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Trade-off relations place fundamental limits on the operations that physical systems can perform. This
Letter presents a trade-off relation that bounds the correlation function, which measures the relationship
between a system’s current and future states, in Markov processes. The obtained bound, referred to as
the thermodynamic correlation inequality, states that the change in the correlation function has an upper
bound comprising the dynamical activity, a thermodynamic measure of the activity of a Markov process.
Moreover, by applying the obtained relation to the linear response function, it is demonstrated that the
effect of perturbation can be bounded from above by the dynamical activity.
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Introduction.—Trade-off relations imply that there are
impossibilities in the physical world that cannot be overcome
by technological advances. The most well-known example is
the Heisenberg uncertainty relation [1,2], which establishes a
limit on the precision of position-momentum measurement.
The quantum speed limit is interpreted as an energy-time
trade-off relation and places a limit on the speed at which the
quantum state can be changed [3–10] (see [11] for a review).
It has many applications in quantum computation [12],
quantum communication [13,14], and quantum thermody-
namics [5]. Recently, the concept of speed limit has also
been considered in classical systems [15–17]. In particular,
the Wasserstein distance can be used to obtain the minimum
entropy production required for a stochastic process to
transform one probability distribution into another [18–22].
Moreover, the speed limit has been generalized to the time
evolution of the observables [23–27]. A related principle,
known as the thermodynamic uncertainty relation, was
recently proposed in stochastic thermodynamics [28–50]
(see [51] for a review). This principle states that, for
thermodynamic systems, higher accuracy can be achieved
at the expense of higher thermodynamic costs. Recently,
thermodynamic uncertainty relations have become a central
topic in nonequilibrium thermodynamics; furthermore,
their importance is also recognized from a practical
standpoint, because thermodynamic uncertainty relations
can be used to infer entropy production without detailed
knowledge of the system [52–55].
This Letter presents a trade-off relation that confers

bounds for the correlation function in Markov processes.
The correlation function is a statistical measure that
quantifies the correlation between the current state of a
system and its future or past states. In a Markov process, the
correlation function can be used to analyze the dependence
of the current state on past states and to identify any
patterns in the system’s behavior over time. The correlation

function provides spectral information through the Wiener-
Khinchin theorem and plays a fundamental role in linear
response theory [56]. Considering the significant role of the
correlation function in stochastic processes, it is crucial to
clearly illustrate its relationship with other physical quan-
tities. We derive the thermodynamic correlation inequality,
stating that the amount of correlation change has an upper
bound that comprises the dynamical activity, which quan-
tifies the activity of a system of interest. The derivation
presented herein is based on considering the time evolution
in a scaled path probability space [57], which can be
regarded as a realization of bulk-boundary correspondence
in Markov processes. By applying the Hölder inequality
and a recently derived relation [57], the upper bound for
the correlation function [Eq. (5)] is obtained. The obtained
bound exhibits unexpected generality; it holds for any
Markov process with an arbitrary time-independent tran-
sition rate and can be generalized to multipoint correlation
functions. The linear response function can be represented
by the time derivative of the corresponding correlation
function, as stated by the fluctuation-dissipation theorem.
Upper bounds to the perturbation applied to the system
are derived by applying the thermodynamic correlation
inequality to the linear response function.
Results.—The thermodynamic correlation inequality is

derived for a Markov process. Consider a Markov process
with N states, B≡ fB1; B2;…; BNg. Let fXðtÞjt ≥ 0g be a
collection of discrete random variables that take values in B
[that is, XðtÞ∈B]. Let Pðν; tÞ be the probability that XðtÞ is
Bν at time t and Wνμ be the transition rate of XðtÞ from Bμ

to Bν. The time evolution of PðtÞ≡ ½Pð1; tÞ;…; PðN; tÞ�⊤
is governed by the following master equation:

dPðtÞ
dt

¼ WPðtÞ; ð1Þ
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where W ≡ fWνμg and diagonal elements are defined as
Wνν ≡ −

P
μð≠νÞWμν. Next, we define a score function

SðBνÞ that takes a state Bν (ν∈ f1; 2;…; Ng) and returns a
real value of ð−∞;∞Þ. Moreover, we define

