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We study the dynamics of micron-sized particles on a layer of motile cells. This cell carpet acts as an
active bath that propels passive tracer particles via direct mechanical contact. The resulting nonequilibrium
transport shows a crossover from superdiffusive to normal-diffusive dynamics. The particle displacement
distribution is distinctly non-Gaussian even at macroscopic timescales exceeding the measurement time.
We obtain the distribution of diffusion coefficients from the experimental data and introduce a model for the
displacement distribution that matches the experimentally observed non-Gaussian statistics. We argue why
similar transport properties are expected for many composite active matter systems.
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The collective behavior of active particles is the focus of
one of the most dynamically evolving research directions in
nonequilibrium statistical and biological physics over
the past decade. Active particles [1,2] convert chemical
energy into motion and provide a unifying concept for a
wide range of systems, such as engineered bipolar “Janus
particles” with different sources of activity [3–6], bacterial
swimming [7,8] and swarming [9], crawling cells [10],
bristle robots (hexbugs) [11–13], or groups of foraging
animals [14]. Large ensembles of interacting active particles,
in which energy is continuously injected and dissipated
locally, operate far from thermodynamic equilibrium. This
gives rise to a plethora of nonequilibrium phenomena, such
as the emergence of large scale patterns [15], topological
order [16], or nonequilibrium phase separations [17–19],
and raises questions about the thermodynamics of such
systems, e.g., their pressure [20–22]. All these features are
studied under the common theme of active matter [23,24].
In many real-world settings, active agents interact with

passive objects in their surroundings that introduce additional
degrees of complexity (“composite active matter” [25]).
For instance, boundaries and obstacles may rectify their
motion [26], self-similar structures may emerge at interfaces
in activematter invasion [27], or nonisotropic passive objects,
such as gears [28,29] or curved tracers [30], can be powered
by an “active bath” of self-propelled particles to perform
coherent motion. For a fundamental understanding as well as
for many applications, the statistics of transport in a bath of
active elements is of particular importance. Earlier work has
focused on tracer diffusion in active fluids composed of
suspensions of biological swimmers, such as bacteria [31,32]
or algae [33,34], agitating the surrounding fluid of the
bath, or particles in the vicinity of flow-generating active
carpets [35].Nontrivial scalingswith several crossovers in the

mean-squared displacement (MSD) of passive tracer particles
were observed; for a review, see Ref. [2]. However, little is
known about the statistical properties of other types of active
baths. A particularly large and important class are composite
systems, in which the interactions between active elements
and passive tracers are established by direct mechanical
contact and adhesion instead of fluid flows and hydrody-
namic interactions. This situation arises, for example, when
slowly moving, adherent cells interact with passive objects,
and it has important practical implications for the movement
of foreign bodies in tissues or the delivery of drug-loaded
particles in a multicellular environment.
Here we consider such a composite biohybrid system as

a paradigmatic showcase of an active bath, in which passive
objects are agitated and transported by self-propelled
agents via direct mechanical contact. As an active bath,
we use a monolayer of cells of the social amoeboid
Dictyostelium discoideum, an established model organism
with well-characterized properties [36]. As D. discoideum
cells show unspecific adhesion to most common material
surfaces [37], adhesive contacts between cells and micro-
particles are formed upon collision and may spontaneously
break again [38]. No specific surface functionalization is
required. Unbound cells can freely move over the two-
dimensional substrate. When cells bind to the micropar-
ticles, the active motion of cells results in nonthermal
fluctuating forces that randomly displace the particles.
While this process has been studied in detail for single
cells interacting with a single particle [25,39], we here
consider particles that are attached to many cells at the same
time. We performed time-lapse recordings with a time
interval of 15 s between frames over a duration of 4 h. In
total, 174 particle trajectories were extracted; the majority
were longer than 2.5 h [40]. An example from the recorded
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image stacks is shown in Fig. 1(a), with the particle
trajectories displayed as colored overlays (see Material
and Methods in the Supplemental Material [40] for exper-
imental details). From the trajectories, we characterized the
dynamics of particles on the cell layer in terms of their
MSD, their displacement probability density functions
(PDFs), and their displacement autocorrelation func-
tion (DACF).
MSD crossover from superdiffusive spreading to normal

diffusion.—Position time traces rjðtÞ of length T of
individual particles (index j) are evaluated in terms of
the time-averaged MSD (TAMSD) [43],

