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The presence of the giant component is a necessary condition for the emergence of collective behavior in
complex networked systems. Unlike networks, hypergraphs have an important native feature that
components of hypergraphs might be of higher order, which could be defined in terms of the number
of common nodes shared between hyperedges. Although the extensive higher-order component (HOC)
could be witnessed ubiquitously in real-world hypergraphs, the role of the giant HOC in collective behavior
on hypergraphs has yet to be elucidated. In this Letter, we demonstrate that the presence of the giant HOC
fundamentally alters the outbreak patterns of higher-order contagion dynamics on real-world hypergraphs.
Most crucially, the giant HOC is required for the higher-order contagion to invade globally from a single
seed. We confirm it by using synthetic random hypergraphs containing adjustable and analytically
calculable giant HOC.
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Introduction.—The complex system is composed of
many interacting elements, and the interaction might occur
not only between two elements but generally within a group
of an arbitrary number of elements simultaneously [1–3].
Group interaction is essential for understanding various
complex systems’ functions, such as social contact [4],
coauthorship [4–6], brain [7], biology [8,9], and ecology
[10–12], to name a few. Notably, the structures and
dynamics in these systems cannot be fully understood
by using the projected network with pairwise interactions.
From this perspective, studies that introduce group inter-
actions into classical statistical physics problems like
percolation [13–17], random walk [18,19], contagion
dynamics [20–25], synchronization [26–29], opinion
dynamics [30–32], evolutionary game theory [33–35],
and statistical validated hypergraphs [36] have been
actively conducted recently. These studies have revealed
that higher-order interactions significantly alter collective
dynamics.
A hypergraph is a data structure expressing group

interactions and consists of nodes representing elements
and hyperedges representing interactions between elements
[37]. In a network, an edge represents the interaction only
between two nodes, whereas, in a hypergraph, the hyper-
edge represents the interaction between an arbitrary number
of nodes. In other words, a hypergraph is a generalization
of a network. We use the term the degree k of a node for the
number of hyperedges that the node belongs to; and the size
s of a hyperedge for the number of nodes belonging to the
hyperedge.
As in networks, the existence of the giant component is a

minimum condition for the collective functioning of hyper-
graphs. In a hypergraph, however, the notion of a connected

component acquires an important new dimension. In a
network, only one node can be shared between two edges,
whereas in a hypergraph, an arbitrary number of nodes can
be shared between hyperedges. The number of common
nodes has a physical meaning which is the degree of
cooperativity between hyperedges. Therefore, neglecting
them is to ignore an essential characteristic of hypergraphs.
To this end, we introduce the mth-order connectivity in
hypergraphs as the connectivity between two hyperedges
sharing m common nodes and the mth-order component as
the connected component only through mth- or higher-
order connectivities as shown in Fig. 1. We call the
components with m ≥ 2 to be the higher-order components
(HOCs) [38,39].
How the network structure affects its function is a long-

standing problem in network science. In this Letter, we
demonstrate that the giant HOC serves as a structural
backbone of higher-order contagion dynamics, a crucial
example of collective behaviors. First, we apply the

FIG. 1. Schematic illustration of themth-order connectivity and
the mth-order component.
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higher-order contagion dynamics on two real-world hyper-
graphs and their randomized counterparts to reveal the
effects of the giant HOC on higher-order contagion
dynamics, and we confirm that the giant HOC functions
as the channel of higher-order contagions from a single
hyperedge infection source. To verify whether this phe-
nomenon is genuinely caused by the HOC or due to other
real-world hypergraph properties, we propose a novel
random hypergraph model in which a tunable and analyti-
cally calculable giant HOC exists. We use this model to
reveal that the giant HOC genuinely dictates the higher-
order contagion dynamics. We also confirm that the giant
HOC ubiquitously exists in real-world hypergraphs from
various fields, showing that the effect of the giant HOC
structure on hypergraphs’ function is a practical problem.
This suggests that understanding the effects of the giant
HOC on other diverse higher-order dynamics will be a
fundamental problem in network science.
Higher-order contagion dynamics.—We applied the

higher-order contagion dynamics as an archetypical exam-
ple of spreading phenomena [Fig. 2(a)]. In the higher-order
contagion dynamics, the infection rate βn is determined
according to the number of infected nodes n in a hyperedge
[40], and with this infection rate, each susceptible node
in the hyperedge becomes infected independently. With
rate μ, each infected node either becomes recovered
and no longer participates in the contagion dynamics in
susceptible-infected-recovered (SIR) dynamics or becomes

susceptible in susceptible-infected-susceptible (SIS) dy-
namics. We define the rescaled infection rate λn ¼ βn=μ.
We call the infection caused by two or more infected nodes
the higher-order contagion, and we set all βn of n ≥ 2 to be
the same βh for simplicity. In this Letter, to understand the
structural role of the giant HOC on the higher-order
contagion dynamics, first, we focus on the higher-order
contagion dynamics only (β1 ¼ 0, βh ≥ 0), then we inves-
tigate the more general case (β1 ≥ 0, βh ≥ 0).
We analyze the higher-order contagion dynamics with