Smax ≡max
B∈B

jSðBÞj; ð2Þ

which is the maximum absolute value of the score function
within B. We also define another score function TðBνÞ
similar to SðBνÞ and define Tmax analogously. When it is
clear from the context, we express SðtÞ≡ SðXðtÞÞ or
TðtÞ≡ TðXðtÞÞ for simplicity. The correlation function
CðtÞ≡ hSð0ÞTðtÞi is of interest, where

hSð0ÞTðtÞi ¼
X
μ;ν

TðBνÞSðBμÞPðμ; 0ÞPðν; tjμ; 0Þ

¼ 1TeWtSPð0Þ: ð3Þ

Here, Pðν; tjμ; 0Þ is the conditional probability that XðtÞ ¼
Bν given Xð0Þ ¼ Bμ, 1≡ ½1; 1;…; 1� is the trace state,
S≡diag½SðB1Þ;…;SðBNÞ�, and T≡diag½TðB1Þ;…;TðBNÞ�.
The correlation function CðtÞ has been extensively
explored in the field of stochastic processes [58,59].
Recently, the correlation function was considered in the
context of the quantum speed limit [26,60], which was
obtained as a particular case of the speed limits on
observables. As an example of a classical system, a
trichotomous process comprising three states B ¼
fB1; B2; B3g is shown in Fig. 1. XðtÞ in this process
exhibits random switching between B1, B2, and B3.
For a trichotomous process, the score function is typically
given by SðB1Þ ¼ −1, SðB2Þ ¼ 0, and SðB3Þ ¼ 1. To
quantify the Markov process, we define the time-integrated
dynamical activity AðtÞ as follows [61]:

AðtÞ≡
Z

t

0

dt0
X

ν;μ;ν≠μ
Pðμ; t0ÞWνμ: ð4Þ

AðtÞ represents the average number of jumps during the
interval ½0; t�, and it quantifies the activity of the stochastic
process. The dynamical activity plays a fundamental role in

classical speed limits [15] and thermodynamic uncertainty
relations [30,32].
In the Markov process, we obtain the upper bound of the

correlation function CðtÞ. For 0 ≤ t1 < t2, we obtain the
following bound:

jCðt1Þ − Cðt2Þj ≤ 2SmaxTmax sin

"
1

2

Z
t2

t1

ffiffiffiffiffiffiffiffiffiffi
AðtÞp
t

dt

#
; ð5Þ

which holds for 0 ≤ 1
2

R t2
t1 ð

ffiffiffiffiffiffiffiffiffiffi
AðtÞp

=tÞdt ≤ ðπ=2Þ. For t1 and
t2 outside this range, the upper bound is jCðt1Þ − Cðt2Þj ≤
2SmaxTmax, which trivially holds true. Equation (5) is the
thermodynamic correlation inequality and is the main
result of this Letter. Note that all the quantities in
Eq. (5) can be physically interpreted. A sketch of the
proof of Eq. (5) is provided near the end of this Letter.
Equation (5) holds for an arbitrary time-independent
Markov process that starts from an arbitrary initial prob-
ability distribution with arbitrary score functions SðBνÞ
and TðBνÞ. Equation (5) states that higher dynamical
activity allows the system to forget its current state quickly,
which is in agreement with the intuitive notion. In stochas-
tic thermodynamics, entropy production plays a central role
in thermodynamic inequalities. Entropy production mea-
sures the extent of irreversibility of a Markov process,
whereas dynamical activity quantifies its intrinsic time-
scale. Moreover, entropy production is not well defined for
Markov processes that include irreversible transitions. By
contrast, dynamical activity can be defined for any Markov
process. This makes it particularly suitable for the corre-
lation function, which needs to be calculated for any given
Markov process. Aweaker bound can be obtained by using
the thermodynamic uncertainty relation derived in a pre-
vious study [57] (see Ref. [62] for details). Let us consider
particular cases of Eq. (5). Taking t1 ¼ 0 and t2 ¼ t with
t > 0, Eq. (5) provides the upper bound for jCð0Þ − CðtÞj:

jCð0Þ − CðtÞj ≤ 2SmaxTmax sin

"
1

2

Z
t

0

ffiffiffiffiffiffiffiffiffiffiffi
Aðt0Þp
t0

dt0
#
; ð6Þ

where 0 ≤ 1
2

R
t
0ð

ffiffiffiffiffiffiffiffiffiffiffi
Aðt0Þp

=t0Þdt0 ≤ ðπ=2Þ (the saturating con-
ditions are presented in Ref. [62]). Moreover, let ϵ be an
infinitesimally small positive value. Substituting t1 ¼ t − ϵ
and t2 ¼ t into Eq. (5) and using the Taylor expansion for
the sinusoidal function, we obtain

