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We consider a model of Parisi where a single particle hops on an infinite-dimensional hypercube, under
the influence of a uniform but disordered magnetic flux. We reinterpret the hypercube as the Fock-space
graph of a many-body Hamiltonian and the flux as a frustration of the return amplitudes in Fock-space. We
will identify the set of observables that have the same correlation functions as the double-scaled Sachdev-
Ye-Kitaev (DS-SYK) model, and hence the hypercube model is an equally good quantum model for
near-AdS2=near-CFT1 (NAdS2=NCFT1) holography. Unlike the SYK model, the hypercube Hamiltonian
is not p local. Instead, the SYK model can be understood as a Fock-space model with similar frustrations.
Hence we propose this type of Fock-space frustration as the broader characterization for NAdS2=NCFT1

microscopics, which encompasses the hypercube and the DS-SYK models as two specific examples. We
then speculate on the possible origin of such frustrations.
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Two-dimensional nearly anti–de Sitter (NAdS2) space-
time arises ubiquitously as the near-horizon geometry of
near-extremal black holes in higher dimensions. In holo-
graphic theories, this means that in the appropriate near-
extremal states an AdSDþ1=CFTD (D > 1) duality flows
to a near-AdS2=near-CFT1 (NAdS2=NCFT1) duality at
low energy. In fact, considerable progress has been made
by directly constructing microscopic models for NCFT1

(nearly conformal field theory in one dimension), the most
notable of which is the Sachdev-Ye-Kitaev (SYK) model
[1–5]. In the SYK model, a system of N Majorana
fermions interact through a p-body interaction in which
a fermion can couple to any of the rest. At low energy,
the model’s thermodynamics and correlators reproduce
those of the Jackiw-Teitelboim gravity—a dilaton gravity
theory that can arise by dimensionally reducing higher-
dimensional gravity to NAdS2 spacetime [6]. In addition,
the SYK model is also important as a solvable model of
quantum chaos in p-local systems per se (and can
probably also be realized experimentally). Its low-energy
solution is obtained by using Schwinger-Dyson equations
in the limit N → ∞ with p fixed. But the double-scaled
SYK (DS-SYK) limit p;N → ∞ with λ ¼ 2p2=N fixed
can be solved exactly in λ for all energy scales using
combinatorics. The latter technique also allows for the
reconstruction of the AdS2 dynamics (and generalizes it to
a q-deformed AdS2) [7–10].

There are, however, additional models that are not
even p local but have the same combinatorial solution.
The simplest such example is the hypercube model of
Parisi [11], made out of d qubits, along with a Hamiltonian
with interactions that couple together all degrees of free-
dom in each term. It is therefore interesting to identify
which microscopic aspects of the SYK model are essential
and which are spurious for the NAdS2=NCFT1 holography,
as well as clarify whether quantum chaos is similar in
these models. We will try to pinpoint exactly what the two
models have in common, in terms of dynamics and in
terms of the appropriate set of observables, and use it as
a stepping stone toward a broader characterization of
NAdS2=NCFT1 microscopics. We can then hope it is this
broader characterization that survives the examination from
the AdSDþ1=CFTD (D > 1) viewpoint. More details are
covered in a companion article [12].
Parisi introduced a d-dimensional hypercubic model

where there are superconducting dots living on the hyper-
cube vertices, whose energy is frustrated by a uniform
(position-independent) but disordered magnetic flux. Here
we remove the superconducting dots of the original theory,
and the physics becomes that of a single particle hopping
on the hypercube vertices under the influence of the same
flux. By doing so, we drastically change the role of the flux:
the flux frustrates energies in the original theory, but now
frustrates the return amplitudes of a hopping particle. The
former tends to increase the glassiness of a system, and
the latter tends to delocalize wave functions and hence to
thermalize a system. Nevertheless, Parisi’s key insight, that
such high-dimensional fluxed operators coarse grain to a
q-deformed oscillator, remains. Its similarity with the
DS-SYK model was first noticed by [13,14], and given
the simplicity of model, one cannot help but wonder if this
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similarity extends to correlation functions. We will answer
this question in the affirmative.
The hypercube has 2d vertices which we denote by

f−1=2;þ1=2gd with σ3μ=2ðμ ¼ 1;…; dÞ being the position
operators of the particle. We will use a gauge that is
different from Parisi’s original choice. The point is to use a
rotationally covariant gauge so that the insertions of probe
operators become much simpler. Our Hamiltonian is

