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In this work we investigate the ground state of a momentum-confined interacting 2D electron gas, a
momentum-space analog of an infinite quantum well. The study is performed by combining analytical results
with a numerical exact diagonalization procedure. We find a ferromagnetic ground state near a particular
electron density and for a range of effective electron (or hole) masses. We argue that this observation may be
relevant to the generalized Stoner ferromagnetism recently observed in multilayer graphene systems. The
collective magnon excitations exhibit a linear dispersion, which originates from a diverging spin stiffness.
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Introduction.—The ground state of a 2D electron gas is
determined by a competition between kinetic and inter-
action energies. In the absence of external fields or ionic
potentials, numerical calculations [1–5] suggest the ground
state is either a paramagnetic Fermi liquid or a Wigner
crystal [6], depending on the density, while a Stoner
ferromagnetic [7] Fermi liquid state is a close competitor.
By applying an out-of-plane magnetic field, the energy
spectrum of the electron gas forms Landau levels. In the
absence of Zeeman coupling the ground state is known to
be ferromagnetic for densities near one electron per flux
quantum [8,9].
Recent experiments in Bernal bilayer and rhombohe-

drally stacked multilayer graphene show spin and valley
ferromagnetic phases for certain regimes of electron density
and out-of-plane displacement field [10–15]. Furthermore,
superconductivity has been experimentally demonstrated
for the bilayer in Refs. [11,12,16] and the trilayer in
Ref. [17], and theoretically discussed for various graphene
multilayers in Refs. [18–29]. The band dispersion of the
rhombohedrally stacked multilayer graphene systems is
approximately flat up to some momentum scale, at which
point the kinetic energy increases rapidly with momentum.
This corresponds to a high density of states in a bounded
region of momentum space, and is an example of a partially
flat band. Here, we argue that such dispersion is favorable
for Stoner ferromagnetism when the flat region is nearly
fully occupied. We summarize these results in Fig. 1.
Examples of various correlated phenomena that had been
previously studied on models with partially flat bands can
be found in Refs. [30–35].
Motivated by multilayer rhombohedrally stacked gra-

phene, we present a toy model for an interacting 2D
electron gas in which the kinetic energy of the electrons
diverges beyond a limited region in momentum space.
We will refer to this as a momentum-confined gas. We find
the ground state of this gas to be spin polarized. We find a
linearly dispersing magnon branch of excitations, in

contrast with the commonly predicted quadratic dispersion
[36]. We trace this apparent anomaly to a divergence of the
spin stiffness associated with the infinite slope of the
kinetic energy dispersion. We show that the spin polariza-
tion is robust to an addition of weak dispersion to the
kinetic energy within the allowed momentum region.
Hamiltonian.—Our goal is to construct a simple model

that captures non-trivial interaction effects of electrons
confined in momentum space, with a minimal set of
parameters. We consider a 2D electron gas with an
artificially constructed kinetic dispersion, and turn on the
conventional Coulomb repulsion. We imagine the kinetic
dispersion to be such that the electrons are only allowed to
occupy momenta in a disk of radius k0 in momentum space,
whose area is small compared to the Brillouin zone.
Idealizing the dispersion, we set the kinetic energy to zero
within the disk and to infinity outside it:

EKðkÞ ¼
�
0; jkj ≤ k0;

∞; jkj > k0:
ð1Þ

FIG. 1. Comparison of dispersion and Stoner ferromagnetism
between different 2D systems. The dashed horizontal line
represents the chemical potential. *Based on state of the art
quantum Monte Carlo studies [5]. **Experimentally known for
bilayer [11–14] and trilayer [10] graphene, both with a strong
perpendicular displacement field, and analytically shown in this
work for infinitely many layers.
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This dispersion leads to the strict confinement of the
electrons to a disk in momentum space, forming a
momentum space analog of a 2D circular infinite quantum
well in real space.
The confinement in Eq. (1) can be thought of as

