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Symmetric mass generation (SMG) has been advocated as a mechanism to render mirror fermions
massive without symmetry breaking, ultimately aiming for the construction of lattice chiral gauge theories.
It has been argued that in an SMG phase, the poles in the mirror fermion propagators are replaced by zeros.
Using an effective Lagrangian approach, we investigate the role of propagator zeros when the gauge field is
turned on, finding that they act as coupled ghost states. In four dimensions, a propagator zero makes an
opposite-sign contribution to the one-loop beta function as compared to a normal fermion. In two
dimensional Abelian theories, a propagator zero makes a negative contribution to the photon mass squared.
In addition, propagator zeros generate the same anomaly as propagator poles. Thus, gauge invariance will
always be maintained in an SMG phase, in fact, even if the target chiral gauge theory is anomalous, but
unitarity of the gauge theory is lost.
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Introduction.—Chiral gauge theories play an important
role in particle physics. The standard model is a chiral
gauge theory, and many theoretical models for physics
beyond the standard model are based on chiral gauge
theories as well. At present, no nonperturbative gauge
invariant definition of (anomaly free) non-Abelian chiral
gauge theories exists. Unlike the case of vectorlike asymp-
totically free gauge theories such as QCD, for which the
lattice provides a nonperturbative definition, the physics of
chiral gauge theories is understood mostly in a perturbative
framework, supplemented by incomplete and rather quali-
tative arguments based on large-N expansions, anomaly
matching, duality relations, and other phenomenological
approaches.
The nonperturbative construction of chiral gauge theories

on the lattice is a long-standing challenge, because of the
fermion species-doubling problem. The deep reasons under-
lying species doubling were first discussed by Karsten
and Smit [1], tying the phenomenon to the chiral anomaly,
and then generalized by Nielsen and Ninomiya [2]. In
its simplest form, the doubling problem arises when
one considers a local free lattice Hamiltonian in one
spatial dimension. The dispersion relation near p ¼ 0 will
be E ¼ þp for one chirality. Because of the periodicity of

the Brillouin zone, unless there is a nonanalyticity in the
dispersion relation, there must exist another point pc such
that, for small δp ¼ p − pc, the dispersion relation is
E ¼ −δp, which signifies a fermion of the opposite chiral-
ity, the doubler.
During the 1980s and 1990s there was much activity in

this field, which lead to a better understanding of the
fundamental obstacles, as well as to some successes. For
reviews, see Refs. [3,4]. Building on the Ginsparg–Wilson
relation [5] as well as on earlier work by Kaplan [6] and by
Narayanan and Neuberger [7–10], Lüscher achieved the
construction of (anomaly-free) Abelian chiral gauge theo-
ries [11]. He also constructed non-Abelian chiral gauge
theories to all orders in lattice perturbation theory [12,13].
An alternative approach, where the chiral gauge invariance
is explicitly broken on the lattice, and is only restored in the
continuum limit, is the gauge-fixing approach. The inclu-
sion of a suitable gauge-fixing lattice action ensures the
existence of a novel critical point, where the target chiral
gauge theory emerges in the continuum limit [14–19]. For
another approach, see Refs. [20,21]. While these proposals
are based on nontrivial insights into the nature of the
problem, it is still an open question whether any of them
will lead to a complete nonperturbative definition of
asymptotically free chiral gauge theories on the lattice.
The last decade saw renewed interest in the mirror

fermion approach. One starts from a vectorlike fermion
spectrum containing both LH (left-handed) and RH (right-
handed) fields. For each irreducible representation of the
gauge group, the fermions of one chirality are included in
the target chiral gauge theory, while the fermion fields of
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the opposite chirality are unwanted “mirror” fermions.
Originally, it was proposed to take the continuum limit
in the broken (Higgs) phase [22,23]. However, this
approach does not allow for full decoupling on the mirrors.
The reason is that full decoupling requires the Higgs
vacuum expectation value v to diverge in physical units
when taking the continuum limit. But since the mass of the
gauge bosons in the Higgs phase is ∼gv, this would imply
that the gauge bosons decouple as well. Keeping v physical
instead would imply that mirrors are also physical. An
interesting question is whether such an approach is phe-
nomenologically viable, but the underlying gauge theory
remains vectorlike, and not chiral.
Since then, the focus has shifted to attempts to decouple

