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The exploration of solid-solid phase transition suffers from the uncertainty of how atoms in two crystal
structures match. We devised a theoretical framework to describe and classify crystal-structure matches
(CSM). Such description fully exploits the translational and rotational symmetries and is independent of
the choice of supercells. This is enabled by the use of the Hermite normal form, an analog of reduced
echelon form for integer matrices. With its help, exhausting all CSMs is made possible, which goes beyond
the conventional optimization schemes. In an example study of the martensitic transformation of steel,
our enumeration algorithm finds many candidate CSMs with lower strains than known mechanisms. Two
long-sought CSMs accounting for the most commonly observed Kurdjumov-Sachs orientation relationship
and the Nishiyama-Wassermann orientation relationship are unveiled. Given the comprehensiveness
and efficiency, our enumeration scheme provide a promising strategy for solid-solid phase transition
mechanism research.
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Solid-solid phase transition (SSPT) is ubiquitous in
nature and relevant to many industries [1]. For example,
the martensitic transition is a process of immense impor-
tance in the steel industry [2–4], and the graphite-to-
diamond transition under shock compression enables the
synthesis of highly desirable diamond from abundant and
cheap carbon sources [5–8]. Compared to other well-
studied dynamical processes, such as the gas-phase
or surface reactions [9–12], SSPTs involve not only
much greater degrees of freedom (d.o.f.) [13–15] but also
complex collective behavior with controversial mecha-
nisms [16]. Besides, the crystalline nature highlights the
significance of lattice deformation in the reaction path,
which is distinct from the fluid-solid or fluid-fluid phase
transitions [17,18]. With potential insights into the mech-
anisms and principles of self-organization, symmetry
breaking, and criticality in multiple disciplines, under-
standing the atomic details of SSPTs is urgent but remains
in its infancy.
Theoretical studies of SSPTs fall into two categories:

nucleation and concerted mechanisms. Although a realistic
SSPT generally occurs through nucleation, the vast d.o.f.
it involves are expensive for atomic-level simulations. The
concerted mechanism is a simplified model with few d.o.f.
in a small supercell with periodic boundary condition, and
thus can be investigated at the density-functional theory
level [17]. Despite their differences, simulations using
∼105 atoms suggest that minimum energy paths (MEP)
of nucleation proceed locally via much simpler concerted

mechanisms [13,14]. That is to say, nucleation is likely
to share the same atom-to-atom correspondence between
the initial and final structures—which we call the crystal-
structure match (CSM)—with a concerted mechanism [see
Fig. 1(a)]. As a universal concept, the CSM lies at the heart
of the SSPT research. This is especially true for concerted
mechanisms, where methods to find the MEP like the
solid-solid nudged elastic band (SSNEB) require the user to
prespecify a pair of supercells in two phases and the
correspondence between the atoms in them [17,19].
However, human intuition often fails to select the “best”
CSM, in which case the obtained MEP is not the global
one. To address this issue, methods like the stochastic
surface walking [20] and PALLAS [21] try different CSMs as
they explore the potential energy surface. Meanwhile,
several studies have been dedicated to design criteria for
instructing CSM without explicit energy minimization,
e.g., maximal symmetry [22], minimal strain [23], minimal
dissociation of chemical bonds [24], and minimal total
distance traveled by the atoms [25]. Nevertheless, existing
optimization algorithms cannot claim conclusively to find
the best CSMs under these criteria, nor are they guaranteed
to be energetically favorable.
In this Letter, we provide a theoretical framework to

describe, classify, and enumerate CSMs. We call the lattice
deformation of a CSM its sublattice match (SLM), since it
deforms certain sublattices of the initial crystal structure
into sublattices of the final one [see Fig. 1(b)]. By
extracting key features of a sublattice as a Hermite normal
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form (HNF) [26,27], we show that every SLM can be
uniquely represented by an integer-matrix triplet (IMT).
This eliminates the heavy redundancy in the conventional
supercell pair representation [17,23,35], making it possible
to exhaust all SLMs within a certain range. For each SLM,
its representative CSM is obtained via the Hungarian
algorithm which minimizes the atomic displacement [36].
Using this strategy, we provide a comprehensive list of
CSMs in an example study of the martensitic transforma-
tion of steel. Among the enumerated CSMs, we discover
the ones that account for the most commonly observed
Kurdjumov-Sachs (KS) orientation relationship (OR) [37]
and the Nishiyama-Wassermann (NW) OR [3], as well as
ones with much lower strains than all previously known
mechanisms.
Practically, we consider a CSM with the following

property [38]: there exists a linear transformation S such
that after its deformation, the atoms in the deformed
structure SA correspond to the atoms in B periodically,
as shown in Figs. 1(b) and 1(c). Denote the number of
atoms in the smallest spatial period by Z̃. As S transforms
the sublattices in A into those in B, there exist pairs of
Z̃-atom supercells such that