���� dCðtÞdt

���� ≤ SmaxTmax

ffiffiffiffiffiffiffiffiffiffi
AðtÞp

t
: ð7Þ

Equation (7) states that the absolute change of the corre-
lation function is determined by the dynamical activity.
For t → 0, the right side of Eq. (7) diverges to infinity.
However, the derivative of CðtÞ at t ¼ 0, represented as

State

Time

-1

+1

0

FIG. 1. Markov process with three states fB1; B2; B3g. In this
example, we are interested in the correlation hSðt1ÞSðt2Þi, where
the score function SðBνÞ is specified by SðB1Þ ¼ −1, SðB2Þ ¼ 0,
and SðB3Þ ¼ 1.
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j∂tCðtÞjt¼0 ¼ j1TWSPð0Þj, is finite. This implies that the
upper bound of Eq. (7) is not tight as t approaches 0.
As an intermediate step in the derivation of Eq. (6), the

following inequality holds:

jCð0Þ − CðtÞj ≤ 2SmaxTmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ηðtÞ

p
; ð8Þ

where ηðtÞ is the Bhattacharyya coefficient between the
path probabilities within ½0; t� having the transition rate
matrix W and the null transition rate matrix W ¼ 0. Sinceffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ηðtÞp

≤ sin ½ð1=2Þ R t
0

ffiffiffiffiffiffiffiffiffiffiffi
Aðt0Þp

=t0dt0�, Eq. (8) is tighter
than Eq. (6). The inequality of Eq. (8) holds for any value
of t, because the Bhattacharyya coefficient is always
bounded between 0 and 1. ηðtÞ can be computed as

ηðtÞ≡
�P

μ Pðμ; 0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−t

P
νð≠μÞ Wνμ

q �2

, which can be rep-

resented by quantities of the Markov process [62]. Note that
ηðtÞ constitutes a lower bound in thermodynamic uncer-
tainty relations [69]. The term within the square root in ηðtÞ
represents the survival probability that there is no jump
starting from Bμ. Therefore, when the activity of the
dynamics is lower, the survival probability increases and,
in turn, ηðtÞ yields a higher value. Although ηðtÞ has fewer
physical interpretations than dynamical activityAðtÞ, it has
an advantage over Eq. (6) that the bound of Eq. (8) holds
for any value of t.
Now, we comment on possible improvements and

generalizations to the thermodynamic correlation inequal-
ity. The inequality can be tightened by replacing SmaxTmax,
included in Eq. (5), with 1

2
½maxB1;B2 ∈BSðB1ÞTðB2Þ−

minB1;B2 ∈BSðB1ÞTðB2Þ�. In addition, it is also possible
to consider the J-point correlation function (J ≥ 2 is an
integer), which serves as a generalization of the two-point
correlation function discussed above. The results are
presented in detail in Ref. [62].
We perform numerical simulations to validate Eqs. (6)–(8).

We prepare a two-state Markov process (B ¼ fB1; B2g) and
plot jCð0Þ − CðtÞj and j∂tCðtÞj as functions of t in Figs. 2(a)
and 2(b), respectively, by the solid lines (see the caption
of Fig. 2 for details). In Fig. 2(a), we plot the right-hand sides
of Eqs. (6) and (8), which are upper bounds of jCð0Þ − CðtÞj,
by the dashed and dotted lines, respectively. Furthermore, we
plot the right-hand sideofEq. (7), theupper boundof j∂tCðtÞj,
by the dashed line in Fig. 2(b). FromFig. 2(a), we observe that
Eq. (6) provides an accurate estimate of the upper bound.
In this case, the difference between the two upper bounds
given by Eqs. (6) and (8) is negligible. The upper bound
shown in Fig. 2(b) becomes less tight for a large t, because the
decay of the upper bound is approximatelyOðt−1=2Þwhereas
the correlation function decays exponentially in this model.
Next, we randomly generate Markov processes and verify
whether the bounds hold for the random realizations (see the
caption of Fig. 2 for details). We calculate the ratio, the left-
hand sides divided by the right-hand sides of Eqs. (6) and (7),

in Figs. 2(c) and 2(d), respectively, by the light solid lines.
The ratio should not exceed 1, as indicated by the dashed
lines. In Figs. 2(c) and 2(d), the dark solid lines correspond
to the results shown in Figs. 2(a) and 2(b), respectively.
All realizations are below 1, which numerically verifies the
bounds.
Linear response.—The correlation function CðtÞ is

closely related to linear response theory [56]. The corre-
lation bounds in Eqs. (6) and (7) are applied to the linear
response theory [62]. Suppose that a Markov process is in
the steady state Pst ¼ ½Pstð1Þ;…; PstðNÞ�⊤, which satisfies
WPst ¼ 0. A weak perturbation χFfðtÞ is applied to the
master equation in Eq. (1), which is W → W þ χFfðtÞ in
Eq. (1). Here, χ denotes the perturbation strength satisfying
0 < jχj ≪ 1, F is an N × N matrix, and fðtÞ is arbitrary
real function of time t. The probability distribution is