the mirror fermions using some strong nongauge inter-
action while at the same time keeping the chiral gauge
symmetry unbroken. In principle, this would allow for a
complete decoupling, with the mirrors obtaining a mass of
the order of the ultraviolet (lattice) cutoff of the theory. For
a recent review, see Ref. [24]. In an asymptotically free
theory, the gauge interaction itself is controlled by the
Gaussian fixed point, and turning it on or off is not expected
to change the elementary fermion spectrum. The elemen-
tary fermion spectrum is thus controlled by the reduced
model, obtained by turning off the gauge interaction.
The reduced model contains the fermion fields and,
possibly, additional scalar fields. The original (target) chiral
gauge symmetry G turns into a global symmetry of the
reduced model.
The dynamical question is what the phase diagram of the

reduced model looks like [3,4,24]. There is always a free-
fermion limit containing both LH and RH massless
fermions in the same (in general, reducible) representation
of the symmetry group G to be gauged, which constitutes a
vectorlike spectrum. By turning on specially designed
multifermion or Yukawa interactions, one hopes to achieve
symmetric mass generation (SMG). In this Letter, we use
the term SMG for a strong-coupling phase in the reduced
model where (a) the mirror fermions develop a mass gap of
the order of the lattice cutoff, (b) the target chiral fermions
remain massless, and (c) the symmetry G is unbroken. The
low-energy limit then consists of a chiral fermion spectrum
in the desired representation of the (unbroken) symmetryG.
If the SMG paradigm is successful, one would hope to
recover the target chiral gauge theory when the gauge field
is turned back on.
Starting from theSmit-Swift [25] andEichten-Preskill [26]

models, many unsuccessful attempts were made over the
years to find an SMG phase, and the dynamical reasons
underlying this failure were investigated [27–29]. The last
decade or so has seen renewed interest in the 3450 model.
This is an anomaly free, two-dimensional Abelian chiral
gauge theory containing fermions with charges 3 and 4 of
one handedness, and fermions with charges 5 and 0 of
the opposite handedness. (The zero charge fermion does

not couple to the gauge field, but it participates in the
multifermion interactions that gap the mirrors in the
reduced model.) The focus on two-dimensional models
is motivated by the relative simplicity of gauge theories in
two dimensions, with the hope that lessons learned general-
ize to the more interesting case of four-dimensional chiral
gauge theories.
An attempt to gap themirrors in the reduced version of the

3450 model was made in Refs. [30,31]. The vacuum
polarization was calculated numerically, but the result
indicated that the mirrors did not decouple. A possible
reason for this failure was discussed in Ref. [32]. Recently,
building on developments in condensedmatter physics [33],
an SMGphasewas reported in a different reduced version of
the 3450 model, with the SMG phase induced by especially
designed multifermion interactions [34–36].
The availability of a concrete construction allows us to

reexamine the question of whether the desired chiral gauge
theory will indeed be recovered when the gauge inter-
action is turned back on. The question is nontrivial for the
following reason. As already noted, the desired low-
energy limit of the reduced model is a theory of free,
undoubled, massless chiral fermions. This is essentially
the domain of the no-go theorems. Indeed, it was argued in
Ref. [37] that, under some very general assumptions, the
Nielsen-Ninomiya theorem will be applicable to an
effective low-energy Hamiltonian of an unspecified under-
lying theory, thus excluding a chiral spectrum in any
reduced model unless some of these assumptions are not
satisfied [38].
A caveat, already noted in Ref. [37], is that the fermion

propagator may contain a zero in the mirror channel.
Equivalently, the effective Hamiltonian associated with the
inverse propagator has a mirror pole, and thus is nonlocal.
While to our knowledge the issue was not directly
investigated in the SMG phase of the 3450 model, there
are strong general arguments that an SMG phase will
always be accompanied by the appearance of a zero in the
propagator [33,39–44]. This zero takes the place of the
original massless mirror pole, and its essential features are
captured by the phenomenological expression

PR;L
i=p

p2 þm2
; ð1Þ

for the mirror fermion propagator valid near p ¼ 0, where
PR;L ¼ 1

2
ð1� γ5Þ are the chiral projectors. The large mass

scale m characterizes the mass gap in the mirror sector
after SMG has taken place. In the generic case, it is
presumably on the order of the lattice cutoff.
The goal of this Letter is to examine the consequences of

a propagator zero of a massive charged fermion in the
reduced model when the gauge field is turned back on. We
will first discuss the contribution of a propagator zero to the
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vacuum polarization, and then its impact on anomalies, in
both two and four dimensions.
Propagator zero and the vacuum polarization.—Before

discussing the physics of a propagator zero, let us briefly
recall the calculation of the vacuum polarization for normal
RH or LH fields. Starting from the gauge invariant
Lagrangian (in Euclidean space)