H ¼ −
1ffiffiffi
d

p
Xd
μ¼1

Dμ ≔ −
1ffiffiffi
d

p
Xd
μ¼1

�
Tþ
μ þ T−

μ

�
; ð1Þ

where T−
μ ¼ ðTþ

μ Þ† and

Tþ
μ ¼

Yd
ν¼1;ν≠μ

e
i
4
Fμνσ

3
ν σþμ ; σþμ ¼ σ1μ þ iσ2μ

2
: ð2Þ

The σiμ(i ¼ 1, 2, 3) is the ith Pauli matrix acting on the μth
qubit, and Fμν is the antisymmetric tensor of the back-
ground flux. We have chosen a normalization for H such
that it has a compact spectral support at d ¼ ∞ (as we will
also do for DS-SYK model). The fluxes Fμν are quench
disordered and identically and independently distributed
with the additional requirement that the distribution is even
so that (h··i stands for an ensemble average)

hsinFμνi ¼ 0: ð3Þ

The distribution is otherwise completely general and

q ≔ hcosFμνi ð4Þ

is a tunable parameter.
Tþ
μ is a hopping operator that transports the particle in

the forward μ direction, while assigning to it a random
phase due to the disordered flux. The holonomy
T−
ν T−

μTþ
ν Tþ

μ in the μν plane then gives the return amplitude
of hopping counterclockwise around this plaquette. How-
ever, it is more convenient to study the holonomy in terms
of Dμ operators, which combines the forward and back-
ward hoppings,

Wμν ¼ DνDμDνDμ ¼ cosFμν − i sinFμνσ
3
μσ

3
ν;

hWμνi ¼ q: ð5Þ

We can also think of Wμν as the mutual frustration of
different terms in the Hamiltonian.
We can view the Hamiltonian (1) as a many-body system

of d interacting qubits with the hypercube being its Fock-
space graph [15]: if we view each basis vector as a point
and connect two points whenever the corresponding basis
vectors have a nonzero transition amplitude, then we get
back to the picture of a single particle hopping on a

hypercube. The many-bodiedness is encoded in the require-
ment that a Fock-space graph should have a diverging
vertex degree (d → ∞). In this manner, we have reinter-
preted the hypercube as living in a Hilbert space rather than
real space.
The spectrum of the model is solved by the moment

method via q-deformed oscillators [11,16,17]. The 2kth
moment of the hypercube model can be written as

2−dhTrH2ki ¼ 2−dd−k
X
fμig

�
TrDμ1Dμ2…Dμ2k

�
: ð6Þ

Since the trace is a sum of return amplitudes, a forward
hopping must be paired with a backward hopping, which
means the subscripts μ1;…; μ2k must form k pairs. At
leading order in 1=d, we can focus on the case where these
k indices are all distinct (any further coincidence among the
k pairs will be suppressed by 1=d). We can use chord
diagrams to represent such pairings: draw 2k points on a
circle representing the subscripts, and connect two points
by a chord if the corresponding subscripts are paired. We
illustrate one example in the left panel of Fig. 1. To evaluate
a chord diagram, we can move the operators until the paired
operators become adjacent to each other, and in the process
we generate phase terms by applying Eq. (5) repeatedly
(and that D2

μ ¼ 1). The result is that we pick up an inde-
pendent cosF for each interlacing ordering of two pairs of
hoppings and the moments are

2−dhTrH2ki ¼
X

diagrams

qnumber of chord intersections: ð7Þ

The corresponding spectral density is given by [18] (an
efficient way of evaluating the sum using a transfer matrix
is given in [7]),

ρðEÞ¼ Γq2ð12Þ
π

ffiffiffiffiffiffiffiffiffiffi
1þq

p
�
1−

E2

4
ð1−qÞ

�1
2Y∞
l¼1

�
1−

ð1−qÞqlE2

ð1þqlÞ2
�
;

Γq2

	
1

2



¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1−q2

q Y∞
j¼0

�
1−q2jþ2

��
1−q2jþ1

�−1: ð8Þ

FIG. 1. Left: a chord diagram contributing to 2−dhTrH6i, which
represents the hopping sequenceDνDρDμDρDνDμ. This diagram
has a value of q2. Right: a chord diagram contributing to a two-
point insertion 2−dhTrH2OH2Oi. The dashed line represents the
O chord and the solid lines represent the H chords. This diagram
has a value of qq̃2.
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The double-scaled SYK model can be solved in a similar
way [19,20] and the coincidence with the hypercube
model’s spectral density was noted in [13,14]. In this
Letter, we will extend the similarity to correlation functions
and explain why the coincidence is not accidental at all.
The SYK model is as follows. Consider N Majorana

fermions fψ i;ψ jg¼2δij;i;j¼1;…;N and the Hamiltonian

HSYK ¼ ΣIJIΨI; ð9Þ

where I is a multi-index of length p (p is an even integer),

I ¼ fi1; i2;…; ipg; 1 ≤ i1 < i2 < � � � < ip ≤ N;

ΨI ¼ ip=2ψ i1ψ i2 � � �ψ ip ; ðΨ2
I ¼ 1Þ: ð10Þ

Moreover, JI are Gaussian random variables that are
independently and identically distributed with variance

hJ2I i ¼
	
N

p


−1
: ð11Þ

The main feature that the SYK model shares with the
Parisi model is a similar structure of holonomies encoding
frustrations, given by

