1. Nonadiabatic sensing: under a sweep of sensing
frequency ΩcðtÞ the location of, and gap between, adiabatic
eigenstates j�2;Ωsi in an avoided crossing (a) reveal frequency
ωs and amplitudeΩs, respectively, of a sinusoidal signal coupling
the bare states j�2; 0i. Evolving spin projections [simulated,
longitudinal (b), and transverse (c)] in the diabatic basis also
encode signal parameters, but now as transition time, oscillations,
and asymptotic value, which all depend (b) on the initial state.
Transverse spin projection, shown as a spectrogram (c) for an initial
superposition, oscillates at ΩcðtÞ except near resonance where an
avoided crossing emerges.A successful estimator robustly decodes
signal parameters from measured spin projections.
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This laboratory-framemeasurement alternately probes the
two transverse spin projectionsF1

x andF1
y of the first rotating

frame as they precess past the laser propagation axis. The
Faraday measurement, along an axis making angle ϕc with
the x̂ axis, is a quadrature-amplitude modulated signal
F0
c¼F1

x cosðωctþϕcÞþF1
y sinðωctþϕcÞ, with carrier fre-

quency ωc and in-phase and quadrature amplitudes F1
x and

F1
y, respectively. Numerical demodulation with complex

local oscillator exp½iðωctþ ϕcÞ� parallels the shift to the
first interaction picture, where the resulting frame-1 meas-
urement is a complex baseband signal proportional to
F1
x þ iF1

y. In the sensing qubit frame 1R, this is
F1R
z þ iF1R

y : a continuous measurement of both the longi-
tudinal, and one transverse, spin component of the evolving
dressed state. See Supplemental Materials Sec. II for further
processing detail [29].
Much of the subtlety of quantum metrology lies in how

we infer the measurand from the quantum measurement
record. While inferring a Rabi frequency from measure-
ments of Rabi flopping is routine, we now face the much
more challenging inverse problem of inferring the Rabi
frequency and radiation frequency of the weak signal from
the Landau-Zener evolution of the spin. An ungainly
analytic solution exists in terms of sums of products of
parabolic cylinder functions [48], however, their Stokes
structure appears to impede regression, and no analytic
solution is known for multifrequency signals.
Our solution was to retrieve signal parameters Ωs, ωs,

and ϕs by parameter estimation on the underlying system of
coupled ordinary differential equations. Such parameter
estimation is well established for time-independent
Hamiltonians [49], however, for time-dependent evolution
prior demonstrations employed repeated evolutions with
varying time-independent control [50], varying initial state
[51], or dependence on preceding measurements [52].
Seeking a retrieval from a single unitary evolution, we
regressed the numerical solution of the time-dependent
Bloch equations to the data. We repeatedly solve the Bloch

equations ⃗Ḟ
1R ¼ F⃗1R × Ω⃗1R, where F⃗1R ¼ F1R

x x̂þ F1R
y ŷþ

F1R
z ẑ is the Bloch vector and Ω⃗1R ¼ 2Ωs cosðωstþ ϕsÞx̂þ

ΩcðtÞẑ the Rabi vector, varying the signal parameters and
computing the cost function as the l2-norm of the residual
between F1R

z predicted by the Bloch solver [53], and the
data. Working in frame-1R admits direct extension to
retrieving multiple sinusoids, but the cost function is highly
oscillatory and finding the global minimum is challenging,
even with only three parameters [54]. Solving the Bloch
equations is exactly equivalent to solving the time-dependent
Schrödinger equation for Ĥ1RðtÞ, but is faster and obviates
calculating expectation values.
While the retrieval uses only longitudinal spin data,

successful estimation of parameters should result in the
model agreeing with data in all three spin projections.
Seeking to remove inessential dynamics independently

of any particular solution, we transform to a spin-
rotating frame-2S that corotates at the swept control
Rabi frequency ΩcðtÞ via Ŝ2S ¼ expði R t

0 ΩcðτÞdτσ̂z=2Þ ¼
exp½ðiΩit=2þ iλt2=4Þσ̂z�, as in Majorana’s celebra-
ted solution [58,59]. Without making a RWA, the
Hamiltonian becomes Ĥ2S ¼ ℏΩs cosðωstþϕsÞ½cosðΩitþ
λt2=2Þσ̂x− sinðΩitþ λt2=2Þσ̂y�, which interestingly is
multiplicative with the signal and a prospect for deve-
lopment of the inverse problem. After making the RWA,
only low-frequency dynamics remain, and the trajecto-
ries take a compact and elegant form related to the
Cornu spiral [60], unwinding towards resonance and
curling again beyond [61].
We generate projections in this frame through further

demodulation of the transverse spin projection F1R
y with the

swept complex carrier exp½iðΩi þ λt=2Þtþ iϕ2SðtÞ�, yield-
ing F2S

y and −F2S
x as the real and imaginary components.