L ¼ ψ̄ð∂þ ig=AÞPR;Lψ ; ð2Þ

the vacuum polarization diagram is

ΠR;L ¼ 1

2
hð−igψ̄=APR;LψÞ2i ¼

g2

2
tr

�
1

∂
=A
1

∂
=APR;L

�

¼ Πe � Πo; ð3Þ

where Πe and Πo are the parity-even and parity-odd parts.
In d ¼ 4 the parity-odd part vanishes, whereas in d ¼ 2 it
gives rise to the anomaly, which we discuss later.
Moving on, we consider a RH fermion field ψR ¼ PRΨR,

ψ̄R ¼ ψ̄RPL, for which the propagator pole has been
replaced by a propagator zero. The momentum space RH
propagator takes the form [compare Eq. (1)]

Z
ddxe−ipx

�
ψRðxÞψ̄Rð0Þ

�¼PR
i=p
m2

�
1þOðp2=m2Þ�: ð4Þ

The (even) dimension of spacetime is d. For simplicity, we
assumed that the propagator zero occurs at p ¼ 0. Our
results are unchanged if the zero occurs at a different location
in theBrillouin zone. The corrections to the leading behavior
are suppressed by powers ofp2=m2 near the zero, and do not
affect our results either. [We assume that the (Euclidean)
lattice theory regains full rotational invariance at large
distances, and thus that the zeros of the propagator are
relativistic. Relaxing this assumption is likely to lead to yet
worse problems than those we find in this Letter.]
Keeping only the leading behavior, in operator language

the RH propagator is

hψRψ̄Ri ¼ PR
∂

m2
; ð5Þ

and the corresponding free effective lagrangian has a RH
pole,

L0 ¼ m2ψ̄R
1

∂
ψR: ð6Þ

This effective Lagrangian is nonlocal. As we will see, this
has consequences for the gauged theory at low energy, even
though the mirror fermion has a mass gap.
We introduce the gauge field via minimal coupling, as

usual. The effective Lagrangian becomes

L ¼ m2ψ̄R
1

∂þ ig=A
ψR

¼ m2ψ̄R

�
1

∂
− ig

1

∂
=A
1

∂
− g2

1

∂
=A
1

∂
=A
1

∂
þ � � �

�
ψR

≡ L0 þ Lint: ð7Þ

The second line effectively defines the inverse of ∂þ ig=A in
terms of its expansion in the coupling constant g, or
equivalently, in the external gauge field. (We treat the
gauge field perturbatively, and thus the operator ∂þ ig=A
cannot have zero modes.) The vacuum polarization now
consists of a bubble and a tadpole diagram. We start with
the bubble diagram. Expanding expð− R

ddxLintÞ to second
order and using Eq. (5) gives

1

2

��
igm2ψ̄R

1

∂
=A
1

∂
ψR

�
2
	
¼g2

2
tr

�
PR=A

1

∂
=A
1

∂

�
¼ΠL: ð8Þ

The tadpole contribution arises from expanding
expð− R

ddxLintÞ to first order,

g2m2

�
ψ̄R

1

∂
=A
1

∂
=A
1

∂
ψR

	
¼−g2tr

�
PR=A

1

∂
=A
1

∂

�
¼−2ΠL: ð9Þ

The vacuum polarization of a RH propagator zero is thus

ΠL − 2ΠL ¼ −ΠL ¼ −Πe þ Πo: ð10Þ

Comparing with Eq. (3) we see that the parity-even part
flips its sign (the parity-odd part remains the same). A
similar result is obtained for a LH propagator zero.
Equation (10) is our main result. To start, it demonstrates

that a propagator zero acts as a coupled state at low energy
in the gauge theory through the poles it generates in the
vertices. Let us concentrate on the parity-even part Πe,
postponing the parity-odd part to our discussion of anoma-
lies below. Differentiating it twice with respect to Aμ gives
the familiar result

Πe
μνðkÞ ¼ −

g2

2

Z
ddp
ð2πÞd

trð=pγμð=pþ =kÞγνÞ
p2ðpþ kÞ2 : ð11Þ

In the Abelian case, this result is valid for a unit-charge
field. In the non-Abelian case, the result is multiplied by
trðTaTbÞ ¼ Tδab, where T is the group trace in the fermion
representation.
The integral (11) is UV divergent and may be computed

for example using dimensional regularization. In four
dimensions, after renormalization, the result is