SC̃A ¼ C̃B; ð1Þ

where C̃α (α ¼ A or B) is a 3 × 3matrix whose columns are
supercell vectors arranged in right-handed order. We call
S—with the sublattices before and after deformation—the
sublattice match (SLM) of this CSM.
Denoting a primitive cell in α by Cα, the supercell is

associated with an integer matrix Mα as C̃α ¼ CαMα [39]
with the constraint

Zα detMα ¼ Z̃; ð2Þ

where Zα is the number of atoms in Cα. This means that
each ðMA;MBÞ satisfying Eq. (2) gives an SLM, as

S ¼ CBMBM−1
A C−1

A ; ð3Þ

which we call the supercell pair representation [17,23,35].
However, such supercell pair of a given SLM is not unique
[see Fig. 1(c)]. This is because for any integer matrix Q
with detQ ¼ 1, another ðM0

A;M
0
BÞ ¼ ðMAQ;MBQÞ also

gives the same S and satisfies Eq. (2). This redundancy has
made the enumeration of SLMs extremely difficult, as
reported in Ref. [35].
We overcome this difficulty by utilizing the theorem:

any integer matrix M with detM > 0 can be uniquely
decomposed into two integer matrices as M ¼ HQ, where
H is in Hermite normal form (HNF) and detQ ¼ 1 [26].
That is to say, under elementary column operations over
integers [27], M can be uniquely transformed into

H ¼

2
64
h11 0 0

h21 h22 0

h31 h32 h33

3
75; 0 ≤ hij < hii ðj < iÞ; ð4Þ

which is an analog of reduced echelon form for integer
matrices. Similar techniques have been used in the Hart-
Forcade theory, a well-developed framework for generating
derivative structures [40–42]. Applying Mα ¼ HαQα to
Eq. (3), we obtain

S ¼ CBHBQH−1
A C−1

A ; ð5Þ

where Q ¼ QBQ−1
A is an integer matrix with detQ ¼ 1 and

Hα is in HNF satisfying

detHα ¼
Z̃
Zα

; ð6Þ

which is derived from Eq. (2). This IMT representation
ðHA;HB;QÞ of a given SLM is unique, with which one can
prove that the total number of Z̃-atom SLMs is finite and
thus exhaustible as long as the strain is bounded. For
mathematical details, see our Supplemental Material [27].

FIG. 1. CSMs between A (hexagonal) and B (orthogonal).
(a) The same CSM can be established either by concerted
mechanisms or by nucleation, where the atoms migrate to their
counterparts synchronously or asynchronously. The colors of the
atoms represent their own degrees of migration. (b) A CSM
consists of an SLM which matches the sublattice of A to that of
B, and a periodic Z̃-atom correspondence. In this example we
have Z̃ ¼ 1. (c) Another CSM with Z̃ ¼ 2, whose RMSS is lower
but RMSD is higher than (b). The two columns show different
supercell pair choices, respectively.
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To quantify the strain, we use the quadratic average of the
principal strains (PS) of S, which we call the root-mean-
square strain (RMSS), but one could well use other criteria.
Given an SLM, the only unspecified part of a CSM is

how the Z̃ atoms in C̃A are mapped to atoms in B [43]. Note
that the sublattice given by the SLM divides atoms in B into
Z̃ translational equivalence classes. There are at most Z̃!
possible ways for a CSM to assign Z̃ atoms in C̃A to the Z̃
equivalence classes in B. When it is unfeasible to check
numerous correspondences one by one, there is often a
focus on the best one under certain geometric criterion, e.g.,
the root-mean-square displacement (RMSD) from the
atoms in SA to their counterparts in B [27]. We call such
best CSM the representative of its SLM, which can always
be solved via the Hungarian algorithm in polynomial
time [36]. We use the RMSS and RMSD to characterize
CSMs because they are proportional to the Euclidean
distance between structures contributed by the lattice
d.o.f. and atomic d.o.f., respectively [27].
In an example study of the martensitic transformation

