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We predict novel topological phases with broken time-reversal symmetry supporting the coexistence of
opposite chiral edge states, which are fundamentally different from the photonic spin-Hall, valley-Hall, and
higher-order topological phases. We find a fine-grained categorization of Chern insulators, their band
topologies characterized by identical Chern numbers are completely different. Furthermore, we prove that
different topologies cause zeros in their Bloch wave function overlaps, which imprint the band gap closing
and appear at the degenerate points of topological phase transition. The Bloch wave function overlaps
predict the reflection and refraction at a topological time boundary, and the overlap zeros ensure the
existence of vanishing revival amplitude at critical times even though different topologies before and after
the time boundary have identical Chern numbers. Our findings create new opportunities for topological
metamaterials, uncover the topological feature hidden in the time boundary effect as a probe of topology, and
open a venue for the exploration of the rich physics originating from the long-range couplings.
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Topological phases of matter have nontrivial band
structures and support topological states robust against
disorder at the edges and interfaces of photonic topological
systems [1–13]. Topological invariants characterize the
topology of Bloch bands and predict the number of
topological edge and interface states, known as the bulk-
boundary correspondence [14–17]. This is a fundamental
principle and explains why the detection of topological
invariants is important in topological physics [18–23]. For
two-dimensional topological phases, the Chern number as a
topological invariant predicts the number of chiral edge
states in the photonic topological insulators created from
breaking the time-reversal symmetry [24–31]. Furthermore,
the time-reversal symmetric insulating phases may have
nontrivial topology although they have a zero Chern
number. For example, the photonic spin-Hall phase created
from breaking the time-reversal symmetry of each individual
pseudospin is characterized by the opposite nonzero spin-
Chern numbers [32–43], which predict the numbers of chiral
edge states associated with the pseudo-spin-up and pseudo-
spin-down. The valley is another degree of freedom similar
to the spin, but the photonic valley-Hall phase is created
from breaking the inversion symmetry [44–52]. In addition,
the time-reversal symmetric quadrupole topological phase

also has a zero Chern number [53–62]. This nontrivial
higher-order topology supports the corner states. Clearly, the
time-reversal symmetry preserving topological insulating
phases have completely different topologies. A question
naturally arises: do novel time-reversal symmetry breaking
topological insulating phases exist with unveiled band
topologies? If yes, how does one characterize and probe
such topological phases?
In this Letter, we predict novel Chern insulators simulta-

neously holding the opposite chiral edge states with broken
time-reversal symmetry, which fundamentally differs from
the photonic spin-Hall, valley-Hall, and higher-order topo-
logical phases. We find a fine-grained categorization of
Chern insulators. The positive and negative charges of Berry
connection singularities (BCSs) distinguish the topological
phases and predict the numbers of clockwise and counter-
clockwise chiral edge states, respectively. We further find
that different topologies cause zeros in their Bloch wave
function overlaps, which predict the time reflection and
refraction at a photonic time boundary. We propose the time
boundary effect as a probe of topology. The time boundary
effect is the temporal analogy of the spatial boundary effect
based on the space-time duality. The vanishing of time
reflection or refraction imprints the band gap closing in the
topological phase transitions and ensures the existence of
vanishing revival amplitude at critical times when the
systems before and after the time boundary have different
topologies even though their Chern numbers are identical.
The coexistence of opposite chiral edge states with different
velocities create new opportunities for the development of
robust photonic devices. The discovery of the fine-grained
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categorization of Chern insulators provides profound insight
into the bulk-boundary correspondence for the novel two-
dimensional topological phases of matter. The time boun-
dary effect offers a promising platform for the detection of
topology.
We consider a two-band Bloch Hamiltonian HðkÞ ¼