Πe
μν ¼

g2

24π2
ðk2δμν − kμkνÞ log

�
k2

4πμ2

�
þ � � � ; ð12Þ

where μ is the renormalization scale. The dots stand for a
finite term, which is subleading compared to the logarithm.
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The logarithm in Eq. (12) determines the fermion contri-
bution to the one-loop beta function. Because Πe flips sign
between Eqs. (3) and (10), it follows that the contribution of
a propagator zero to the one-loop beta function has the
same absolute value as a normal fermion, but an opposite
sign. Similarly, the contribution of a propagator zero to the
imaginary part of the vacuum polarization will be negative,
in violation of the optical theorem. The propagator zero
thus acts as a ghost state, which ruins the unitarity of the
gauge theory in the SMG phase.
A similar result was found in the 1980s in Refs. [45,46],

where a specific nonlocal lattice action [47] was studied in
which the fermion doublers were replaced by poles in the
action, or equivalently, zeros in the fermion propagator. We
have employed an effective Lagrangian approach to gen-
eralize this result, finding that the effect occurs in complete
generality.
Let us illustrate the consequences of these findings for

the mirror fermion approach. For definiteness, we start with
a four-dimensional lattice gauge theory of massless
domain-wall fermions, in which the LH spectrum on one
wall constitutes the fermion spectrum of the target chiral
gauge theory. The RH spectrum on the other wall is the
mirror spectrum. Before we turn on any interactions to gap
the mirrors, the theory is vectorlike. Let the contribution of
these Dirac fermions to the coefficient of the one-loop beta
function be bf. This contribution is split evenly between the
LH and RH fields, with each contributing bf=2. The one-
loop contribution of the target chiral fermions is thus bf=2.
Now let us assume that the RH fermions have been

gapped in an SMG phase, with each RH propagator pole
replaced by a propagator zero. What we find is that the total
fermion contribution to the one-loop beta function will now
vanish, because the contribution of the LH target chiral
fermions, which is bf=2, is canceled by that of the RH
propagator zeros, which is −bf=2.
In two dimensions, restricting ourselves to the Abelian

case for simplicity, the vacuum polarization gives rise to a
photon mass squared m2

ph which, in turn, is proportional to
the sum of the U(1) charges squared [48] (for a textbook
discussion, see Ref. [49]). The target chiral gauge theory,
which consists of half of the massless fermion degrees of
freedom of the initial domain-wall fermion lattice theory
(and contains chiral fields of both chiralities), is expected to
generate a mass squared m2

ph=2. Again, we find that the
contribution of the propagator zeros has the same absolute
value and an opposite sign, and is thus given by −m2

ph=2.
The result is a vanishing photon mass in the SMG phase.
These effects, in both four and two dimensions, reflect the
role of the propagator zeros as coupled ghost states.
Propagator zero and anomalies.—We first briefly recall

the calculation of the axial anomaly, starting with the two
dimensional case. One way to perform the calculation is to
introduce both a vector gauge field Vμ and an axial gauge
field Aμ, and consider the Lagrangian

L ¼ ψ̄

�
∂þ ig

2
ð=V þ =Aγ5Þ

�
ψ : ð13Þ

If we set V ¼ A, this reduces to

L ¼ ψ̄ð∂þ ig=APRÞψ : ð14Þ

This Lagrangian describes a RH fermion coupled to the
gauge field together with a free LH fermion. In dimensional
regularization Eq. (13) is thus an adequate starting point for
the calculation of the anomaly of a RH fermion. When
calculating the anomaly using dimensional regularization,
one must make sure to use a consistent definition of γ5, or
of its two-dimensional counterpart (see, for example,
Refs. [49,50]). Below, we will be careful to only perform
manipulations that are valid within dimensional regulari-
zation. This means, for example, that when we calculate a
diagram we are allowed to anticommute γ5 through =A,
because the external gauge field (and momenta) are two or
four dimensional by assumption. However, we are not
allowed to anticommute γ5 through the fermion propagator,
because of its evanescent part.
The two-dimensional axial anomaly arises from the

bubble diagram with one V vertex and one A vertex.
Starting from the Lagrangian (13), this diagram is given by

ΠAV ¼ g2

4
tr

�
1

∂
=V
1

∂
=Aγ5

�
: ð15Þ

In order to calculate the divergence of the axial current, one
replaces =A by =q, where q is the external momentum. The
well-known result is ∝ ϵμν∂μVν. Alternatively, using the
two-dimensional relation γμγ5 ∝ ϵμνγν one can express
the parity-odd part of the vacuum polarization in terms
of the parity-even part, and then obtain the anomaly. For
details see, e.g., Ref. [49].
Proceeding to the case of a propagator zero, our starting

point is

L ¼ m2ψ̄
1

∂þ ig
2
ð=V þ γ5=AÞ

ψ : ð16Þ

Note that this time γ5 is to the left of =A. If we set V ¼ A, we
now obtain

L ¼ m2ψ̄
1

∂þ igPR=A
ψ

¼ m2

�
ψ̄R

1

∂þ ig=A
ψR þ ψ̄L

1

∂
ψL

�
: ð17Þ

The second equality holds in two and four dimensions,
where γ5 anticommutes with the Dirac operator, showing
the adequacy of this starting point [compare Eq. (7)].
Again, for our perturbative calculations we define the