δ2jðτÞ ¼
1

T − τ

Z
T−τ

0

jrjðtþ τÞ − rjðtÞj2dt; ð1Þ

where τ is the lag time. The ensemble mean-TAMSD is

defined as hδ2jðτÞi ¼ N−1 PN
j¼1 δ

2
jðτÞ. From an ensemble of

particles, one can also determine the ensemble-averaged
MSD m2ðτÞ ¼ N−1PN

j¼1½rjðτÞ − rjð0Þ�2 [43–45]. The
results for MSD and TAMSD are displayed in Fig. 1(b).
The TAMSDs (light gray lines) reveal a large amplitude
spread, indicating significant differences in the transport
of individual particles. Their ensemble average, displayed
as the blue line, exhibits two regimes: superdiffusion

hδ2jðτÞi ≃ τγ at short lag times with an anomalous diffusion
exponent of approximately γ ≈ 1.45 (median) and normal
diffusion (γ ≈ 1) at long lag times. Before the crossover

time τ ≈ 2 min, individual TAMSD scaling exponents
vary between γ ≈ 1.33 and 1.57 (1σ interval); the inset
in Fig. 1(b) shows a histogram of the exponents γ obtained
from fits to TAMSDs.
A similar superdiffusive scaling was observed for the

MSD of single cell trajectories [46–50] and is reflected in
the trajectories of cargo particles transported by an indi-
vidual cell [25]. The crossover time to normal diffusion
corresponds to a length scale that is comparable to the
average cell size (5–10 μm in radius). We thus conclude
that the short-time superdiffusive scaling reflects the action
of individual cells, while the long-term normal diffusion
corresponds to collective particle transport involving many
cells. Throughout the Letter, we distinguish these two
regimes as “short-” and “long-time” transport regimes.
Non-Gaussian displacement distributions.—The PDFs of

the particle displacements Δrjðt; τÞ ¼ rjðtþ τÞ − rjðtÞ are
shown in Figs. 1(c)–1(f) for different lag times τ.
The lag times were chosen from the superdiffusive regime
[Fig. 1(c), τ ¼ 0.5 min], close to the crossover time
[Fig. 1(d), τ ¼ 2 min], and from the diffusive regime
[Figs. 1(e) and 1(f) with τ ¼ 8 and 32 min]. Notably, all
displacement PDFs are non-Gaussian, with a positive excess
kurtosis implying a leptokurtic PDF with a more pro-
nounced peak at zero and heavier tails as compared to a
Gaussian distribution. We quantified the degree of non-
Gaussianity via an order parameter: the displacement dis-
tributions remain non-Gaussian for all considered lag times
(data are provided in the Supplemental Material [40]). At

(a) (b) (d)(c)

(f)(e)

FIG. 1. Characteristics of cargo particle transport on cellular monolayers. (a) Illustration of an experimental bright-field microscopy
recording with particle trajectories displayed as colored overlays (see the Supplemental Material [40] for a video). Bright spots with a
black halo are particles (46 μm diameter). Cells with an extension of about 10 μm appear translucent in the background. (b) MSD as

function of lag time τ: TAMSDs δ2jðτÞ, Eq. (1), of individual particles (light gray lines), their ensemble average hδ2jðτÞi (blue), and the
ensemble-averaged MSD m2ðτÞ (black). Error bars indicate 1σ-confidence intervals. These MSDs reveal two distinct regimes:
superdiffusion at short timescales (τ ≲ 2 min) and normal diffusion at long times (τ ≳ 2 min). Inset: scaling exponents γ obtained by

fitting δ2jðτÞ ∼ τγ to the first three data points of TAMSDs (time interval: 45 s). (c)–(f) The non-Gaussian displacement PDFs along the x
axis for different lag times. Red line in (c): stretched exponential distribution, proportional to expð−ajΔxjδÞ with an exponent δ ≈ 0.77;
red lines in (d)–(f): predicted displacement distributions, based on heterogeneous Brownian motion. The respective parameters inferred
from the distributions shown in Figs. 3(a)–3(c) were used to plot the PDFs in (d)–(f) [for details, see Eqs. (5) and main text].
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short lag times, the displacement PDF is well approximated
by a stretched exponential, proportional to expð−ajΔxjδÞ
with δ ≈ 0.77. With increasing lag time, the PDF changes to
a non-Gaussian shape with exponential tails (δ ≈ 1) in the
Fickian regime (γ ¼ 1). Below, we describe this exponential
PDFby a heterogeneousBrownian diffusionmodel.We also
invoke tempered fractional Laplacemotion as amodel for all
lag times. Please note that the long-time diffusion coefficient
of a freely diffusing D. discoideum cell is approximately
Dc ≈ 8 μm2=min [40,51]. Hence, the cellular carpet is not
stationary: a freely diffusing cell will travel a distance that is
comparable to the diameter of a particle (d ¼ 46 μm)within
one hour; the experimental duration is 4 times longer. Thus,
there is noticeable mixing of cells within the recording time.
Nonetheless, Gaussianity is not restored at these timescales.
DACF indicates Brownian motion.—The autocorrelation