of steel, an SSPT from the austenite phase (fcc, afcc ¼
3.57 Å) to the martensite phase (bcc, abcc ¼ 2.87 Å), we
exhaust all SLMs with Z̃ ≤ 36 and RMSS ≤ 16% [27].
With 54 178 SLMs enumerated, we compute the represen-
tative CSM for each SLM, as shown in Fig. 2. The
exhaustion of SLMs is accomplished through the IMT
representation: (i) Randomly generate a trial linear trans-
formation S0 with RMSS ≤ 16%. (ii) Exhaust all Hα’s
satisfying Eqs. (4) and (6). For each ðHA;HBÞ, compute the
nearest integer matrix to the solution of Eq. (5), namely

Q0 ¼ rintðH−1
B C−1

B S0CAHAÞ; ð7Þ

where “rint” rounds each matrix element to its nearest
integer. If detQ0 ¼ 1 holds, an SLM represented by

ðHA;HB;Q0Þ is obtained. (iii) Repeat this process until
the number of consecutive replications of SLMs reaches the
convergence criterion. The implementation is available as a
Python package CRYSTMATCH [44].
To reveal the realistic CSMs, we compare these enu-

meration results to experiments via orientation relationship
(OR) analysis. The OR specifies how the crystallographic
axes of the product phase are oriented relative to the
parent phase. For experiments on the martensitic trans-
formation of steel, the KS OR and/or NWOR are dominant
in bulks [2,3,37], while the Pitsch OR is only reported in
thin films [4,46]. These ORs are denoted by parallelisms, as
detailed in Ref. [47]. On the other hand, each CSM a priori
determines an OR through certain regulations. Two most
popular and reasonable manners are (i) keeping rotation-
free and deforming A by

ffiffiffiffiffiffiffiffi
STS

p
, which minimizes the total

atomic displacement [27], as used in Ref. [4]; (ii) imposing
a rotation to restore the uniformly scaled plane (USP),
as suggested by the phenomenological theory of marten-
sitic transformation [48]. We shall show results under both
manners.
We benchmarked all CSMs by the KS, NW, and Pitsch

ORs, respectively. Their distinctions from each OR are
quantified by extra rotation angles, which are alone
determined by their SLMs [4,27]. Therefore, we only
discuss the representative CSM of each SLM for simplicity.
When using the rotation-free manner, there is only one
CSM that precisely conforms to each OR, as shown
in Figs. 3 and S4 [27]. The CSM reproducing the Pitsch
OR is consistent with the Therrien-Stevanović (TS)

FIG. 2. CSMs of the martensitic transformation of steel. For
simplicity, only the representative CSM of each SLM is shown.
Arrows point out the Bain mechanism [45] and the Therrien-
Stevanović one [4]. Besides them, the vast remaining CSMs have
not been reported previously, which might imply newmechanisms.

FIG. 3. CSMs benchmarked by the (a) KS and (b) NW ORs.
The distinction from an OR is measured by ϕ, the least rotation
angle required to produce that OR, as plotted with color bars. For
either OR, we find only one SLM with exact ϕ ¼ 0, whose
representative CSM is plotted in black as J 1 and J 2. Arrows
point out all CSMs with ϕ’s beyond the color bar. For reference,
the average deviation of present OR measurements is 0.15° [50].
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mechanism [4], which validates our methods. Besides, we
found two new CSMs that reproduce the KS and NW ORs,
which are denoted by J 1 and J 2 and will be discussed
later. When using another manner to restore the USP, we
found that 55 CSMs can reproduce the KS OR, including
J 1, J 2, and the TS mechanism (see Fig. S5 [27]), but no
enumerated CSM can reproduce the NWor Pitsch OR. The
well-studied Bain mechanism [45], which has been proved
to have the lowest RMSS among all Z̃ ¼ 1 CSMs [49],
does not reproduce any observed OR in either manner.
Table I highlights the features of these CSMs, where the
RMSS and RMSD are calculated from experimental lattice
constants. We note that the CSMs accounting for reported
ORs have neither the lowest RMSS nor the lowest RMSD
among all CSMs (see Figs. 2 and 3). They are thus beyond

the reach of conventional optimization schemes, which
further demonstrates the necessity of enumeration.
To gain insight into the mechanisms therein, we illustrate