PHYSICAL REVIEW LETTERS 132, 081903 (2024)

081903-4



inverses of all differential operators that depend on external
gauge fields through their expansions in powers of g.
Like Eq. (13), also Eq. (16) allows for the use of

dimensional regularization. As in the case of the vacuum
polarization, the two-dimensional anomaly of a propagator
zero involves tadpole and bubble diagrams. The details are
similar, and the final result is that the contribution of a
propagator zero is ΠAV , with a contribution −ΠAV from the
bubble diagram [the minus sign comes from the location of
γ5 to the left of A in Eq. (16), instead of to the right in
Eq. (13)] and a contribution þ2ΠAV from the tadpole
diagram. In other words, a propagator pole and a propa-
gator zero give rise to the same anomaly. This is consistent
with our previous result, that the parity-odd part of the
vacuum polarization is the same for a propagator pole and
for a propagator zero.
The four-dimensional case is similar. Starting from the

Lagrangian (13), the usual triangle diagram is given by

ΠAVV ¼ −
ig3

16
tr

�
1

∂
=V
1

∂
=V
1

∂
=Aγ5

�
: ð18Þ

For the contribution of a propagator zero, starting from the
nonlocal Lagrangian (16) we have tadpole, bubble, and
triangle diagrams. The triangle diagram for a propagator
zero turns out to be the same as for a propagator pole (in
this case the minus sign from the different placement of γ5
is canceled by the overall relative sign of the three vertices
contributing to the triangle diagram), while the bubble and
tadpole diagrams cancel each other. The final result is again
that a propagator pole and a propagator zero give rise to the
same anomaly.
A formal but quick way to keep track of the relative signs

is to note that the fermion partition function defined by the
Lagrangian (13) is det½∂þ ðig=2Þð=V þ =Aγ5Þ�, whereas the
partition function defined by the nonlocal Lagrangian (16)
is det−1½∂þ ðig=2Þð=V þ γ5=AÞ�. For the purpose of pertur-
bative calculations, the latter partition function may alter-
natively be expressed as a path integral over a commuting
complex field ϕ carrying a spinor index, with Lagrangian
ϕ†½∂þ ðig=2Þð=V þ γ5=AÞ�ϕ. It is straightforward to see that
the diagrammatic expansion of these determinants repro-
duces the relative signs we found above.
Let us revisit the mirror fermion approach to the

construction of lattice chiral gauge theories in the light
of our findings. As explained in the introduction, this
approach was based on two premises. The first premise is
that gapping the mirrors in an SMG phase will decouple
them entirely from the low-energy gauge theory. The
second is that the target chiral fermion spectrum must be
anomaly free, in order to respect the gauge invariance of the
lattice theory after the mirrors have been gapped.
What we have found is that, if the mirror propagator

poles are traded with propagator zeros in the SMG phase,
then they will remain coupled to the gauge theory at low

energy. Gauge invariance is in fact always maintained,
regardless of whether or not the fermion spectrum of the
target chiral gauge theory is anomaly free. The reason is that
each propagator zero generates the same anomaly as the
corresponding propagator pole. Thus, the propagator zeros
will always cancel the anomaly of the target chiral fermions,
as did the original mirror propagator poles. The underlying
reason for this result is gauge invariance, which was exact
before the SMG dynamics was turned on, and remains so
after. In two dimensions, an interesting relation was found
between SMG and anomaly cancellation expressed through
the “boundary fully gapping rules” of Ref. [34], but it turns
out that this plays no role in arriving at our conclusions about
anomaly cancellation between the target and mirror sectors
of a model with symmetric mass generation.
At the same time, unitarity is always lost, because the

propagator zeros contribute to the one-loop beta function in
four dimensions, or to the photon mass squared in two-
dimensional Abelian theories, as ghost states.
In principle, apart from the propagator zeros (and the

target chiral fermions) there could exist bound states of the
lattice fields that also contribute at large distances. Such
states, if present, would remedy the theory only if they undo
the effect of the propagator zeros both for the beta function
and for the anomaly, without generating any other long
distance effects. It is hard to see how this would come about.

