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The discovery of the Hat, an aperiodic monotile, has revealed novel mathematical aspects of aperiodic
tilings. However, the physics of particles propagating in such a setting remains unexplored. In this work we
study spectral and transport properties of a tight-binding model defined on the Hat. We find that (i) the
spectral function displays striking similarities to that of graphene, including sixfold symmetry and Dirac-
like features; (ii) unlike graphene, the monotile spectral function is chiral, differing for its two enantiomers;
(iii) the spectrum has a macroscopic number of degenerate states at zero energy; (iv) when the magnetic
flux per plaquette (ϕ) is half of the flux quantum, zero modes are found localized around the reflected “anti-
hats”; and (v) its Hofstadter spectrum is periodic in ϕ, unlike for other quasicrystals. Our work serves as a
basis to study wave and electron propagation in possible experimental realizations of the Hat, which we
suggest.
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Introduction.—Quasicrystals [1,2] exhibit a rich variety
of physical properties beyond those observed in periodic
crystals [3–5]. While long-range ordered like crystals,
they lack periodicity, leading to novel electronic [6–11],
optical [12–14], vibrational [3,5], or topological pheno-
mena [15–43]. Quasicrystalline materials derive their exotic
behaviors from the symmetries of their quasilattices [44]. In
two-dimensions (2D) quasilattice symmetries can often be
described by aperiodic tilings of the plane [3,5,45–47].
Recently Smith et al. [48,49] discovered the first

example of a single, simply connected tile that tiles the
plane only aperiodically. Dubbed “the hat,” the shape
admits a continuous range of deformations with the same
property. As with certain other quasicrystals, the tiling can
be understood as a slice through a higher-dimensional
periodic lattice [50,51]. The Hat quasilattice (we use
capitalization to distinguish the hat tile from the Hat tiling)
is chiral; it has two enantiomers related by mirror sym-
metry. The tiles are two mirrored images of the same tile
[Fig. 1(a)]: the hat, colored white, and the anti-hat, colored
blue. A related tile, tile(1,1), does not require its mirror
image to tile the plane aperiodically [49].
Does the Hat imprint any novel physical properties on

propagating particles compared to other two-dimensional
aperiodic lattices? A fruitful strategy to answer this question
is to define a vertex tight-binding model [6,9,17,53] on
the quasilattice, in which particles hop between nearest-
neighbor verticeswith equal probability.Vertexmodels have
a single energy scale, the hopping, and hence conveniently
isolate the effect of the graph connectivity on particlemotion.
They reveal unique spectral properties of quasicrystals, such

as multifractal spectra [4,9,11,17,43,54–57], characteristic
of critical disorder systems [58], or exact zero modes
[6,9,53,59,60]. Vertex models on 2D quasilattices differ
from those of periodic 2D lattices by displaying an ape-
riodic Hofstadter spectrum as a function of an ap-
plied perpendicular magnetic flux per plaquette ϕ
[15–18,20,22,23,41,43].
In this Letter, we establish the spectral and transport

properties of the Hat through its vertex tight-binding
model. The momentum-resolved spectral function displays
striking similarities with that of graphene, including puta-
tive Dirac cones and sixfold symmetry. However, unlike
graphene, the Hat’s spectral function is chiral, and displays
a predictable finite density of exact zero modes. As the Hat
is a monotile, its Hofstadter spectrum is periodic in
magnetic field flux, bypassing incommensurability effects
of “polytiled” quasicrystals [15–18,20,22,23,41]. The
Hofstadter bands carry a Chern number that quantizes
the two-terminal conductance in units of e2=h. Hence, the
physical properties of the hat introduce a remarkable new
class of phenomena between periodic crystals and aperi-
odic quasicrystals.
Spectral properties.—The Hat quasilattice can be gen-

erated using “inflation rules” in which four basic metatiles
(combinations of hats), dubbed H, P, T, and F, divide into
smaller versions of the same tiles, which are then inflated
(rescaled) so all hats return to their original size [48] (the
Supplemental Material [61] contains a brief introduction).
We define a tight-binding model on the vertices of infla-
tions of all metatiles. We focus on H metatiles, whose
second inflation, H2, is shown in Fig. 1(a). Unless
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stated otherwise, our results apply to all tilings of the same
hat tile.
Each vertex is either two-, three-, or fourfold coordi-

nated, separated by three possible bond lengths. The
average coordination number is hzi ∼ 2.31 and the average
bond length is ã ¼ 1.37a, with a the shortest bond length.
Setting all hoppings equal defines the vertex