BðkÞ · σ þ B0ðkÞσ0, where BðkÞ ¼ ½hxðkÞ; hyðkÞ; hzðkÞ�
is an effective magnetic field, k is the momentum, σ ¼
ðσx; σy; σzÞ is the Pauli matrix of spin-1=2, and σ0 is the
identify matrix. B0ðkÞσ0 does not affect the band topology
ofHðkÞ in the insulating phase; but topological states in the
metallic phase disappear in the projection spectra where the
two bands are inseparable. Topological properties of HðkÞ
are encoded in BðkÞ, which may form closed surfaces in
three-dimension. Any close surface wrapping the origin
positively or negatively contributes to the Chern number.
We find the coexistence of positive and negative wrappings,
which creates the time-reversal symmetry breaking topo-
logical insulating phases that simultaneously holding the
opposite chiral edge states. The Chern number is insufficient
to characterize these novel band topologies, but the BCS
distinguishes these topological insulating phases (Fig. 1).
The Chern number C� ¼ ð2πÞ−1∬BZd2k ·Ω�ðkÞ is

the integral of Berry curvature Ω�ðkÞ ¼ ∇k ×A�ðkÞ
over the entire Brillouin zone (BZ), where A�ðkÞ ¼
−ihψ�ðkÞj∇kjψ�ðkÞi is the Berry connection [1]. The
subscript þ (−) is for the upper (lower) band. The Bloch
wave function is

jψ�ðkÞi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2hðkÞ½hðkÞ � hzðkÞ�
p

 
hzðkÞ � hðkÞ
hxðkÞ þ ihyðkÞ

!
;

ð1Þ

for the band energy ε�ðkÞ ¼ B0ðkÞ � ½h2xðkÞ þ h2yðkÞþ
h2zðkÞ�1=2 ¼ B0ðkÞ � hðkÞ. The Berry connection A�ðkÞ
has the non-analytic points (BCSs) at

½hxðkÞ; hyðkÞ; hzðkÞ� ¼ ½0; 0;∓ hðkÞ�: ð2Þ

The BCS on the band inversion surface hzðkÞ ¼ 0
is the degenerate point hðkÞ ¼ 0 [64]. When the
BCS moving across the band inversion surface, the band
gap closes and reopens associated with the topologi-
cal phase transition [2,65]. The charge of BCS cs ¼
ð2πÞ−1 Hls ½hyðkÞdhxðkÞ − hxðkÞdhyðkÞ�=½h2xðkÞ þ h2yðkÞ�
is associated with the charge of degenerate point, being a
positive charge þ1 or a negative charge −1. The closed
loop ls in the BZ encloses only one BCS.
The singularities ofAþðkÞ andA−ðkÞ appear at hzðkÞ ¼

−hðkÞ < 0 and hzðkÞ ¼ þhðkÞ > 0, respectively. The
regions hzðkÞ < 0 in the BZ are denoted as Dþ in yellow
for the upper band and the regions hzðkÞ > 0 in the BZ are
denoted as D− in white for the lower band. The sum of all
the singularity charges in the area Dþ (D−) is the upper

(lower) Chern number C½m;n�
þ ¼ m − n (C½n;m�

− ¼ n −m)
[66]. We use the upper band Chern number to describe
the topological phase and remove the band index for
conciseness. The superscripts in C½m;n� represent m positive
and n negative BCSs, being the minimum numbers of
singularities under any chosen gauge, is equal to the
numbers of positive and negative wrappings in BðkÞ.
Figure 2(a) shows the BCSs in the BZ for the phase
C½1;1�. The red (cyan) cross in the yellow area indicates
the singularity with positive (negative) charge þ1 (−1) and
predicts a clockwise (counterclockwise) propagating chiral
edge state [Fig. 2(b)].
The Chern number is zero if the Berry connection is