This work was initiated at the Aspen Center for Physics,
which is supported by National Science Foundation Grant
No. PHY-2210452. Y. S. wishes to thank the organizers
and the participants of theworkshop “Emergent Phenomena
of Strongly-Interacting Conformal Field Theories and
Beyond” for stimulating discussions. In particular, Y. S.
thanks Cenke Xu and Yizhuang You for discussions and
correspondence on symmetric mass generation. Y. S. also
thanks the Department of Physics and Astronomy at San
Francisco State University for hospitality. This material is
based upon work supported by the U.S. Department of
Energy, Office of Science, Office of High Energy Physics,
Office of Basic Energy Sciences Energy Frontier Research
Centers program under Award No. DE-SC0013682 (M. G.).
Y. S. is supported by the Israel Science Foundation under
Grant No. 1429/21.

[1] L. H. Karsten and J. Smit, Lattice Fermions: Species
doubling, chiral invariance, and the triangle anomaly, Nucl.
Phys. B183, 103 (1981).

[2] H. B. Nielsen and M. Ninomiya, Absence of neutrinos on a
lattice. 1. Proof by homotopy theory, Nucl. Phys. B185, 20
(1981); B195, 541(E) (1982); Absence of neutrinos on a
lattice. 2. Intuitive topological proof, Nucl. Phys. B193, 173
(1981).

[3] Y. Shamir, Lattice chiral fermions, Nucl. Phys. B, Proc.
Suppl. 47, 212 (1996).

PHYSICAL REVIEW LETTERS 132, 081903 (2024)

081903-5

https://doi.org/10.1016/0550-3213(81)90549-6
https://doi.org/10.1016/0550-3213(81)90549-6
https://doi.org/10.1016/0550-3213(81)90361-8
https://doi.org/10.1016/0550-3213(81)90361-8
https://doi.org/10.1016/0550-3213(82)90011-6
https://doi.org/10.1016/0550-3213(81)90524-1
https://doi.org/10.1016/0550-3213(81)90524-1
https://doi.org/10.1016/0920-5632(96)00046-1
https://doi.org/10.1016/0920-5632(96)00046-1


[4] M. Golterman, Lattice chiral gauge theories, Nucl. Phys. B,
Proc. Suppl. 94, 189 (2001).

[5] P. H. Ginsparg and K. G. Wilson, A remnant of chiral
symmetry on the lattice, Phys. Rev. D 25, 2649 (1982).

[6] D. B. Kaplan, A method for simulating chiral fermions on
the lattice, Phys. Lett. B 288, 342 (1992).

[7] R. Narayanan and H. Neuberger, Chiral fermions on the
lattice, Phys. Rev. Lett. 71, 3251 (1993).

[8] R. Narayanan and H. Neuberger, A construction of lattice
chiral gauge theories, Nucl. Phys. B443, 305 (1995).

[9] H. Neuberger, Exactly massless quarks on the lattice, Phys.
Lett. B 417, 141 (1998).

[10] H. Neuberger, More about exactly massless quarks on the
lattice, Phys. Lett. B 427, 353 (1998).

[11] M. Lüscher, Abelian chiral gauge theories on the lattice with
exact gauge invariance, Nucl. Phys. B549, 295 (1999).

[12] M. Lüscher, Weyl fermions on the lattice and the non-
Abelian gauge anomaly, Nucl. Phys. B568, 162 (2000).

[13] M. Lüscher, Lattice regularization of chiral gauge theories to
all orders of perturbation theory, J. High Energy Phys. 06
(2000) 028.

[14] Y. Shamir, The standard model from a new phase transition
on the lattice, Phys. Rev. D 57, 132 (1998).

[15] M. F. L. Golterman and Y. Shamir, A gauge fixing action for
lattice gauge theories, Phys. Lett. B 399, 148 (1997).

[16] W. Bock, M. F. L. Golterman, and Y. Shamir, Lattice chiral
fermions through gauge fixing, Phys. Rev. Lett. 80, 3444
(1998).

[17] W. Bock, M. Golterman, and Y. Shamir, Gauge fixing
approach to lattice chiral gauge theories: Part 2, Nucl.
Phys. B, Proc. Suppl. 63, 581 (1998).

[18] M. Golterman and Y. Shamir, Fermion number violation in
regularizations that preserve fermion number symmetry,
Phys. Rev. D 67, 014501 (2003).

[19] M. Golterman and Y. Shamir, SUðNÞ chiral gauge theories
on the lattice, Phys. Rev. D 70, 094506 (2004).