mimicking the low energy band dispersion of Nl layers
of rhombohedral graphite subject to a displacement fieldD.
For this system, there is a band gap proportional to D, the
dispersion is very flat up to a momentum scale k0, and rises
as EðkÞ ∼ ðk=k0ÞNl for k > k0. We emphasize that we are
interested in an isolated band, and therefore considerD ≠ 0
in this picture. In the limit of Nl → ∞, the scale k0 is set by
the ratio of the interlayer tunneling t⊥ and the monolayer
Dirac velocity vD (see Supplemental Material [37]). In this
limit, the dispersion resembles the idealized momentum
confined model of Eq. (1).
Next, we examine the effects of electron-electron inter-

actions in such a momentum-confined setup. We consider
our Hamiltonian to be the normal-ordered 2D screened
Coulomb interaction strictly confined in momentum space:

Hint ¼
1

2A

X
q

Vq∶ρq†ρq∶; ð2Þ

ρq ¼
X
σ¼↑;↓

X
k∈Dq

c†σ;kþqcσ;k; ð3Þ

where cσ;k annihilates an electron with spin σ ∈ f↑;↓g
and momentum k, A is the system area, Vq ¼
2πe2 tanh ðjqjdÞ=jqj is the Fourier transform of the
Coulomb potential, and d is the distance to the screening
gate. The sum over momenta in the confined particle
density operator, ρq, is limited to the domain Dq ¼
fkjðjkj ≤ k0Þ ∩ ðjkþ qj ≤ k0Þg such that the fermion
operators are within the disk of radius k0 (see Fig. 2).
While this Hamiltonian has only two (spin) flavors, some of
the conclusions we draw below are applicable also in the
presence of multiple valleys. We remark that any physical

realization of the kinetic dispersion would be accompanied
by form factors in Eq. (3) that originate from the Bloch
wave functions. For simplicity, in this work we set the form
factors to one.
The Hamiltonian in Eq. (2) is the one we will explore

for the rest of the paper. It has a continuous rotational
symmetry around k ¼ 0, and a global SUð2Þ symmetry
for spin rotations. The most interesting property emerges in
the limit of unscreened Coulomb interaction, k0d → ∞.
In this limit, the Hamiltonian has only one length scale,
given by l ∼ k−10 . Consequently, we find a single energy
scale E ∼ e2k0, and an electron density scale n0 ¼ k20=ð4πÞ,
which corresponds to completely filling the disk with a
single spin flavor. Defining the filling factor by ν ¼ n=n0,
we will focus our discussion in this Letter on ν ¼ 1 and on
ν ¼ 1� ε for 0 < ε ≪ 1.
The role of normal-ordering.—The notion of the single-

particle kinetic dispersion in the presence of many-body
interactions is not without subtleties. In our model, the flat
nature of the dispersion is tied to our choice to consider the
normal-ordered form of the interaction operator. Physically,
the normal-ordering prevents an electron from interacting
with itself. By undoing the normal ordering of the confined
Coulomb interaction, we find that Eq. (2) can be separated
into a positive semi-definite density-density operator and a
single-particle operator:

Hint ¼
1

2A

X
q

Vqρq
†ρq

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
¼Hρ−ρ

−
X
σ¼↑;↓

X
jkj≤k0

E0ðkÞc†σ;kcσ;k; ð4Þ

where we introduced the dispersion

E0ðkÞ ¼
1

2A

X
jk0j≤k0

Vk−k0 : ð5Þ

This dispersion is, up to a sign, the exchange contribution
to the self-energy of a particle at momentum k in the
presence of a completely filled disk of radius k0. In contrast
with the standard unconfined interaction, we find that the
momentum cutoff introduces a nontrivial dispersion term
associated with the normal ordering. The dispersion in
Eq. (5) plays an important role in several properties of our
model and thus warrants an explicit discussion. In the limit
of unscreened interaction, k0d → ∞, this dispersion is
given by