function of the displacements Δrjðt; τÞ of particle j is
defined as

CðjÞ
τ ðΔÞ¼ΔrjðtþΔ;τÞ ·Δrjðt;τÞ

¼ 1

T−Δ−τ

Z
T−Δ−τ

0

ΔrjðtþΔ;τÞ ·Δrjðt;τÞdt ð2Þ

and measures the degree of correlation between a particle
displacement Δrjðt; τÞ in a time interval τ starting at time t
and a displacement in an interval of the same length τ,
beginning at the later time tþ Δ. For small time shifts Δ,
the displacements are highly correlated, whereas the
correlations decay to zero at longer Δ. The value of the

DACF at Δ ¼ 0 is identical to the TAMSD δ2jðτÞ,
cf. Eq. (1). We focus on the Δ dependence of the

normalized DACF C̃ðjÞ
τ ðΔÞ ¼ CðjÞ

τ ðΔÞ=CðjÞ
τ ð0Þ as well as

on its ensemble mean hC̃τðΔÞi ¼ N−1PN
j¼1 C̃

ðjÞ
τ ðΔÞ. The

temporal decay of the ensemble-averaged DACF is shown
in Fig. 2(a) for different lag times τ; the DACFs of
individual particle trajectories, together with their ensemble
average, are displayed in the inset for τ ¼ 2 min as an
example. As expected, the degree of correlation increases
with τ. Notably, the correlations decrease linearly as a
function of Δ for lag times τ in the diffusive regime and are
essentially zero for time shifts Δ ≥ τ. This is a signature of
independent steps in normal Brownian motion, for which
the renormalized DACF takes the triangular shape C̃τðΔÞ ¼
1 − jΔj=τ for 0 ≤ jΔj ≤ τ and 0 otherwise [40]. In Fig. 2(b),
we show the DACFs as a function of the rescaled time shift
Δ=τ. Indeed, the data collapse onto a single master curve
for all lag times τ ≥ 2 min, underlining that particle
displacements become independent at times of several
minutes and beyond.
Fickian yet non-Gaussian particle transport.—Our

analysis above reveals that polystyrene spheres on a carpet
of cells show distinct characteristics of Brownian motion
above the crossover time: the MSD increases linearly and

the DACF has a triangular shape. However, the displace-
ment PDFs are non-Gaussian. We tested whether the non-
Gaussian statistic arises from nonstationary dynamics of
the system but did not detect any statistically significant
changes in the bead dynamics over time [40].
Non-Gaussian displacement PDFs together with a

linear-in-time MSD were observed in different stationary
systems, e.g., colloids diffusing along linear tubes, through
spatially heterogeneous arrays of pillars [52],
or entangled actin networks [53]. Such observations may
arise when the diffusion coefficient of a diffusing particle
follows a stochastic diffusion process itself (“diffusing
diffusivity”) [54–58]. If the temporal diffusivity variation
is slower than the experimentally relevant timescales, the
diffusivity is effectively constant in time but randomly
distributed across the diffusing particles [59,60]. We
provide evidence from the experimental data in the
Supplemental Material [40] suggesting that temporal fluc-
tuations of the diffusivity of individual particles are much
weaker as compared to the spread within the ensemble. The
PDF of diffusivities across the ensemble introduces an
additional level of annealed disorder, also called “super-
statistics” [61]. For ensembles of active particles, super-
statistical diffusivities and speeds were recently analyzed
theoretically [62,63].
Superstatistics of diffusion coefficients.—Long-time par-

ticle motion is Fickian, but individual diffusion coefficients
Dj of particles j vary across the ensemble, resulting in the
amplitude scatter of individual TAMSDs, cf. Fig. 1(b). We
expect that this variability is caused by variations in the size
and activity within the population of cells [50]. Moreover,
the cell density varies in space due to finite number
fluctuations. The spread in Dj may be enhanced by tug-
of-war-style competition between individual cells to which
the cargo particle is attached. Even though the statistical
properties are identical in the long-time limit (independent
increments, normal diffusion), quantitative differences in
the diffusivities of individual particles are thus expected.