[20] D. M. Grabowska and D. B. Kaplan, Nonperturbative regu-
lator for chiral gauge theories?, Phys. Rev. Lett. 116,
211602 (2016).

[21] D. B. Kaplan, Chiral gauge theory at the boundary between
topological phases, arXiv:2312.01494; D. B. Kaplan and S.
Sen, Weyl fermions on a finite lattice, arXiv:2312.04012.

[22] I. Montvay, A chiral SUð2ÞL × SUð2ÞR gauge model on the
lattice, Phys. Lett. B 199, 89 (1987).

[23] I. Montvay, Higgs and Yukawa theories on the lattice, Nucl.
Phys. B, Proc. Suppl. 26, 57 (1992).

[24] E. Poppitz and Y. Shang, Chiral lattice gauge theories
via mirror-fermion decoupling: A mission (im)possible?,
Int. J. Mod. Phys. A 25, 2761 (2010).

[25] J. Smit, Fermions on a lattice, Acta Phys. Pol. B 17, 531
(1986); P. V. D. Swift, The electroweak theory on the lattice,
Phys. Lett. 145B, 256 (1984).

[26] E. Eichten and J. Preskill, Chiral gauge theories on the
lattice, Nucl. Phys. B268, 179 (1986).

[27] M. F. L. Golterman, D. N. Petcher, and J. Smit, Fermion
interactions in models with strong Wilson-Yukawa cou-
plings, Nucl. Phys. B370, 51 (1992).

[28] W. Bock, A. K. De, and J. Smit, Fermion masses at strong
Wilson-Yukawa coupling in the symmetric phase, Nucl.
Phys. B388, 243 (1992).

[29] M. F. L. Golterman, D. N. Petcher, and E. Rivas, Absence of
chiral fermions in the Eichten-Preskill model, Nucl. Phys.
B395, 596 (1993).

[30] J. Giedt and E. Poppitz, Chiral lattice gauge theories and the
strong coupling dynamics of a Yukawa-Higgs model with
Ginsparg-Wilson fermions, J. High Energy Phys. 10 (2007)
076.

[31] C. Chen, J. Giedt, and E. Poppitz, On the decoupling of
mirror fermions, J. High Energy Phys. 04 (2013) 131.

[32] Y. Kikukawa, Why is the mission impossible?—Decoupling
the mirror Ginsparg-Wilson fermions in the lattice models
for two-dimensional abelian chiral gauge theories, Prog.
Theor. Exp. Phys. 2019, 073B02 (2019).

[33] J. Wang and Y. Z. You, Symmetric mass generation,
Symmetry 14, 1475 (2022).

[34] J. Wang and X. G. Wen, Nonperturbative regularization of
(1þ 1)-dimensional anomaly-free chiral fermions and bo-
sons:On the equivalence of anomalymatching conditions and
boundary gapping rules, Phys. Rev. B 107, 014311 (2023).

[35] M. DeMarco and X. G. Wen, A novel non-perturbative
lattice regularization of an anomaly-free 1þ 1d chiral
SUð2Þ gauge theory, arXiv:1706.04648.

[36] M. Zeng, Z. Zhu, J. Wang, and Y. Z. You, Symmetric mass
generation in the 1þ 1 dimensional chiral fermion 3-4-5-0
model, Phys. Rev. Lett. 128, 185301 (2022).

[37] Y. Shamir, Constraints on the existence of chiral fermions in
interacting lattice theories, Phys. Rev. Lett. 71, 2691 (1993).

[38] As explained in Ref. [17], the gauge-fixing approach of
Refs. [14,15,19] evades the generalized no-go theorem [37].
See also Ref. [16].

[39] Y. Z. You, Z. Wang, J. Oon, and C. Xu, Topological number
and fermion Green’s function for strongly interacting topo-
logical superconductors, Phys. Rev. B 90, 060502(R) (2014).

[40] K. Slagle, Y. Z. You, and C. Xu, Exotic quantum phase
transitions of strongly interacting topological insulators,
Phys. Rev. B 91, 115121 (2015).

[41] Y. Xu and C. Xu, Green’s function zero and symmetric mass
generation, arXiv:2103.15865.

[42] S. Catterall and N. Butt, Topology and strong four fermion
interactions in four dimensions, Phys. Rev. D 97, 094502
(2018).

[43] Y. Z. You, Y. C. He, C. Xu, and A. Vishwanath, Symmetric
fermion mass generation as deconfined quantum criticality,
Phys. Rev. X 8, 011026 (2018).

[44] D. C. Lu, M. Zeng, and Y. Z. You, Green’s function zeros in
Fermi surface symmetric mass generation, Phys. Rev. B
108, 205117 (2023).