Hamiltonian [6,9,53]

HHat ¼ −t
X

hiji
c†i cj þ H:c: ð1Þ

The sum runs over all pairs of neighboring sites and the
operators c†i and ci create and annihilate a particle on site i.
We choose t ¼ 1 without loss of generality.
The density of states (DOS) is shown in Fig. 1(b). The

energy minimum Em ≈ −2.4 is well captured by the
average coordination number hzi [6,23]. Like other qua-
sicrystals [11,13], the Hat exhibits a fractal DOS with a
multitude of van Hove singularities.
The probability of finding a state at energy E and

momentum k is determined by the spectral function,
AðE;kÞ ¼ hkjδðHHat − EÞjki, shown in Figs. 1(c) and
1(d) for H2. This function is well defined even without
translational invariance [68–74] as it measures the
overlap of the eigenstates with plane waves of well-defined
momentum k, hrjki ¼ ð1= ffiffiffiffi

N
p Þeιk·r, with ι2 ¼ −1, N the

number of vertices, and r ¼ ðx; yÞ their positions. The
spectral function has been measured using angle-resolved
photoemission experiments in quasicrystals [72–74].
The spectral function shows, close to zero energy, Dirac

nodelike features reminiscent of graphene’s band structure.
To quantify this similarity we define a periodic hexagonal
lattice, shown as empty circles in the inset of Fig. 1(a), that
we call the graphene approximant. The graphene lattice

constant ag ¼ 2a=
ffiffiffi
3

p
is chosen such that the associated

honeycomb lattice captures many (≈53%) of the Hat’s
vertices. The graphene approximant’s dispersion and perio-
dicity capture several features of AðE;kÞ [orange lines in
Figs. 1(c) and 1(d)]. The dispersion relation is [75]

E�ðkÞ ¼ �t1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ fðkÞ

p
− t2fðkÞ þ ε0; ð2Þ

where fðkÞ ¼ 2 cosð ffiffiffi
3

p
kxÞ þ 4 cosð ffiffiffi

3
p

kx=2Þ cosð3ky=2Þ,
t1 and t2 are the first and second nearest-neighbor
hopping amplitudes, and ϵ0 is the energy offset. Here,
we use ðag; t1; t2; ε0Þ ¼ ð2a= ffiffiffi

3
p

; 0.82;−0.025;−0.2Þ. A
nonzero t2 and ϵ0 mimic the Hat spectrum’s asymmetry.
The Brillouin zone of the graphene approximant is repre-
sented with orange lines in Fig. 1(d). The zone corners
match the location of the Dirac nodelike features close to
E ¼ −0.2. The Hat’s C6 symmetry [50] is apparent in
Fig. 1(d).
Unlike graphene, we can define an enantiomer of the Hat

quasilattice by applying a reflection operator. The differ-
ence between the two enantiomorphic spectral functions
AþðE;kÞ −A−ðE;kÞ at E ¼ −0.2 reveals chiral proper-
ties spread across the quasi-Brillouin zone [Fig. 1(e)].
Zero-energy states.—Another striking feature dissimilar

to graphene is the existence of a finite density of
zero-energy states [Fig. 2(a)]. The number of these zero
modes can increase or decrease upon adding tiles (see
Supplemental Material [61] for examples). Similar
zero modes have been found in numerous quasilattices,
including the Penrose tiling [6,59,62,76], the Ammann-
Beenker tiling [60,63,77], and quasicrystalline graphene
bilayers [78].
Figure 2(b) shows the local density of states (LDOS) at

zero energy of H2. While some of the zero-mode weight
arises from zero modes of underlying metatiles of the

FIG. 1. Spectral properties of the vertex model Eq. (1) on the Hat. (a) H2, with 22 anti-hats (reflected images of the hat tile) shown in
blue. The inset shows a patch of the Hat quasilattice (solid circles) overlayed with a graphene hexagonal lattice approximant (open
circles). (b) Density of states of the vertex model Eq. (1) on H2. (c) Momentum-resolved spectral function AþðE;kÞ of the enantiomer
in (a) along the kx momentum direction, calculated using the Kernel polynomial method [52]. The dispersion relation Eq. (2) for the
hexagonal lattice [inset of (a)], Eq. (2), is overlaid in orange, with parameters ðag; t1; t2; ε0Þ ¼ ð2a= ffiffiffi