Monte Carlo simulation and approximate master equations
(AMEs) [25,41]. For the Monte Carlo simulations, we use
two initial conditions. The first is what we call the single-
seed initial condition, where all nodes are susceptible
except the entire nodes within one randomly chosen
hyperedge, which are initially infected. The second is
the fully infected initial condition, where all nodes are
initially infected. At each step, we traverse all the hyper-
edges where infected nodes exist to determine whether to
infect each susceptible node within them in the next step;
next, we traverse all the infected nodes to determine
whether they are to be recovered in SIR dynamics or to
be susceptible in SIS dynamics in the next step; then we
update the state of all nodes at once. For SIR dynamics, we
averaged only over the samples with a relative outbreak size
ρ larger than a certain threshold; and for SIS dynamics, we
averaged over samples not in the absorbing state after the
relaxation. μ is set to 0.05 per step for both SIR and SIS

FIG. 2. (a) Schematic illustration of the higher-order contagion process in a hyperedge. (b),(c) The relative size of the largestmth-order
component (Gm) on the empirical and randomized Coauth-DBLP hypergraph (the number of node N ¼ 1930 378, the number of
hyperedge H ¼ 2467 396, mean degree hki ¼ 4.01, and mean size hsi ¼ 3.14) and contact-high-school hypergraph (N ¼ 327, H ¼ 7,
818, hki ¼ 55.63, hsi ¼ 2.33). (d) The relative outbreak size (ρ) of higher-order SIR dynamics on Coauth-DBLP hypergraph with the
single-seed initial condition. (e) The relative outbreak size of higher-order SIS dynamics on contact-high-school hypergraph with the
single-seed initial condition, and (f) with the fully infected initial condition. We ran over minimum 102 to maximum 107 realizations and
averaged over samples only with a relative outbreak size ρ > 10−3 for SIR dynamics and only with active phase samples with minimum
102 to maximum 103 steps after the relaxation steps minimum 103 to maximum 104 for SIS dynamics. (g) A schematic illustration of the
higher-order contagion process on the first- and second-order components.

PHYSICAL REVIEW LETTERS 132, 087401 (2024)

087401-2



dynamics. We applied the AMEs following [25,41]
to obtain analytic results for dynamics on randomized
hypergraphs.
Real-world hypergraphs.—We applied the higher-order

SIR dynamics on the Coauth-DBLP hypergraph [4], in
which nodes represent authors and hyperedges represent
publications recorded on DBLP and applied the higher-
order SIS dynamics on the contact-high-school hypergraph
[4], in which nodes are high schoolers and hyperedges are
maximal proximity groups during 20 sec intervals. We
preprocessed the data by reducing the duplicated hyper-
edges with the same nodes set into a unique hyperedge, and
we refer to such preprocessed hypergraphs as the empirical
hypergraphs. In these two empirical hypergraphs, there
exists the extensive largest HOC [Figs. 2(b) and 2(c)].
Randomized hypergraphs with the same degree and size
distribution are used as null models, which do not contain
the extensive largest HOC. When constructing the ran-
domized surrogates following the method proposed in
Ref. [40], the Coauth-DBLP hypergraph was randomized
with the preserved number of nodes and hyperedges, and
the contact-high-school hypergraph, due to its small size,
was randomized after expanding the number of nodes
and hyperedges by 10 times to suppress the largest HOC
[Figs. 2(b) and 2(c)].
The results of the higher-order SIR dynamics with the

single-seed initial condition and λ1 ¼ 0 on the Coauth-
DBLP hypergraph are shown in Fig. 2(d). Higher-order
contagion spreads above the finite critical λh on the
empirical hypergraph, which has an extensive HOC. On
the other hand, on a randomized hypergraph, which does
not have an extensive HOC, higher-order contagion could
not spread even with much greater λh.
The results of the higher-order SIS dynamics with the

single-seed initial condition and λ1 ¼ 0 on the contact-high-
school hypergraphs are qualitatively similar [Fig. 2(e)].
As in SIR dynamics, with an extensive HOC, the higher-
order contagion spreads above the finite critical λh, but
without extensive HOC, the higher-order contagion could
not spread from the single-seed initial condition. On the
contrary, SIS dynamics with the fully infected initial con-
dition exhibit different stationary states [Fig. 2(f)]. In this
case, even if the extensive HOC is absent, higher-order
contagion has a finite critical λh. Therefore, a bistable region
appears in the randomized hypergraph. Note that there is
also a small bistable region in the empirical hypergraph.
In sum, the extensive HOC is required to spread higher-