[45] M. Campostrini, G. Curci, and A. Pelissetto, Can a nonlocal
lattice fermion formulation avoid the doubling problem?,
Phys. Lett. B 193, 279 (1987).

[46] A. Pelissetto, Lattice nonlocal chiral fermions, Ann. Phys.
(N.Y.) 182, 177 (1988).

[47] C. Rebbi, Chiral invariant regularization of fermions on the
lattice, Phys. Lett. B 186, 200 (1987).

[48] J. S. Schwinger, Gauge invariance and mass. 2., Phys. Rev.
128, 2425 (1962).

[49] M. E. Peskin and D. V. Schroeder, An Introduction to Quan-
tum Field Theory (Addison-Wesley, Reading, MA, 1995).

[50] J. Collins, Renormalization (Cambridge University Press,
Cambridge, England, 1984).

PHYSICAL REVIEW LETTERS 132, 081903 (2024)

081903-6

https://doi.org/10.1016/S0920-5632(01)00953-7
https://doi.org/10.1016/S0920-5632(01)00953-7
https://doi.org/10.1103/PhysRevD.25.2649
https://doi.org/10.1016/0370-2693(92)91112-M
https://doi.org/10.1103/PhysRevLett.71.3251
https://doi.org/10.1016/0550-3213(95)00111-5
https://doi.org/10.1016/S0370-2693(97)01368-3
https://doi.org/10.1016/S0370-2693(97)01368-3
https://doi.org/10.1016/S0370-2693(98)00355-4
https://doi.org/10.1016/S0550-3213(99)00115-7
https://doi.org/10.1016/S0550-3213(99)00731-2
https://doi.org/10.1088/1126-6708/2000/06/028
https://doi.org/10.1088/1126-6708/2000/06/028
https://doi.org/10.1103/PhysRevD.57.132
https://doi.org/10.1016/S0370-2693(97)00277-3
https://doi.org/10.1103/PhysRevLett.80.3444
https://doi.org/10.1103/PhysRevLett.80.3444
https://doi.org/10.1016/S0920-5632(97)00839-6
https://doi.org/10.1016/S0920-5632(97)00839-6
https://doi.org/10.1103/PhysRevD.67.014501
https://doi.org/10.1103/PhysRevD.70.094506
https://doi.org/10.1103/PhysRevLett.116.211602
https://doi.org/10.1103/PhysRevLett.116.211602
https://arXiv.org/abs/2312.01494
https://arXiv.org/abs/2312.04012
https://doi.org/10.1016/0370-2693(87)91468-7
https://doi.org/10.1016/0920-5632(92)90229-L
https://doi.org/10.1016/0920-5632(92)90229-L
https://doi.org/10.1142/S0217751X10049852
https://doi.org/10.1016/0370-2693(84)90350-2
https://doi.org/10.1016/0550-3213(86)90207-5
https://doi.org/10.1016/0550-3213(92)90344-B
https://doi.org/10.1016/0550-3213(92)90551-L
https://doi.org/10.1016/0550-3213(92)90551-L
https://doi.org/10.1016/0550-3213(93)90049-U
https://doi.org/10.1016/0550-3213(93)90049-U
https://doi.org/10.1088/1126-6708/2007/10/076
https://doi.org/10.1088/1126-6708/2007/10/076
https://doi.org/10.1007/JHEP04(2013)131
https://doi.org/10.1093/ptep/ptz055
https://doi.org/10.1093/ptep/ptz055
https://doi.org/10.3390/sym14071475
https://doi.org/10.1103/PhysRevB.107.014311
https://arXiv.org/abs/1706.04648
https://doi.org/10.1103/PhysRevLett.128.185301
https://doi.org/10.1103/PhysRevLett.71.2691
https://doi.org/10.1103/PhysRevB.90.060502
https://doi.org/10.1103/PhysRevB.91.115121
https://arXiv.org/abs/2103.15865
https://doi.org/10.1103/PhysRevD.97.094502
https://doi.org/10.1103/PhysRevD.97.094502
https://doi.org/10.1103/PhysRevX.8.011026
https://doi.org/10.1103/PhysRevB.108.205117
https://doi.org/10.1103/PhysRevB.108.205117
https://doi.org/10.1016/0370-2693(87)91236-6
https://doi.org/10.1016/0003-4916(88)90299-0
https://doi.org/10.1016/0003-4916(88)90299-0
https://doi.org/10.1016/0370-2693(87)90280-2
https://doi.org/10.1103/PhysRev.128.2425
https://doi.org/10.1103/PhysRev.128.2425