smooth. The presence of BCSs causes nontrivial topology.
The BCSs originate from the degenerate points. The change
on the total positive (negative) charge of BCSs before and
after the topological phase transition is the total positive
(negative) charge of degenerate points at the topological
phase transition. The nonzero number of BCSs predicts the
existence of gapless edge states. At the interface between
two topological areas, the number of clockwise (counter-
clockwise) propagating edge states is equal to the difference
between their total positive (negative) charges of BCSs. The
BCSs present in the novel Chern insulators for mn ≠ 0 and
the conventional Chern insulators for mn ¼ 0 (i.e., C½m;0� or
C½0;n�). By contrast, the two-dimensional Zak phase is valid
when the entire BZ does not have any BCS in the phase
C½0;0�. The nonzero two-dimensional Zak phase predicts the
existence of in-gap edge states [53,54]. These arguments are
also valid for the multiband Chern insulators.
Topological phases C½m;n� and C½m0;n0� with different

positive and/or negative charges have different band topo-
logies, which lead to zeros in their wave function overlaps

C=−2 C=−1 C=0 C=+1 C=+2

C[0,2] C[0,1] C[0,0] C[1,0] C[2,0]

C[1,3] C[1,2] C[1,1] C[2,1] C[3,1]

C[2,4] C[2,3] C[2,2] C[3,2] C[4,2]

FIG. 1. Topological phases characterized by the BCSs. The
BCS and nonzero Chern number cause nontrivial topology. The
nonzero Chern number is attributed to the BCS. The presence of
BCS may cause nontrivial topology with a nonzero Chern
number (in red) or a zero Chern number (in green). The absence
of BCS can have nontrivial topology (in purple). See Supple-
mental Material A for examples [63].
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hψ 0
q0 ðkÞjψqðkÞi (the subscripts q, q0 are the band indices).

The number of overlap zeros in the BZ is at least
jm −m0j þ jn − n0j, being the minimum number of degen-
erate points experienced in the topological phase transition
for the band topology altering fromC½m;n� toC½m0;n0� and vise
versa. The overlap zeros present in any pair of wave
function jψqðkÞi chosen from C½m;n� and wave function
jψ 0

q0 ðkÞi chosen from C½m0;n0�; their existence is topologi-
cally protected. Figure 2(c) shows a phase diagram. The
dashed straight line along the point P chosen from C½m;n�

and the point P0 chosen from C½m0;n0� crosses the solid lines
at the black and red stars. Then, the wave functions at the
points P and P0 have zeros in their overlap hψ 0

q0 ðkÞjψqðkÞi
between identical (different) bands for q ¼ q0 (q ≠ q0), and
the overlap zeros appear at the degenerate points for the
system at the topological phase transition as marked by the
black (red) star inside (outside) the points P and P0 (see
Supplemental Material B for the proof [63]), i.e., the
overlap zeros imprint the band gap closing. Figure 2(d)
[Fig. 2(e)] illustrates the energy bands at the black (red) star
in Fig. 2(c), where the degenerate point is marked by the
black (red) star. Figure 2(f) illustrates the overlaps between
wave functions at the points P and P0; their zeros appear at
these degenerate points.

The intriguing features present at the topological time
boundary t ¼ 0 created via abruptly altering the system
into a different topological phase. The revival amplitude
gðk; tÞ ¼ hΨð0ÞjΨðtÞi between the initial state jΨð0Þi ¼
jψ−ðkÞi before the time boundary and the evolution state
jΨðtÞi ¼ e−itH

0ðkÞjψ−ðkÞi driven by the Bloch Hamiltonian
H0ðkÞ after the time boundary is

gðk; tÞ ¼
X

q0¼�
jhψ 0

q0 ðkÞjψ−ðkÞij2e−itε
0
q0 ðkÞ; ð3Þ

where the wave function jψ 0
q0 ðkÞi of H0ðkÞ has the energy

ε0q0 ðkÞ. The wave function overlaps jhψ 0þðkÞjψ−ðkÞij2 and
jhψ 0

−ðkÞjψ−ðkÞij2 predict the reflection and refraction at
the time boundary, where the time-refracted (time-
reflected) wave has the same (opposite) propagating
direction with the initial wave. The wave momentum
conserves before and after the time boundary andP

q0¼� jhψ 0
q0 ðkÞjψ−ðkÞij2 ¼ 1 [67–69].