3
p

; 0.82;−0.025;−0.2Þ.
(d) AþðE ¼ −0.2;kÞ as a function of momentum k ¼ ðkx; kyÞ. (e) Difference between the spectral functions A�ðE ¼ −0.2;kÞ of
the system in (a) and its reflection in the y axis.
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previous inflation generation [colored areas in Fig. 2(b)],
the finite weight on T1 withinH2, Fig. 2(b), is absent in T1
itself [Fig. 2(c)].
However, all these zero modes can be understood in

terms of the graph connectivity. The tight-binding model
defines the adjacency matrix of the corresponding graph;
the zero modes then span its null space. A basis can always
be found in which each (un-normalized) zero mode has
integer amplitudes on all vertices (see Supplemental
Material [61] for proof). These modes are fragile in the
sense that they rely on equal hoppings to remain at strictly
zero energy [62,63].
For a nearest-neighbor vertex model, like Eq. (1), the

zero energy condition implies that for every site i, the sum
of the amplitudes on all neighbors j of i must vanish:P

j Ψj ¼ 0 [64]. In the Hat tiling the simplest zero modes
take the form of cycles of length 4m, with m integer. Here
the amplitudes around the cycle can be taken to be the
repeated sequence f0; 1; 0;−1gm whenever vertices from
the rest of the graph connect only to cycle vertices of zero
amplitude or connect to pairs of vertices with opposite
amplitude. This form is a generalization of one identified
by Sutherland [6,64]; we term it a Sutherland loop.
In Figs. 2(c) and 2(d) we show two quasicrystallites

differing by one hat. We find no zero modes in (c) and one

in (d). Removing the extra hat allows for a 20-vertex
Sutherland loop shown in Fig. 2(d). Larger quasicrystallites
contain integer-amplitude zero modes not of the Sutherland
loop form. In general, all integer-amplitude zero modes of a
given quasicrystallite can be exactly enumerated using the
Hermite normal form of the adjacency matrix (see
Supplemental Material [61]) [65,79].
π-flux zero modes.—The shortest loops, circling a single

tile, cannot be Sutherland loops as they have a length of 13
or 14. However, anti-hats, the enantiomorphic minority
tiles which have two fourfold coordinated sites [blue in
Fig. 1(a)], can support a zero mode if we allow a sign flip of
one of the hoppings around the anti-hat—equivalent to
threading a magnetic flux of π per anti-hat. As all the hats
and anti-hats have the same area, this suggests that applying
a perpendicular magnetic field with exactly π flux per
plaquette should generate one zero mode per anti-hat. In
fact, we find that these are the only zero modes in this
setting.
To model a perpendicular magnetic field B we introduce

a Peierls phase by changing the hopping from site j to site i
as t → t exp½−ιπðϕ=ϕ0Þðxi − xjÞðyi þ yjÞ=A�, where A ¼
8

ffiffiffi
3

p
a2 is the hat area, ϕ0 ¼ h=e is the magnetic flux

quantum, and ϕ is the magnetic flux. When ϕ=ϕ0 ¼ 1=2
the hoppings can be chosen to be real, with every hat tile
having an odd number of negative bonds compared to
Eq. (1). The spectrum close to E ¼ 0 is shown in
Fig. 2(e). For inflations of primitive metatiles H0, T0, P0,
and F0 that we checked, we found that the number of zero
modes equals the number of anti-hats (see Supplemental
Material [61]). Their LDOS is localized exactly at the anti-
hats, as exemplified by Fig. 2(f). Furthermore, Fig. 2(g)
shows that the zero-mode wave function, having one defect
per anti-hat, disobeys the Sutherland loop form.
Hofstadter spectrum.—Figure 3(a) shows the bulk spec-

trum of H3, the third inflation of the H metatile, as a
function of ϕ=ϕ0. To isolate the bulk spectrum we exclude
states whose weight inside the yellow line in Fig. 3(b) is
smaller than their weight outside it.
The spectrum is periodic in the interval ϕ=ϕ0 ∈ ½0; 1Þ, as

there is only one type of plaquette and only one area A to
normalize the flux. This is a special feature of monotiles
compared to other quasicrystals. A typical quasicrystal
spectrum is aperiodic as a function of ϕ=ϕ0 [16,33,41,80],
excepting quasicrystals composed of tiles with commen-
surate areas [22,23].
When the magnetic length lB ≫ a, the spectrum splits into