(a) (b)

FIG. 2. (a) Ensemble-averaged DACFs for different lag times τ
as listed in panel (b) (all times in minutes). Gray lines show

single-particle DACFs C̃ðjÞ
τ ðΔÞ for lag time τ ¼ 2 min (inset); the

ensemble average hC̃τðΔÞi is depicted in blue—error bars
indicate 3σ-confidence intervals. (b) The same data as in (a)
as function of the rescaled time shift Δ=τ. For lag times
τ ≥ 2 min, the DACF collapses onto a triangular correlation
function (black solid line), in line with Brownian motion [40].
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To test the conjecture that the spread in particle diffu-
sivities may explain the non-Gaussian displacement dis-
tributions, we derive the distribution of diffusivities directly
from experimental data by estimating the Dj values of

individual cargo particles from their TAMSDs via D̂j ¼
δ2jðτÞ=ð4τÞ for different lag times τ (Fig. 3). We quantify the
superstatistic of diffusion coefficients by a gamma PDF,

PðDÞ ¼ 1

ΓðαÞDβ

�
D
Dβ

�
α−1

exp

�
−

D
Dβ

�
ð3Þ

with shape parameter α and scale parameter Dβ—a widely
used heuristic [50,64,65], which provides a reasonable fit to
our data and, moreover, enables one to calculate the
ensemble-averaged propagator analytically as discussed
below [66]. The gamma distributions are consistent over
time, i.e., the inferred parameter values are independent of
the chosen lag time τ and yield a mean diffusion coefficient
of hDi ≈ 8 μm2=min in all cases (see caption of Fig. 3 for
exact numbers). The consistency is elucidated by the fact
that single-particle estimates of diffusion coefficients fluc-
tuate only mildly as a function of the chosen lag time τ [40].
This supports our conjecture that long-time active transport
of microparticles on a carpet of motile cells is governed by
heterogeneous Brownian motion.
Prediction of displacement PDFs.—We verified the con-

sistency of our superstatistical model by comparison of the
empirical displacement PDFs to the model prediction. For
normal Brownian diffusion, the displacement PDF (given
the diffusion coefficient D) is Gaussian: ρðΔr;τjDÞ¼
ð4πDτÞ−1exp½−jΔrj2=ð4DτÞ�. The displacement PDF of
an ensemble of particles with different diffusivities is then
obtained by averaging with respect to the distribution of
diffusion coefficients PðDÞ [59,61],

hρðΔr; τÞi ¼
Z

∞

0

ρðΔr; τjDÞPðDÞdD: ð4Þ

The corresponding displacement PDFs of the x and y
components of Δr are obtained by marginalization. In the
diffusive regime, they were found to be statistically inde-
pendent (linear correlation coefficient below 0.02 in all
cases). We focus on displacements along the x axis [67].
Using the gamma distribution model PðDÞ to describe the
heterogeneity in the diffusion coefficients and the Gaussian
propagator ρðΔr; τjDÞ, we obtain the displacement PDF

hρðΔx; τÞi ¼ N
jΔxjα−1=2

ðDβτÞα=2þ1=4Kα−1=2

� jΔxj
ðDβτÞ1=2

�
ð5aÞ

≃
1

2αΓðαÞ
jΔxjα−1
ðDβτÞα=2

exp

�
−

jΔxj
ðDβτÞ1=2

�
; ð5bÞ

where N ¼ 21=2−α=½ ffiffiffi
π

p
ΓðαÞ� is a normalization constant

and Kν denotes the modified Bessel function of the second
kind. Asymptotically, an exponential tail emerges with a
power-law correction in jΔxj [Eq. (5b)] that vanishes in
the case of exponentially distributed diffusion coefficients
(α ¼ 1) [40]. By derivation, the displacement PDF depends
on the similarity variable jΔxj= ffiffiffi