Different band topologies before and after the
time boundary ensure the existence of vanishing time
reflection and refraction at different momenta k1 and k2.
Consequently, a critical momentum k⋆ ¼ ðk⋆x ; k⋆y Þ asso-
ciated with equal time reflection and refraction
jhψ 0

�ðk⋆Þjψ−ðk⋆Þij2 ¼ 1=2 must exist between k1 and
k2; and the number of critical momenta is at least the
difference between the topological numbers before and
after the time boundary jm −m0j þ jn − n0j. Figure 2(g)
illustrates the time reflection and refraction of an initial
state at the critical momentum kc ¼ k⋆y (or kc ¼ k⋆x )
prepared in the one-dimensional projection system with
kx ¼ k⋆x (or ky ¼ k⋆y ).
The revival amplitude for the initial state at the

critical momentum periodically vanishes gðk⋆; t⋆Þ ¼
e−itB

0
0
ðkÞ cos½h0ðk⋆Þt⋆� ¼ 0 at the critical times [Fig. 2(h)]

t⋆ ¼ ðM − 1=2Þπ=h0ðk⋆Þ; ð4Þ

where M∈N is a positive integer and the revival amplit-
ude is nonanalytic. By contrast, the revival amplitude
does not vanish for the initial state not at the critical
momentum. The nonanalytic rate function [Fig. 2(i)]
rðtÞ ¼ −ð1=NÞ lnQky jgðk⋆x ; ky; tÞj2 at the critical times
for the lattice size N is a dynamical analog of the
nonanalytic free energy density at the critical temperature
[70–72], where the revival amplitude is analogous to the
partition function and the rate function is analogous to the
free energy density. The existence of nonanalytic behavior
in the time boundary effect is topologically protected.
Figure 3(a) illustrates an inversion symmetric square

lattice with broken time-reversal symmetry [73–76]. The
one-dimensional projection lattice after the Fourier trans-
formation in the x direction is a generalized Su-Schrieffer-
Heeger model with the long-range coupling [77], which
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FIG. 2. Schematics of the edge state, band topology, and time
boundary effect. (a) BCSs in the BZ. The red curves are the band
inversion surface. (b) Coexistence of opposite chiral edge states.
(c) Phase diagram in the parameter space λ1-λ2. The black solid
lines indicate the topological phase transition. (d) [(e)] Energy
bands at the black (red) star in (c). (f) Wave function overlaps
between identical (different) Bloch bands for the system at the
points P and P0 are mainly in red (blue). (g) Equal time reflection
and refraction for the initial state at a critical momentum.
(h) Revival amplitude. (i) Rate function. In (g)–(i), the parameters
before and after the time boundary are P and P0.
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becomes the nearest-neighbor coupling if the square lat-
tice is rearranged into bilayer [45,60]; this model is equiv-
alent to the coupled Su-Schrieffer-Heeger ladder [78],
which is implemented in the coupled resonators [79,80].
The one-dimensional projection lattice after the Fourier
transformation in the y direction is the Creutz ladder
[81,82]. The effective magnetic field in the Bloch Hamilt-
onian after the Fourier transformations in both directions
is hxðkÞ ¼ J þ ðJ þ λ cos kxÞ cos ky þ κ cos kx cosð2kyÞ,
hyðkÞ ¼ ðJ þ λ cos kxÞ sin ky þ κ cos kx sinð2kyÞ, hzðkÞ ¼
−J sin kx, and B0ðkÞ ¼ 0.
Figure 3(b) shows the phase diagram. The number of