the concerted paths interpolated, respectively, from J 1

and from J 2 in Fig. 4. Both paths involve slipping
processes along the ð111Þfcckð011Þbcc plane, which occur
at every sixth layer and every third layer, respectively.
The J 1 path has an additional intralayer slipping along the
½011̄�fcck½11̄1�bcc direction. The USPs of both J 1 and J 2

coincide with the experimentally observed f112gfcc habit
plane [3,51]. Surprisingly, the USP in Fig. 4(a) stays still
without rotation, and even becomes a strictly invariant
plane if close-packing lattice constants (abcc ¼

ffiffiffiffiffiffiffiffi
2=3

p
afcc)

are used, which can explain the predominance of the
KS OR. Animations of both paths are provided in
Supplemental Material [27], where we also apply our
scheme to the wurtzite–zinc blende (B4-B3) transition in
ZnS, a prototype SSPT involving multiple types of atoms.
Compared to yielding a single optimal CSM by conven-

tional methods, an entire enumeration including the same
CSM even takes less time in most cases. Specifically, it
takes only 29.17 seconds on a single core (3.60 GHz) of
Intel Core i7-12700K Desktop Processor to produce all
CSMs with Z̃ ≤ 6 in Fig. 2, which covers all previously
reported CSMs. We note that underlying this efficiency is
the utilization of symmetries. The translational symmetry is

TABLE I. The main features of the highlighted CSMs.

CSM Z̃ RMSS RMSD (Å) ORa ORb

Bain 1 15.9% 0 Unreported Unreported
TS 6 9.0% 0.713 Pitsch KS
J 1 36 4.3% 0.961 KS KS
J 2 6 9.0% 0.884 NW KS

aUsing the rotation-free manner.
bUsing the USP-restoring manner.

Z
RMSS = 4.3%

RMSD = 0.961 Å

 = 6
RMSS = 9.0%

RMSD = 0.884 Å

7.2%

-7.2%

-1.5%

13.7%

-1.5%

-1.5%-

KS OR

vi
ew

ed
along

vi
ew

along

NW OR

FIG. 4. Concerted paths interpolated, respectively, from J 1 and from J 2. The lattice deformation is assumed to be rotation-free asffiffiffiffiffiffiffiffi
STS

p
, whose principal strains are labeled on the left side of the boxes. The colors of the atoms are used to distinguish different

ð111Þfcc layers, and dashed lines are used to track the slipping process. Conventional cells of fcc and bcc are edged by solid black
lines. USPs are denoted as pink planes. (a) J 1 accounting for the KS OR, i.e., the parallelism ð111Þ½011̄�fcckð011Þ½11̄1�bcc. (b) J 2

accounting for the NW OR, i.e., the parallelism ð111Þ½011̄�fcckð011Þ½1̄00�bcc.
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implied in the definition of SLM, where a sublattice is a
subgroup of the translation group. The exploitation of this
crystalline feature frees us from the inherent difficulties
in optimizing the rotation, deformation, translation, and
atomic correspondence simultaneously, and allows us to
deal with 3 × 3 matrices rather than manipulating large
structures with many atoms. By virtue of the rotational
symmetry, whenever we obtain a single S, all SLMs of the
form RBSR−1

A are known, where Rα is an element of Grot
α ,

the group consisting of all rotations that have appeared in
the space group of α [27]. This accelerates the enumeration
by up to jGrot

A j × jGrot
B j times (e.g., 576-fold faster when

exploring the martensitic transformation of steel which
have jGrot

A j ¼ jGrot
B j ¼ 24) and simplifies the results.

The enumerated CSMs can be directly used to study
concerted MEPs. With certain geometric criteria [22–25],
one can screen out better candidates from enumerated
CSMs. This systematically improves the CSM specification
in methods like SSNEB. On the other hand, metadynamics
simulations have found several nucleation MEPs, which
proceed locally through CSMs with small Z̃’s [14,52,53].
Our scheme can provide a comprehensive list of CSMs
covering this range, not only reproducing nucleation-
favored CSMs, but also revealing their distinctiveness
among all candidates. Additionally, a high-throughput
computation [54–56]—the paradigm on the tide—for
SSPTs is also enabled, as we presented a framework to
describe, classify and enumerate all CSMs. The numerous
candidates might contain currently unknown yet realistic
mechanisms, which can shed light on the design of more
predictive screening criteria, and inspire novel understand-
ings of SSPTs both in nature and in industries.
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