τ
p

only, reflecting the
normal-diffusive behavior Δx2 ∼ τ. The PDF (5a) is com-
pared to experimental data in Figs. 1(d)–1(f). Note that this is
not a fit since all parameters in Eqs. (5) were derived from the
empirical PDF of diffusion coefficients (Fig. 3). The agree-
ment of the displacement PDFs confirms our hypothesis that
individual cargo particles perform Brownian motion with
randomly distributed diffusivities.
Discussion.—We found that the nonequilibrium trans-

port of microparticles in an active bath of cells displays a
crossover from superdiffusion to Fickian transport with
pronounced non-Gaussian displacement PDFs, even in the
long-time limit over at least 2 orders of magnitude in time.
While the dynamics of each particle becomes Fickian, the
diffusivity varies across the ensemble [59]. The active
cellular bath constitutes a “heterogeneous diffusion land-
scape” for particles. We emphasize in this context that the
presence of a particle influences the distribution of cells
around it, since adherent D. discoideum cells may easily
bind to a particle [37,38]. If the cell-particle interactions
stabilize the local composition of the cell carpet in the
vicinity of a particle, the homogenization of initial fluctua-
tions in the heterogeneous landscape of diffusivities
slows down considerably. This may be one of the reasons
why a particle is going to explore the entire heterogeneous
diffusion landscape on very large timescales only (if it
does so at all). Variations of diffusivities may arise
from a tug-of-war between multiple cells simultaneously
attached to the cargo particle. The tug-of-war may lead to
repeated unsuccessful attempts to move the cargo in a
given time window. Intermittent motion with distributed

(a) (b) (c)

FIG. 3. Histograms of diffusion coefficients for different lag
times τ. Solid lines represent fits with a gamma distribution
[Eq. (3)], inferred by maximum likelihood estimation:
(a) α ¼ 2.55, Dβ ¼ 3.23 μm2=min, (b) α ¼ 2.26, Dβ ¼
3.40 μm2=min, and (c) α ¼ 1.91, Dβ ¼ 4.24 μm2=min. Sample
means of diffusion coefficients: (a) hDi ¼ ð8.2� 0.5Þ μm2=min
for τ ¼ 2 min, (b) hDi ¼ ð7.7� 0.4Þ μm2=min for τ ¼ 8 min,
and (c) hDi ¼ ð8.0� 0.5Þ μm2=min for τ ¼ 32 min. (b) The fit
from (a) is shown as an overlay; (c) contains all three fits.
Differences are not statistically significant [40].
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immobilization events can be described by subordination
of a parent process with a waiting time PDF [68,69].
If the subordinator is a gamma distribution, Brownian
motion stays Fickian, yet the displacements follow a
Laplace PDF [64,70]. If the parent process is fractional
Brownian motion, a Gaussian process with power-law
correlated increments [71,72], the subordination by the
gamma distribution produces a PDF with stretched tails
proportional to expð−ajΔxjδÞ, the stretching exponent of
which is δ ¼ 2=ð1þ γÞ [65]. The DACF derived from our
experimental data at short times (τ < 2 min) indeed shows
positive values beyond the rescaled time shift Δ=τ ¼ 1,
reminiscent of fractional Brownian motion. Thus, assuming
fractional Laplace motion (FLM) for the cargo particle
transport dynamics, superdiffusion in the short-time regime
with an exponent of γ ≈ 1.45 (median of the observed
exponents, cf. Fig. 1) would imply a stretching exponent of
δ ≈ 0.82, which is close to the experimentally inferred δ ≈
0.77 as shown in Fig. 1(c). Assuming that the power-law
correlations have a finite cutoff that reflects the observed
crossover from super- to Fickian diffusion, the motion
at long times (τ > 2 min) would change from m2ðτÞ ≃ τγ

to ≃τ [73], and the displacement PDF exhibits exponen-
tial tails (δ ¼ 1), in line with our experimental observa-
tions. More refined data will be needed to connect the
observed motion with potential tug-of-war immobiliza-
tion events. Furthermore, it will be of interest to discuss
asymptotic Laplace displacement PDFs and FLM in a
wider context of anomalous diffusion processes in the
future [56,69,74,75].
Non-Gaussian statistics due to (dynamic) heterogeneity

has already been reported for acetylcholine receptors on live
muscle cell membranes [76] and for cytoplasmic mRNA
molecules in both E. coli and yeast [77]. Here, we demon-
strate that anomalous effects may also arise at the level of
interacting cells when collectively moving passive micro-
objects. Since cell-cell heterogeneity and fluctuation-
dominated dynamics are ubiquitous in biological systems,
our findings are relevant beyond our specific model system,
for instance, when microparticles are exposed to migrating
neutrophils. Generally, foreign bodies that interact with a
dynamic tissue environment are key to many medical
applications—oral vaccination strategies [78] or the assimi-
lation of environmental microplastics in the body [79]
both rely on the intestinal uptake of microparticles.
Options to guide the cell-driven microtransport by chemical
gradients [38] make this process particularly attractive for
drug delivery applications.
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