0 4
0

1

2

3(a) (b)

0 4
0

1
(c)

ra
tio

(d)

0 4
0

1

ra
tio

0 4
0

1

2

r.h.s of Eq. (8)

r.h.s of Eq. (6)

r.h.s of Eq. (7)

FIG. 2. (a) jCð0Þ − CðtÞj as a function t for the two-state
Markov process, which is shown by the solid line. Its two upper
bounds, the right-hand sides of Eqs. (6) and (8), are depicted by
dashed and dotted lines, respectively. (b) j∂tCðtÞj as a function t
for the two-state Markov process and its upper bound, which are
shown by the solid and dashed lines, respectively. In the two-state
Markov process in (a) and (b), the transition rate is W12 ¼ 1 and
W22 ¼ −1 (0 for the other entries), the initial distribution is
Pð0Þ ¼ ½0; 1�⊤, and the score function is SðB1Þ ¼ −1, SðB2Þ ¼ 1,
TðB1Þ ¼ −1, and TðB2Þ ¼ 1. (c) Ratio jCð0Þ − CðtÞj=
ð2SmaxTmax sin ½ð1=2Þ

R
t
0

ffiffiffiffiffiffiffiffiffiffiffi
Aðt0Þp

=t0dt0�Þ as a function of t. The
light solid lines are random realizations, whereas the dark
solid line corresponds to the setting of (a). (d) Ratio j∂tCðtÞj=
ðSmaxTmax

ffiffiffiffiffiffiffiffiffiffi
AðtÞp

=tÞ as a function of t. The light solid lines are
random realizations, and the dark solid line corresponds to the
setting of (b). In (c) and (d), the ratios must not exceed 1, which is
depicted by the dashed lines. For the random realizations in (c)
and (d), we randomly determine the transition rate W, the initial
probability Pð0Þ, and the score function SðBνÞ for N ¼ 2, 3, 4,
where we use TðBνÞ ¼ SðBνÞ for TðBνÞ.
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expanded as PðtÞ ¼ Pst þ χP1ðtÞ, where P1ðtÞ is the first-
order correction to the probability distribution. By collect-
ing the first-order contribution OðχÞ in Eq. (1), P1ðtÞ is
given by [62]

P1ðtÞ ¼
Z

t

−∞
eWðt−t0ÞFPstfðt0Þdt0: ð9Þ

Let a score function GðBνÞ be considered. Define the
expectation of GðBνÞ as hGi¼

P
νGðBνÞPðν;tÞ¼1GPðtÞ,

where G≡ diag½GðB1Þ;…; GðBNÞ�. The change in hGi
due to the perturbation, represented by ΔG≡ 1GPðtÞ−
1GPst, is ΔGðtÞ ¼ χ

R
∞
−∞ RGðt − t0Þfðt0Þdt0, where RGðtÞ

denotes the linear response function:

RGðtÞ ¼
�
1GeWtFPst t ≥ 0;

0 t < 0:
ð10Þ

In the linear response regime, any input-output relation
can be expressed through RGðtÞ. From Eq. (3), the time
derivative of CðtÞ is ∂tCðtÞ ¼ 1TeWtWSPst. Comparing
Eq. (10) and ∂tCðtÞ, when G ¼ T and F ¼ WS, then
∂tCðtÞ provides the linear response function of Eq. (10),
which is the statement of the fluctuation-dissipation
theorem.
As a particular case, let us consider the pulse perturba-

tion fðtÞ ¼ δðtÞ, where δðtÞ is the Dirac delta function.
This perturbation corresponds to the application of a sharp
pulsatile perturbation at t ¼ 0. Then the change in the
expectation of TðBνÞ under the perturbation F ¼ WS,
represented by ΔTðpÞ, is ΔTðpÞðtÞ ¼ χ∂tCðtÞ [the super-
script (p) represents that it is the pulse response]. The
correlation bound in Eq. (7) yields

jΔTðpÞðtÞj ≤ χSmaxTmax

ffiffiffi
a
t

r
ðt > 0Þ; ð11Þ

where a is the dynamical activity a≡P
ν;μ;ν≠μ PstðμÞWνμ

[note that AðtÞ ¼ at for the steady state]. Equation (11)
relates the dynamical activity to the effect of the pulse
perturbation in the Markov process. The step response can
be calculated similarly. We apply a constant perturbation
switched on at t ¼ 0, which can be modeled by fðtÞ ¼ ΘðtÞ
with ΘðtÞ being the Heaviside step function. We obtain
ΔTðsÞðtÞ ¼ χ