These transverse frame-2S projections prove useful for
improving retrieval precision via analysis of the spin
azimuthal phase ϕ2SðtÞ ¼ atan2ðF2S

y ; F2S
x Þ, with residual

slow winding of ϕ2S attributable to small errors in ΩcðtÞ.
By fitting a smooth spline to the spin azimuth we can
correct slow drifts in the Rabi control frequency, while
leaving intact the small but rapid change in phase near
resonance. While the optimizer considers only the longi-
tudinal spin projection, these corrections enter the Bloch
equations through ΩcðtÞ, improving both the accuracy of
the solution and its presentation in frame-2S. As Ŝ2S
commutes with σ̂z, the longitudinal spin projection is
unchanged: F2S

z ¼ F1R
z . This yields all three projections

in this frame and so represents continuous state tomogra-
phy of the time-evolving system by double demodulation.
In this context, subsequent parameter retrieval under our
protocol represents sensing by process tomography of an
ineluctably time-dependent quantum process. We now
present a signal retrieval and its visualization on the Bloch
sphere in frame-2S.
The sensor is initialized in a superposition of dressed

eigenstates ðjþ1Ri þ j−1RiÞ=
ffiffiffi
2

p
, equivalent to the lab-

frame eigenstate jþ0i. Rabi coupling is introduced,
immediately commencing an upward sweep in amplitude
from Ωc ¼ 2π × 7 kHz to 13 kHz over 300 ms. In the
absence of a test signal, the adiabatic theorem indicates the
amplitudes of the dressed states remain unchanged even as
their splitting steadily increases. We introduce a weak test
signal at ωs ¼ 2π × 10 kHz, which drives a Landau-Zener
transition evident in Fig. 2(a) (colored trace). Optimization
in frame-1R converges after order 104 iterations [Fig. 2(a),
black trace], yielding a multiparameter estimate of Bs ¼
Ωs=γ ¼ 3.34ð2Þ nT for signal amplitude and ωs ¼ 2π ×
10.004 34ð16Þ kHz for signal frequency. In fact, the dig-
itally synthesized sweep proceeds in steps of 3 Hz, likely
accounting for much of the frequency estimate residual (see
Supplemental Material, Sec. I [29]).
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Figure 2 shows data (c) and model (d) as trajectories on
the Bloch sphere in frame-2S, with the common color code
denoting time. With only longitudinal data used in param-
eter estimation, strong correlation between data and esti-
mated solution of not only the longitudinal projection but of
the full state evolution instills confidence parameter esti-
mation has succeeded. A calibration shot with constant
requested Ωc ¼ 2π × 10 kHz yielded an unswept Rabi
parameter estimate [64] of Bs ¼ 3.272ð9Þ nT, covarying
significantly with the control error in Ωc the estimate of
which varies by order Ωs between calibration shots. This
inadvertently revealed an inherent advantage in swept
multiparameter estimation: while the resonance crossing
may be shifted by such detuning error, the amplitude
estimate remains almost entirely unaffected, making the
swept sensor considerably more robust.
As with the Rabi protocol, the initial state determines

whether the Landau-Zener protocol is sensitive to phase.
Measurements beginning with an initial superposition
depend on the phase difference at resonance crossing. It is
well known that such phase-sensitivemeasurements have the
highest possible (linear) sensitivity to radiation in quadrature
[17], while being completely insensitive to radiation in phase
with the qubit. In contrast, the Rabi protocol beginning in an
eigenstate is phase insensitive, measuring purely amplitude,
but at the price of being only quadratically sensitive to it.
Our measurement presented in Fig. 2 commenced with

a superposition and thus should be phase sensitive.