positive (negative) BCSs predicts the number of clockwise
(counterclockwise) chiral edge states in red (cyan), counted
from their crossings at the band gap closing degenerate
points. The creation (annihilation) of edge states is asso-
ciated with the creation (annihilation) of BCSs at the
topological phase transition. Figures 3(c)–3(e) exhibit
the BCSs and spectra of the novel topological phases
C½1;1�, C½2;2�, and C½2;1�. The opposite chiral edge states in

the phase C½1;1� and their propagations are shown in Fig. 4
(see Supplemental Material C for the detail and robustness
[63]). The propagations in opposite directions have differ-
ent periods. In experiments, the realization of the phase
C½1;1� at κ ¼ 0 only requires the next-nearest-neighbor
coupling [41,84–86]. The long-range couplings enrich
the novel topological phases C½m;n� with mn ≠ 0 in the
photonic and acoustic metamaterials [77,87].
Topological overlap zeros present in the Bloch wave

functions from any two different topological phases. For
example, we consider the point P at ðλ; κÞ ¼ ðJ; 3J=2Þ
chosen from C½2;2� and the point P0 at ðλ; κÞ ¼ ð2J; 3J=2Þ
chosen from C½1;1�. Both topological phases have a zero
Chern number and differ from C½0;0� [88]. In the phase
diagram Fig. 3(b), the straight dashed line along the points
P and P0 crosses three solid lines of topological
phase transitions. At the cross inside the points P and
P0, the degenerate points are ðkx; kyÞ ¼ ð0; πÞ and ðπ; πÞ.
In Fig. 5(a), the overlap jhψ 0

−ðkÞjψ−ðkÞij2 vanishes at
these degenerate points as marked by the black stars. At
the crosses outside the points P and P0, the degenerate
points are ðkx; kyÞ ¼ ðπ; 0Þ and (0,0). In Fig. 5(a), the
overlap jhψ 0þðkÞjψ−ðkÞij2 vanishes at these degenerate
points as marked by the red stars. In addition, two
degenerate lines appear at kx ¼ �π=2 for λ=J → �∞,
where jhψ 0þðkÞjψ−ðkÞij2 ¼ 0.
The vanishing revival amplitude in the time boundary

effect witnesses the inequivalent band topologies before
and after the time boundary (see Supplemental Material D
for the experimental realization [63]). Figure 5(b) exhibits
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the reflection and refraction at the time boundary in the
generalized Su-Schrieffer-Heeger model with kx ¼ π for
the initial state jψ−ðπ; kyÞi, where the red curve is the time
refraction jhψ 0

−ðπ; kyÞjψ−ðπ; kyÞij2, the blue curve is the
time reflection jhψ 0þðπ; kyÞjψ−ðπ; kyÞij2, and k⋆y ¼ 0.936π
is the critical momentum. Figure 5(c) shows the revival
amplitude gðπ; ky; tÞ, which periodically vanishes at the
critical times t⋆ ¼ 2.2=J; 6.6=J; 11.0=J; � � � for ky ¼ k⋆y as
indicated by the black hollow circles in Fig. 5(d). Similar
behaviors exist in the time boundary effect performed
in the Creutz ladder with ky ¼ π for the initial state
jψ−ðk⋆x ; πÞi.
In summary, we proposed the novel band topologies,

which enrich the kaleidoscopes of Chern insulators and
gapless edge states. The coexistence of opposite chiral edge
states opens a new door for the robust light transport [89].
We found that topological zeros present in the overlaps
between Bloch wave functions from different topological
phases at the degenerate points of topological phase
transition and imprint the band gap closing. The overlap
zeros correspond to the vanishing of time reflection or
refraction [69] and ensure the existence of nonanalytic
behavior in the time boundary effect as a witness of the
different band topologies before and after the time boun-
dary. The time boundaries create photonic time crystals
[90], realize broadband frequency translation [91], and offer
controllable light manipulation in synthetic dimension [92],
our findings pave the way for exploring topology using the
nonequilibrium dynamics of photons at the time boundary.

It is interesting to further consider the photonic time
boundary effect in non-Hermitian topological phases
[93–100].
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