E0ðkÞ ¼ e2k0
1

π
Ẽ

�
π

2
;
jkj
k0

�
; ð6Þ

where Ẽðπ=2; xÞ is the complete elliptic integral of the
second kind whose argument x is the elliptic modulus. The
derivative of Eq. (6) diverges logarithmically at jkj ¼ k0.
This divergence is cut off for finite k0d. Expanding Eq. (5)

FIG. 2. The kinetic dispersion confines electrons to the disk D0

of radius k0 in momentum space. The region Dq is the
intersection of two disks mutually shifted by q. The strict
momentum confinement forbids electrons with momenta in
D0 −Dq from scattering with a momentum transfer q.
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in ðk0dÞ−1, we find that the series does not uniformly
converge on the disk, but nevertheless, the correction is
small everywhere for k0d ≫ 1. The effect of screening
length on the dispersion is plotted in Fig. 3. The details are
described in the Supplemental Material [37].
Exact ground state.—The ground state of Eq. (2) is not

analytically solvable. We can, however, solve for the exact
ground state upon introducing a particular dispersion to the
otherwise flat disk, which would eliminate the contribution
of Eq. (5). With this dispersion, we are left with the density-
density Hamiltonian Hρ−ρ as defined in Eq. (4). The
HamiltonianHρ−ρ is positive semi-definite, which provides
a direct route to finding its exact ground state. For ν ¼ 1,
consider completely filling the spin σ ¼ ↓ flavor, i.e., a
maximally spin-polarized state. We denote this state by
jΨSPi. By applying Eq. (3) one easily finds that

∀q∶ ρqjΨSPi ¼ 0 ⇒ Hρ−ρjΨSPi ¼ 0; ð7Þ

which proves that jΨSPi is a ground state of Hρ−ρ. We
emphasize that this ground state is degenerate with SUð2Þ
spin rotation symmetry. For a model with multiple valleys,
the above statement holds for any integer filling ν and any
completely spin- and valley-polarized state, provided that
a large momentum separation between different valleys
allows for a neglect of intervalley scattering in Coulomb
processes.
The spin-polarized state jΨSPi is also an eigenstate

of Hint. We hypothesize that jΨSPi is a ground state
of Hint. We provide numerical evidence for this claim
below. Assuming this hypothesis is correct, we proceed to
calculate the excitations with respect to this state.
Single-particle excitations.—The single electron and

hole excitations energies relative to the fully spin
σ ¼ ↓ polarized state, EeðkÞ and EhðkÞ, respectively,
are defined by

½Hint; c
†
↑;k�jΨSPi ¼ EeðkÞc†↑;kjΨSPi;

½Hint; c↓;k�jΨSPi ¼ EhðkÞc↓;kjΨSPi; ð8Þ

and by direct calculation are found to be

EeðkÞ ¼
1

A

X
jk0j≤k0

V0;

EhðkÞ ¼
1

A

X
jk0j≤k0

ðVk−k0 − V0Þ: ð9Þ

The identity E0ðkÞ ¼ ðEeðkÞ þ EhðkÞÞ=2 holds also if
one adds a spin-independent single-particle dispersion to
the HamiltonianHint. The electron excitation energy is the
charging energy of the system’s geometric capacitance,
and thus has a flat dispersion. The hole excitation energy
has the same contribution (with an opposite sign), along
with the exchange interaction of the missing electron.
The dispersion of the hole excitation energy is therefore
shown in Fig. 3 up to a factor of 2. We find that the hole
dispersion is such that the lowest energy is obtained by
removing a hole from the edge of the disk, thereby
reducing the Fermi sea radius by an infinitesimal amount.
This is identical to the Fermi liquid behavior.
Collective excitations.—The collective particle-hole

excitations of momentum Q and spin ℏ with respect to
jΨSPi are eigenstates of Hint spanned by wave functions of
the form

jΨk;Q
ph i ¼ c†↑;kþQc↓;kjΨSPi: ð10Þ

We remark the state described by jΨSPi does not admit
particle-hole excitations that are spinless, in contrast
with the Stoner metallic state, and in some similarity to
a ferromagnetic band insulator. The solution is given by
diagonalizing the following matrix:

½HðQÞ�k;k0 ¼ hΨk0;Q
ph jHintjΨk;Q

ph i; k;k0 ∈DQ: ð11Þ

This restriction of both indices to the domain DQ ¼
fkjðjkj ≤ k0Þ ∩ ðjkþQj ≤ k0Þg is due to our infinite
kinetic energy dispersion for states with momentum outside
the disk. This sharp cutoff leads to a striking result—the
lowest-lying particle-hole excitation is massless. For small
jQj=k0 we find

EphðQÞ ≈ 4E0ðk0Þ
πk0

jQj: ð12Þ

This is surprising, as for a magnon we normally expect to
find a finite spin stiffness ρs such that EphðQÞ ≈ ρsjQj2.
The above result holds in the presence of any rotationally
symmetric single-particle dispersion [37].

k0d=
k0d=100
k0d=10
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)[
e2
k 0
]

FIG. 3. The dispersion E0ðjkjÞ for different screening lengths
of the Coulomb interaction. In the case of unscreened Coulomb
interaction (k0d → ∞) the dispersion is singular at k ¼ k0. This
singularity is smoothed out for screened Coulomb interaction.
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To resolve this apparent discrepancy, we replace our
strictly confining kinetic dispersion with the following:

HK ¼ UK

X
σ¼↑;↓

X
k

�jkj
k0

�
ND

c†σ;kcσ;k; ð13Þ

where UK is chosen such that 0 < UK ≪ e2k0. Under this
softened momentum confinement the momentum summa-
tions are unconstrained since particles are allowed to be
excited beyond the disk. We emphasize that in the limit
of ND → ∞ our strictly confining kinetic dispersion is
restored. For ND ≫ 1 we find, using second order pertur-
bation theory, that the spin stiffness is finite, and the
magnon dispersion is quadratic:

EphðQÞ ≈ 1

2

UK

k20
NDjQj2: ð14Þ

However, in the limit ND → ∞, the spin stiffness ρs ∼ ND
diverges. This leads to a breakdown of perturbation theory
as jQj=k0 can no longer be used as a small parameter [37].
Phase diagram near ν ¼ 1.—We have seen above that

when removing electrons (or adding holes) to the spin-
polarized ground state jΨSPi, it is energetically favorable to
start with the outermost states, thereby reducing the radius
of the occupied disk. Consider removing a small fraction of
the electrons from the system, i.e., setting the system at
filling fraction ν ¼ 1 − ε for 0 < ε ≪ 1. We now argue that
the system has a spin-polarized Fermi liquid ground state
for small enough ε > 0. In the limit of ε → 0, the spin
polarization is undiminished, and the system can be
thought of as having a single species of particles (in this
case, holes), with a single particle dispersion EhðkÞ ¼
2E0ðkÞ and subject to the 2D screened Coulomb inter-
action. Partially filling this system leads to a circular Fermi
surface. The finite interaction strength (due to screening)
and the constraint to 2D imply a Fermi liquid ground state.
Presumably, continuing to decrease the filling will even-
tually destroy the spin polarization, and we expect a phase
transition to a spin-depolarized state.
When the dispersion is exactly flat (ND → ∞) there is

difficulty making a similar argument for filling ν ¼ 1þ ε,
as the single-electron excitation spectrum is completely
flat. However, as previously discussed, the average of
single-electron and single-hole excitation spectra is con-
strained to be E0ðkÞ. Therefore, upon introduction of some
weak dispersion to the disk, for example—by setting ND to
a finite value, we expect both electron and hole sides to
display a Fermi liquid phase by the exact same reasoning.
Generally, we note that the system has no particle-hole
symmetry with respect to ν ¼ 1.
Numerical analysis.—In order to support our hypothesis