order contagion from a single seed. As shown in Fig. 2(g),
if only a first-order component exists, two independent
infection routes are needed for higher-order contagion,
which is improbable with a single-seed initial condition.
However, if there is a HOC, only one infection route can
cause higher-order contagion. Thus, higher-order contagion
can spread from a single-seed initial condition. On the other
hand, if an infection is already prevalent, it is possible to
maintain infection with only higher-order contagion since

two infection routes can be secured even with only the first-
order component.
Finally, we investigate 17 real-world hypergraph data

from Ref. [4] to identify if an extensive HOC is present in
the other real-world hypergraphs. These data were collected
from various fields such as coauthorship, social contact,
email, and online posts. The number of nodes N in each
dataset ranges from 143 to 2 675 969, and the number of
hyperedges H ranges from 1090 to 9 705 575. We con-
firmed that the relative size of the largest second-order
component is greater than 0.1 in 15 out of 17 empirical
hypergraphs. Therefore, it is practically important that the
HOC is the backbone of higher-order contagion dynamics.
A detailed description of data and results are provided in
Supplemental Material [42].
Higher-order-connected hypergraph model.—Many

other structures, such as short loop, clustering, and assor-
tativity, are ampliated in real-world hypergraphs. To single
out the giant HOC’s effects on the higher-order contagion
dynamics, a random hypergraph free from such con-
founding structures while keeping HOC is useful. This
goal cannot be reached using existing random uniform
hypergraphs because it has been proven that the giant HOC
does not exist in a random uniform hypergraph with finite
mean degree hki ∼Oð1Þ in the thermodynamic limit [38].
To overcome this problem, we propose a novel random
hypergraph model admitting giant HOC.
In this model, in addition to nodes, the subgroups to

which nodes are preassigned are introduced. We assume
that nodes included in a subgroup have a close relationship.
For example, in the coauthorship hypergraph, a subgroup
consists of colleagues who write many papers jointly. In the
social contact hypergraph, a subgroup may represent
friends who meet frequently, and a subgroup in the hyper-
graph of tags on online posts compose of close topics.
There is a greater chance that the nodes belonging to a
subgroup join in a hyperedge simultaneously.
Our model hypergraph evolves through the following

process. First, prepare N nodes, H hyperedges, and S
subgroups. We will present the results of H=N ¼ 1 and
S=N ¼ 1. We confirmed that qualitatively similar results
are obtained using different values. Second, randomly
chosen nodes are preassigned to each subgroup according
to the subgroup’s size without duplication [Fig. 3(a)]. Here,
the size of subgroups can have an arbitrary distribution, but
in this Letter, the size of subgroups is fixed to two for
clarity. Finally, in the assignment process, the hypergraph
evolves by recruiting either a random node (with proba-
bility 1 − p) or a random subgroup (with probability p) to a
random hyperedge until the desired mean degree hki is
reached [Fig. 3(b)]. Note that with probability 1 − p, one
node is assigned to the hyperedge, and with probability p,
all the nodes in a subgroup are assigned to the hyperedge in
each assignment process. The assignment is rejected if a
newly recruited node already exists on the hyperedge.
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When p ¼ 0, this evolving process is similar to the process
of making the ER-like bipartite network [51]. As the model
parameter p increases, the probability that subgroups are
selected increases, and thus the second-order connectivities
are encouraged more. Self-consistent equations to calculate
the giant HOC size and equations for degree and size
distribution of the model are provided in Supplemental
Material [42].

We applied the higher-order contagion dynamics on the
higher-order-connected hypergraphs and obtained consis-
tent results with real-world hypergraphs. The original
higher-order-connected hypergraphs have the giant HOC,
and the randomized counterparts have no giant HOC
[Fig. 4(a)]. The giant HOC was required for the higher-
order contagion to spread from a single seed; and the giant
HOC was not essential for infection to remain in the
presence of many infected nodes [Figs. 4(b)–4(d)]. This
suggests that the presence or absence of the giant HOC is
the main determinant for the results we checked in the real-
world hypergraph.
Finally, we investigated the more general case of

combining a simple contagion caused by one infected
node and higher-order contagion, and we found funda-
mental differences between original and randomized
higher-order-connected hypergraphs in phase diagrams
[Figs. 4(e)–4(h)]. The phase diagrams of the original
higher-order-connected hypergraph are the results of
Monte Carlo simulation with N ¼ 105, and the phase
diagrams of the randomized hypergraph are the results
of AMEs. When the giant HOC exists [Figs. 4(e) and 4(g)],
the infection can spread only by high-order contagion
(β1 ¼ 0) with single-seed initial conditions, so the corre-
sponding phase transition line touches the y axis. However,
when the giant HOC does not exist [Figs. 4(f) and 4(h)], the
phase transition line of the single-seed initial condition