The retrieved signal phase ϕs ¼ 3.93ð14Þ rad was, how-
ever, not repeatable which we attribute to the residual error
in Ωc—even after the spline interpolation correction—
integrated up over the 2π × 3000 radian sweep prior to
resonance. Repeatable amplitude retrieval despite this
demonstrates a fundamental advantage of the Landau-
Zener sensor: even for a signal exactly in phase at
resonance, where a Rabi measurement would have zero
sensitivity, the Landau-Zener time series shows a character-
istic transient providing frequency and amplitude informa-
tion. Further, this suggests that amplitude and phase can be
separately and unambiguously measured with linear sensi-
tivity in a single initialization. We have also performed
phase-insensitive retrieval of signal parameters commenc-
ing in a dressed eigenstate, retrieving frequency and
amplitude without including a phase parameter.
Our retrieval variances correspond to amplitude sensitivity

of 11 pT=
ffiffiffiffiffiffi
Hz

p
, frequency sensitivity of 0.026 Hz=Hz3=2,

and phase sensitivity of 0.084 rad=
ffiffiffiffiffiffi
Hz

p
. In general, the

sensitivities appear to be nonlinear functions of sweep rate λ,
sweep time, initial state, Faraday probe SNR, and each other.
Some insight follows from considering

ffiffiffi
λ

p
, a critical

frequency in swept-sine spectrum analyzers: in classical
analyzers it defines the minimum undistorted resolution
bandwidth (RBW) and hence spectral resolution [2]. In
the quantum analyzer,

ffiffiffi
λ

p
is the adiabaticity threshold for

amplitude: for weak signals Ωs <
ffiffiffi
λ

p
, the transition full-

width approaches
ffiffiffiffiffiffiffiffi
λ=π

p
rather than Ωs [59,65]. In this limit

(c) (d)

(a) (b)

FIG. 2. Fitting a quantum process model to a continuous measurement of unitary evolution estimates frequency and amplitude in a
single shot. Time series for (a) longitudinal spin projection and (b) equatorial spin angle show the continuous measurement (color) and
the model (black) retrieving precision parameter estimates of Bs ¼ 3.34ð2Þ nT, ωs ¼ 2π × 10.004 34ð16Þ kHz and ϕs ¼ 3.93ð14Þ rad.
Evolution as Bloch sphere trajectories for smoothed data (c) and model (d) in frame-2S, with the same color mapping for time [63].
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the quantum analyzer should equal the frequency resolution
of its classical counterpart. Our sweeps of 6 kHz=300 ms are
equivalent to RBW ð ffiffiffiffiffiffiffiffi

λ=π
p Þ=2 ¼ 100 Hz, and so resolve 60

channels across the span. On average 6 × 103 atoms scatter
probe photons during the 5 ms channel transit [25], giving a
prospective atomSQLof 0.99 pT=

ffiffiffiffiffiffi
Hz

p
. Furthermore, under

unitary evolution all time points after the transition are
affected, implying a lower detection limit than this simple
transit-time model predicts.
A single-spin nanoscale analyzer [17] using Qdyne

methods to retrieve single-tone signal parameters in a
1.5 MHz band around a fixed 1.51 GHz resonance was
74 dB less sensitive than our swept resonance analyzer,
which uses 63 dB more spins. Frequency and phase
sensitivities were almost identical. Sweeping the resonance
not only covers octaves of bandwidth but also obviates the
dynamic range constraints of Rabi aliasing.
Finally, we have not considered the quantum backaction

of the continuous measurement. Simultaneous Faraday
measurements of two spin quadratures furnished by
Larmor precession yield planar spin squeezed states
[66], and it is plausible that analogous nondemolition
backaction may enhance dressed-state spectral sensing.
The linearly swept qubit is an archetypal problem of

time-dependent quantum mechanics, and the Landau-Zener
solution thereof emerges naturally in quantum measure-
ment of signals with frequency unknown. We have used
this insight to demonstrate a Landau-Zener multiparameter
estimator for frequency, amplitude, and phase, operating on
a single unitary evolution. The long coherence time of
radio-frequency-dressed cold atoms enables a quantum
spectrum analyzer achieving time-bandwidth product of
1800, amplitude precision of 20 pT, and sub-Hertz reso-
lution in frequency. We have retrieved rich spectra from
multitone signals, with encouraging resolution of compo-
nent frequencies, although so far without precision esti-
mation of amplitudes [29]; we are optimistic that precision
retrievals of rich spectra are possible. We envision appli-
cations including compact very-low-frequency (VLF)
receivers, and microscale nuclear magnetic resonance
(NMR) spectroscopy in Earth’s field. More fundamentally,
the analyzer heralds a new class of intrinsically time-
dependent sensing protocols, neither Ramsey nor Rabi,
which harness nonadiabaticity for quantum measurement.
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