Landau levels near the bottom of the spectrum (E ∼ −2.4),
and disperses linearly with B [23]. In the Hofstadter regime
lB ∼ a, the spectrum is split into Hofstadter bands separated
by gaps. Placing the Fermi energy EF within these gaps, the
system should display topological edge states and a quantized
Hall conductance [81,82].
The topological properties of aperiodic 2D systems

without time-reversal symmetry are captured by a

FIG. 2. Zero modes under 0 and π flux. (a) Low-energy
spectrum of the Hat quasilattice without flux. The eight exact
zero modes are shown in red. (b) The associated local density of
states (LDOS) of these zero modes. Colors highlight previous
inflation generations (T1, P1, F1, and H1) composing H2.
(c) The T1 quasicrystallite has no zero modes. (d) The T1
quasicrystallite without the rightmost hat has a single zero mode.
The overlaid zero-mode amplitudes form the Sutherland loop
sequence f0; 1; 0;−1gm [64] of length 4m, with m∈Z. (e) The
low-energy spectrum under π flux. Red: the 22 exact zero modes.
(f) Corresponding zero-energy LDOS, pinned to anti-hats.
(g) Zoom of the wave function corresponding to eigenstate
530. Because ϕ=ϕ0 ¼ 1=2, the Sutherland loop is modified to
have one defect per anti-hat.
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quantized bulk average C of the local Chern marker Cr [83].
Mathematically, C ¼ ð1=AbÞ

P
r∈Ab

Cr, with Ab the area

of a bulk region highlighted in Fig. 3(b), Cr ¼ hrjĈjri and

Ĉ ¼ 2πι
�
P̂ X̂ Q̂ Ŷ P̂ −P̂ Ŷ Q̂ X̂ P̂

�
: ð3Þ

Here P̂ ¼ P
E<EF

jΨihΨj is the projector onto occupied

states, Q̂ ¼ 1 − P̂, and X̂ and Ŷ are position operators. In a
topological phase C∈Z coincides with the Chern number
for periodic systems [83].
Figure 3(b) shows Cr for EF ¼ −1.58 and ϕ=ϕ0 ¼ 0.2;

C ≈ −1 in the bulk, as expected for a topologically non-
trivial phase [83]. The bulk value of C in the interval
ϕ=ϕ0 ∈ ½0; 1=2� is shown in Fig. 3(c). Regions with non-
trivial Chern numbers match the positions of bulk gaps
in Fig. 3(a), confirming the presence of topological edge
states.
The physical imprint of topological edge states is

a quantized two-terminal conductance G, in units of
G0 ¼ e2=h. To confirm this,we attach leads to twoboundary

regions of H3 [Fig. 3(b)]. These leads consist of decoupled
waveguides of dispersion −2 cos kz, oriented along the z
direction and placed such that each waveguide probes a
single site. The two-terminal conductanceG is then defined
in the Landauer-Buttiker formalism [84] as G ¼ G0Tr½ττ†�,
where G0 ¼ e2=h is the conductance quantum and τ is the
transmission matrix between two leads calculated using
Kwant [85].
The conductance map as a function of ϕ=ϕ0 and E is

shown in Fig. 3(d). In regions with nonzero density of bulk
states, the conductance exhibits fluctuations observed in
topologically trivial quasicrystals [4]. However, inside the
bulk gaps with nontrivial C ¼ �1,G ¼ G0, stemming from
a topological boundary state. Finite size effects are visible
in smaller gaps with larger C [Fig. 3(c)], where G deviates
from quantization.
Physical properties of Tile(1,1).—With a geometric