(a)

(b)

FIG. 3. Illustration of the higher-order-connected hypergraph
model forN ¼ 9,H ¼ 3, and S ¼ 4. (a) Initially preassignN ¼ 9
nodes to S ¼ 4 subgroups. For clarity, the number of nodes
preassigned to each subgroup is fixed to 2 in this Letter. (b) Each
step, select a random node with probability (1 − p) or a random
subgroup with probability p, and add it to a random hyperedge.
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FIG. 4. (a) The relative size of the mth-order component Gm in the original and randomized higher-order-connected hypergraph
(N ¼ 105, H ¼ 105, S ¼ 105, hki ¼ 5, hsi ¼ 5, p ¼ 0.5). (b)–(d) The relative outbreak size (ρ) of (b) the higher-order SIR dynamics
with the single-seed initial condition, (c) the higher-order SIS dynamics with the single-seed initial condition, (d) the higher-order SIS
dynamics with the fully infected initial condition on the higher-order-connected hypergraph. (e)–(h) The phase diagram of the higher-
order SIR and SIS dynamics on the original and randomized higher-order connected hypergraph with the single-seed and the fully
infected initial conditions. White circles indicate tricritical points, and black circles indicate critical points λch in the thermodynamic

limit. We ran over minimum 90 to maximum 107 realizations and averaged over samples only with a relative outbreak size ρ > 1=
ffiffiffiffi

N
p

for the higher-order SIR dynamics and only with active phase samples with 0.1 × N steps after the relaxation steps N for the higher-
order SIS dynamics.
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never touches the y axis because, in this case, the infection
cannot spread only by higher-order contagion.
We found that there is a large finite-size effect on the

critical point of higher-order contagion dynamics λch in the
case of the single-seed initial condition (so-called the
invasion threshold) and performed finite-size scaling analy-
sis with the following assumption,

λch − λchðNÞ ∼ N−θ; ð1Þ

as provided in Supplemental Material [42]. We used λchðNÞ
as the point where the sample-to-sample fluctuation of the ρ
is the largest in the higher-order SIR model and as the
smallest value at which the active phase sample was
observed after the relaxation in the higher-order SIS model.
λch obtained through finite-size scaling is marked by a black
circle in the phase diagrams [Figs. 4(e) and 4(g)]. Our
results suggest that the HOC dictates higher-order con-
tagion dynamics in the thermodynamic limit.
Conclusion.—In this Letter, we focused on how the giant

HOC in hypergraphs, which has been neglected so far,
dictates the higher-order contagion dynamics. The giant
HOC makes the higher-order contagion spread from a
single infected hyperedge seed by admitting the higher-
order connected path between hyperedges. The giant HOC
is ubiquitous in the real-world hypergraph, on which
diseases, knowledge, and opinions can spread. However,
existing random hypergraphs, generally used as null
models for real-world hypergraphs, are incomplete for
understanding higher-order contagion dynamics because
of their lack of the giant HOC. Therefore, it would be
advantageous to use a model in which a giant HOC exists,
such as the higher-order-connected hypergraph model
proposed in this Letter, to analyze the higher-order con-
tagion in the real world.
The contagion dynamics we studied in this Letter is

chosen as a canonical example of the numerous collective
dynamics. Just as the giant HOC has played a significant
role in the contagion dynamics, it will likely play a crucial
role in other collective dynamics, such as synchronization
dynamics [52], and in statistical validations [36] on real-
world hypergraphs.
Finally, it is noteworthy that the idea of overlap has been

exploited for link predictions [4]. The overlapness pro-
posed in [53] is also related, the measurements of which for
the three hypergraphs used in this study are presented in the
Supplemental Material [42]. Additional higher-order cor-
relation features of potential relevance include the higher-
order motif [54,55] and the hyperedge nestedness [56].

This work was supported in part by the National
Research Foundation of Korea (NRF) grant funded
by the Korea government (MSIT) (No. NRF-
2020R1A2C2003669).

*kgoh@korea.ac.kr
[1] F. Battiston, G. Cencetti, I. Iacopini, V. Latora, M. Lucas, A.

Patania, J.-G. Young, and G. Petri, Networks beyond
pairwise interactions: Structure and dynamics, Phys. Rep.
874, 1 (2020).

[2] F. Battiston, E. Amico, A. Barrat, G. Bianconi, G. Ferraz de
Arruda, B. Franceschiello, I. Iacopini, S. Kéfi, V. Latora, Y.
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