R
t
0 RTðt0Þdt0 ¼ χðCðtÞ − Cð0ÞÞ, which along

with Eq. (6) yields the following bound:

jΔSðsÞðtÞj ≤ 2χSmaxTmax sin½
ffiffiffiffiffi
at

p � ðt > 0Þ: ð12Þ

Equation (12) holds for 0 ≤
ffiffiffiffiffi
at

p
≤ π=2. For t outside

this range, the trivial inequality jΔSðsÞðtÞj ≤ 2χSmaxTmax
holds true.
We perform numerical simulations to validate Eqs. (11)

and (12). We prepare a two-state Markov process
(B ¼ fB1; B2g) and plot jΔTðpÞðtÞj and jΔTðsÞðtÞj as
functions of t in Figs. 3(a) and 3(b), respectively, by the

solid lines (see the caption of Fig. 3 for details). We plot
their upper bounds by the dashed lines. From Figs. 3(a)
and 3(b), we can observe that the bounds are satisfied for
both systems. As t increases, the upper bound loosens in
Fig. 3(a). This is because the upper bound decays at
Oðt−1=2Þ, whereas the decay rate of jΔTðpÞðtÞj is exponen-
tial. In Fig. 3(b), at t ¼ 4, there is a twofold gap between
the bound and ΔTðsÞðtÞ; however, if the bound is halved,
the bound is invalid.
Conclusion.—This Letter presents the relation between

the correlation function and dynamical activity in the
Markov process. The obtained bounds hold for an arbitrary
time-independent transition rate starting from an arbitrary
initial distribution. By applying the obtained bounds to the
linear response theory, we demonstrated that the effect of
perturbations on a steady-state system is bounded by the
dynamical activity. The findings herein can potentially
enhance our understanding of nonequilibrium dynamics,
as the correlation function plays a fundamental role in
thermodynamics.

This work was supported by Japan Society for the
Promotion of Science KAKENHI Grant No. JP22H03659.

Appendix: Derivation.—Here, we provide a sketch of
proof of Eqs. (5) and (8). For details of the derivation,
refer to Ref. [62].
Let pðx; tÞ be the general probability distribution of x at

time t (x is an arbitrary random variable). Let FðxÞ be an
observable of x and hFti≡P

x FðxÞpðx; tÞ be the expect-
ation of FðxÞ at time t. From the Hölder inequality, the
following relation holds:

jhFit1 − hFit2 j ≤ 2FmaxTVDðpðx; t1Þ; pðx; t2ÞÞ; ðA1Þ

0 4
0

0.02

(a) (b)
r.h.s. of Eq. (11)

0 4
0

0.02

r.h.s. of Eq. (12)

FIG. 3. (a) Response under the pulse perturbation, where the
solid line denotes ΔTðpÞðtÞ as a function of t and the dashed line
shows its upper bound [the right-hand side of Eq. (11)]. (b) Re-
sponse under the step perturbation, where the solid line denotes
ΔTðsÞðtÞ as a function of t and the dashed line shows its upper
bound [the right-hand side of Eq. (12)]. In (a) and (b), the
transition matrix is W12 ¼ W21 ¼ 1 (the diagonal elements are
W11 ¼ W22 ¼ −1), and the score functions are SðB1Þ ¼ −1,
SðB2Þ ¼ 1, TðB1Þ ¼ −1, and TðB2Þ ¼ 1. Additionally, the per-
turbation strength χ is set to 0.01.
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where Fmax ≡maxx jFðxÞj and TVDð·; ·Þ is the total
variation distance:

TVDðpðx;t1Þ;pðx;t2ÞÞ≡1

2

X
x

jpðx;t1Þ−pðx;t2Þj: ðA2Þ

The speed limit relations are conventionally concerned with
the time evolution of PðtÞ. In contrast, we consider the time
evolution of the path probability in Eq. (A1), which was
previously studied [57]. The final time τ > 0 of the Markov
process is first fixed. Let ωt ≡ ½Xðt0Þ�t0¼t

t0¼0
be the trajectory of

a Markov process within the time interval ½0; t� (0 ≤ t ≤ τ),
and let Pðωt;WÞ be the path probability (path integral) with
the transition rate W. We cannot substitute Pðωt;WÞ into
Eq. (A1), because the size of ωt is different for different t.
Therefore, we introduce the scaled process [57]:

Qðωτ; tÞ≡ P
�
ωτ;

t
τ
W

�
: ðA3Þ

In Eq. (A3), Qðωτ; tÞ is the path probability of the “scaled”
process; the scaled process is the same as the original
process, except for its timescale. In the scaled process, the
transition rate is ðt=τÞW, which is t=τ times faster than
the original process. Therefore, the information at time t
in the original process with the transition rate W can be
obtained at time τ in the scaled process with the transition
rate ðt=τÞW. The total variation distance admits the follow-
ing upper bound:

TVDðQðωτ; t1Þ;Qðωτ; t2ÞÞ
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − BhatðQðωτ; t1Þ;Qðωτ; t2ÞÞ2

q
: ðA4Þ

Using the results of Ref. [57], the following relation holds
for 0 ≤ t1 < t2 ≤ τ:

1

2

Z
t2

t1

ffiffiffiffiffiffiffiffiffiffi
AðtÞp
t

dt≥ arccosBhatðQðωτ;t1Þ;Qðωτ;t2ÞÞ: ðA5Þ

Substituting Eq. (A5) into Eq. (A4), we obtain

TVDðQðωτ;t1Þ;Qðωτ;t2ÞÞ≤ sin

�
1

2

Z
t2

t1

ffiffiffiffiffiffiffiffiffiffi
AðtÞp
t

dt

�
: ðA6Þ

Consider an observable CðωτÞ, defined as

CðωτÞ≡ SðXð0ÞÞTðXðτÞÞ: ðA7Þ

Then the expectation of CðωτÞ with respect to Qðωτ; tÞ
yields the correlation, i.e., hCðωτÞit≡P

ωτ
Qðωτ;tÞCðωτÞ¼

hSðXð0ÞÞTðXðtÞÞi. Combining Eqs. (A1) and (A6) and
considering CðωτÞ for the observable in Eq. (A1), we obtain

jhCit1 − hCit2 j ≤ 2Cmax sin
�
1

2

Z
t2

t1

ffiffiffiffiffiffiffiffiffiffi
AðtÞp
t

dt
�
; ðA8Þ

which leads to the main result of Eq. (5).
Let us derive the bound of Eq. (8), which can be obtained

as an intermediate step in the above derivation. Instead of
using Eq. (A6) for deriving the bound, we employ Eq. (A4)
with t1 ¼ 0 and t2 ¼ τ. The Bhattacharyya coefficient yields

BhatðQðωτ;0Þ;Qðωτ;τÞÞ¼
P

μPðμ;0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−τ

P
νð≠μÞWνμ

q
(see

Ref. [62] for details), which provides the bound in Eq. (8).

*hasegawa@biom.t.u-tokyo.ac.jp
[1] W. Heisenberg, Über den anschaulichen inhalt der quanten-

theoretischen kinematik und mechanik, Z. Phys. 43, 172
(1927).

[2] H. P. Robertson, The uncertainty principle, Phys. Rev. 34,
163 (1929).

[3] L. Mandelstam and I. Tamm, The uncertainty relation
between energy and time in non-relativistic quantum me-
chanics, J. Phys. USSR 9, 249 (1945).

[4] N. Margolus and L. B. Levitin, The maximum speed of
dynamical evolution, Physica (Amsterdam) 120D, 188
(1998).

[5] S. Deffner and E. Lutz, Generalized Clausius inequality for
nonequilibrium quantum processes, Phys. Rev. Lett. 105,
170402 (2010).

[6] M.M. Taddei, B. M. Escher, L. Davidovich, and R. L.
de Matos Filho, Quantum speed limit for physical processes,
Phys. Rev. Lett. 110, 050402 (2013).

[7] A. del Campo, I. L. Egusquiza, M. B. Plenio, and S. F.
Huelga, Quantum speed limits in open system dynamics,
Phys. Rev. Lett. 110, 050403 (2013).

[8] S. Deffner and E. Lutz, Energy-time uncertainty relation for
driven quantum systems, J. Phys. A 46, 335302 (2013).

[9] D. P. Pires, M. Cianciaruso, L. C. Céleri, G. Adesso, and
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