modification, the alternative monotile tile(1,1) tiles the
plane only aperiodically without its mirror image [48,49].
This modified form is called “the spectre”; since we are
interested only in graph connectivity we use the names Tile
(1,1) and Spectre interchangeably. Tile(1,1) contains spe-
cial tiles similar to the anti-hats. They appear π=6 rotated
from the other tiles, which appear only π=3 rotated from
one another. As with anti-hats, these “anti-spectres” always
have two fourfold coordinated vertices. As tile(1,1) is a
member of the continuous family of tiles connected to the
hat it is pertinent to ask which properties it maintains.
Unlike the Hat, the vertices of Tile(1,1) are not known to

fit to a periodic hexagonal lattice. Thegraphene-like features
are therefore washed out. However, the quasilattice remains
chiral, so it remains true that AþðE;kÞ −A−ðE;kÞ ≠ 0.
Tile(1,1) also displays strictly localized zero modes that
have a similar origin to those in theHat. In the presence of a π
flux, each anti-spectre again localizes a zero mode. In all the
cases we have checked, these again exhaust all zero modes.
As the Spectre is a monotile, the Hofstadter spectrum is
periodic in ϕ and supports topological gaps with quantized
conductance, as for the Hat tiling.
Conclusions.—The Hat and Spectre monotiles present

physical properties that set them aside from previously
known 2D crystals and quasicrystals. The Hat is unique as a
quasicrystal in displaying graphene-like features in its
spectral function, notably putative Dirac cones. These
are intrinsic, unlike in quasicrystalline graphene bilayers
[40,86,87] where they are inherited from the underlying
graphene layers. In the Hat, the intrinsic Dirac-cone-like
features resemble those found in graphene in the presence
of a small density of topological defects [88]. Both the Hat
and Tile(1,1) exhibit zero modes. At zero field, their origin
is similar to those found in the Penrose and the Ammann-
Beenker tilings. However, imposing half a flux quantum
per plaquette brings interesting differences, localizing the
spectral weight around special tiles. Comparing the precise
localization properties of the zero modes found in different

FIG. 3. Hofstadter spectrum and quantized conductance.
(a) The bulk Hofstadter spectrum Eq. (1) calculated for H3 near
the band bottom. (b) The local Chern marker Cr calculated forH3
(black) at E ¼ −1.58 and ϕ=ϕ0 ¼ 0.2. The yellow dashed line
delimits the bulk area Ab used to produce panels (a) and (c).
Inside Ab, the marker averages to C ¼ −1.03. Thick black lines
on the edges denote sites where leads are attached. (c) C as a
function of E and ϕ=ϕ0. Bulk gap regions of panel (a) have
nontrivial Chern numbers. (d) Corresponding two-terminal con-
ductance map. Where jCj ¼ 1, the conductance is quantized to
G ¼ G0 ¼ e2=h, confirming the role of topological boundary
modes in transport. The leads can be placed arbitrarily so long as
they are well separated.
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quasicrystals merits further study. Lastly, the Hofstadter
butterfly is periodic for monotilings, unlike for other
studied quasicrystals. In short, the Hat and Tile(1,1) display
a blend of crystallinity and quasicrystallinity that sets them
apart from known crystals and quasicrystals.
A vertex model of the tiling may be realized in

metamaterials, where complex phases mimicking magnetic
fields can be engineered [89]. Quasicrystals have been
realized in photonic metamaterials [19,89–91], polaritonic
systems [92], electrical circuits [93], microwave networks
[94], and acoustic [95] and mechanical [96] metamaterials.
While no material has yet been discovered with the

symmetries of the Hat, it would seem likely that nature
would realize such an elegant construction, just as Penrose
tilings were discovered to describe the surfaces of icosa-
hedral quasicrystals [66,97–99]. A promising solid-state
platform is the engineered adsorption of atoms to constrain
scattering of surface states. CO molecules on metals have
been used to construct artificial honeycomb [100] and
fractal [101] lattices. 2D lattices of Shiba states caused by
magnetic adatoms on superconductors serve to engineer
topological phases [102–104].
Chiral crystals display richer physical responses

than achiral crystals [105]. The Hat should share some of
these features with chiral crystalline counterparts, including
magnetochiral anisotropy [106] and optical gyrotropy
[107–110]. Additionally, adding defects or interactions
can generalize other works on interacting quasicrystals
[33,77,111,112]. We leave the study of these effects for
subsequent work.

The code used to generate our results is available at
Ref. [113].
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