of a spin-polarized ground state, we have performed an
exact diagonalization study of Eq. (2) for finite systems
with either periodic or twisted boundary conditions at

filling factor ν ¼ 1 for N ∈ f6; 7; 12; 13; 18; 19g particles.
The diagonalization is done using the matrix-free implicitly
restarted Lanczos method. We find the ground state at
ν ¼ 1 to be the fully spin-polarized state for all system sizes
considered. Further technical details are given in the
Supplemental Material [37].
To further solidify our claim, we have examined the

robustness of the spin-polarized ground state to additional
dispersion. We repeat the exact diagonalization at ν ¼ 1 for
the confined Coulomb Hamiltonian Hint in Eq. (2) with an
additional quadratic dispersion (ℏ ¼ 1):

Hintþmass ¼ Hint þ
X
σ¼↑;↓

X
jkj≤k0

jkj2
2meff

c†σ;kcσ;k: ð15Þ

In Fig. 4 we plot the total spin S of the ground state of
Eq. (15) at ν ¼ 1 vs m−1

eff , as the latter is swept from
negative to positive values in increments of m−1

0 ¼
Vk0N=ð2Ak20Þ. The flat kinetic dispersion in Eq. (1) cor-
responds to m−1

eff ¼ 0. For the range of finite systems we
considered, we find that the ground state is fully spin
polarized, i.e., S ¼ N=2, for −3m−1

0 ≲m−1
eff ≲ 2m−1

0 , with
the precise phase boundaries slightly varying with system
size. Outside the spin-polarized region we find the spin
polarization drops sharply to a lower value which depends
on system size. One can show that, for all system sizes
considered, this residual spin polarization has precisely the
value expected by Hund’s rule applied to a partial filling of
the highest shell of degenerate kinetic energy states [37].
We associate this result with a spin-unpolarized phase, and
expect that in the thermodynamic limit we will obtain
S=N → 0 in this regime of parameters. The asymmetry
of the spin-polarized regime boundary with respect to the
sign of m−1

eff is due to the lower exchange energy of the

FIG. 4. The ground state spin polarization of the Hamiltonian in
Eq. (15) at ν ¼ 1 as a function of inverse effective mass m−1

eff ,
computed for various system sizes ranging from N ¼ 6 to
N ¼ 19 particles. The horizontal axis increments are m−1

0 ¼
Vk0N=ð2Ak20Þ. The unpolarized phase has a subextensive polari-
zation explained by Hund’s rule.
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unpolarized disk-shaped Fermi sea compared to that of an
annular-shaped Fermi sea, the two different shapes that
correspond to positive and negative m−1

eff , respectively.
In multilayer graphene systems with typical values of
k0 ¼ 0.2 nm−1 and dielectric coefficient ϵd ¼ 6, the mass
scale is given by m0 ∼ ϵdk0=e2 ∼ 0.06me where me is the
free electron mass.
Conclusions.—We considered a model of interacting

electrons confined in momentum space, and showed that
when nearly half of the available states are filled, its ground
state is spin polarized. We then numerically demonstrated
that this spin polarization is stable to small variations of the
model, and is not a fine-tuned consequence of the kinetic
dispersion. We find this ground state to have a nontrivial
excitation spectrum, including a diverging spin stiffness
which leads to massless particle-hole excitations at low
momenta. We argued in favor of a ferromagnetic Fermi
liquid phase at ν ¼ 1� ε, thereby demonstrating Stoner
ferromagnetism in this model. The prevalence of spin and
valley Stoner ferromagnets in multilayer rhombohedral
graphene in a displacement field, where for a range of
densities electrons are confined to a flat region of momen-
tum space, may be understood within the framework of
our model.
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