WIJ ¼ ΨIΨJΨIΨJ ¼ ð−1ÞjI∩Jj; ð12Þ

where jI ∩ Jj is the cardinality of the intersection of I and
J. The subscript I plays a similar role as μ does in the
hypercube model (which specifies there the direction of
hopping). Comparing with Eq. (5), we see that the SYK
frustrations are generated by uniform fluxes of 0 and π. By
uniformity, we mean that the holonomy WIJ only depends
on I and J, but does not depend on which state it acts on.
Namely, in the Fock-space a general loop produces a phase
that depends on its shape and orientation, but is indepen-
dent of its position. To accomplish a complete analogy with
the hypercube model, we would still need the holonomies
on different plaquettes to be statistically independent and
have a tunable average value. This is achieved by going to
the double-scaled SYK limit,

N; p → ∞; with fixed
p2

N
: ð13Þ

In this limit, multi-index intersections become an inde-
pendently random process for each pair of I and J, and
jI ∩ Jj is Poisson distributed with a mean value p2=N,
giving an average holonomy

q ¼ hð−1ÞjI∩JjiI;J ¼ e−2p
2=N; ð14Þ

where the average is over all possible values of I and J [19].
This q plays the identical role in the DS-SYK model as the
hcosFi plays in the hypercube model.

p-local vs frustrated Hamiltonians.—The SYK
Hamiltonian (9) is manifestly p local (p being the length
of the interaction). The Parisi Hamiltonian is not of that
form, as each term in (2) depends on all the available qubits.
Nevertheless, the solution is the same. The real criterion
that allows for the same solution using chord diagrams is
the fact that the frustrations satisfy

½Wμν; Dρ� ¼ 0 or ½WIJ;ΨK� ¼ 0 ð15Þ

with probability 1 in the thermodynamic limit. The hol-
onomies, or frustrations, are effectively short range and do
not interfere with most of the many-body interaction terms.
This is another way of phrasing the uniformity requirement
for the frustrations.
Observables.—To exhibit a full solution of the Parisi

model at the same level as the DS-SYK model, we need a
rich enough set of observables and show that their corre-
lation functions are the same. As we shall see below, the
chord combinatorics for probes in the hypercube model is
again identical to that of the DS-SYK model. As a
consequence, they develop the same infrared behavior,
which implies the hypercube model also has a NCFT1 limit
and its out-of-time-order correlator has an exponential
growth in time with a maximal Lyapunov exponent (which
matches the fast-scrambling nature of black holes [21–23]).
We shall see that the operator conformal dimensions in both
models can be understood as a ratio of frustrations.
What are the appropriate probe operators in this model?

Consider how we probe a near-extremal black hole in
higher-dimensional AdSDþ1. We expect that single-trace
operators of the dual higher-dimensional CFTD become
complicated by the time they flow to NCFT1. Therefore,
our best chance is to give a statistical description for them.
The Hamiltonian is one of the single-trace operators, so we
may expect other single-trace operators to have a similar
form. Since the Hamiltonian (1) is built from hopping
operatorsDμ, we suggest the following class of operators as
suitable observables:

O ¼ −
1ffiffiffi
d

p
Xd
μ¼1

D̃μ ≔ −
1ffiffiffi
d

p
Xd
μ¼1

�
T̃þ
μ þ T̃−

μ

�
; ð16Þ

where T̃þ
μ is defined in the same manner as Tþ

μ in Eq. (2),
but with a different uniform and disordered flux F̃μν that
may or may not correlate with Fμν. Similar logic applies to
SYK probes and suggests that they can be chosen to be a
product of p̃ fermions OSYK ¼ P

Ĩ J̃ĨΨĨ , where Ĩ is an
index set of length p̃ [7,8]. We can generalize Eq. (16)
further and take O to be a sum of products of a finite
number of hoppings, twisted by random phases, but this
does not add any new physics as far as observables are
concerned. It does open new options for Fock-space
dynamics, as we will discuss later.
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An odd number of insertions of D̃μ are exponentially
suppressed because hDD̃i ¼ hcos½ðF − F̃Þ=4�id−1 → 0,
and hence we only consider an even number of insertions.
Moments with two-point insertions have the form

hTrHk2OHk1Oi ¼ 1

d
k1þk2þ2

2

X
ν1;ν2;fμig

�
TrDμ1…Dμk2

× D̃ν1Dμk2þ1
…Dμk1þk2

D̃ν2

�
: ð17Þ

Because of the same exponential suppression, two D̃’s must
pair up and the D’s must pair up among themselves.
Therefore, we can obtain the two-point functions by chord
diagrams where one type of chord (marked by dashed lines)
connects the O insertions (O chords) and another type
connects the Hamiltonians (H chords). We draw an
example in the right panel of Fig. 1. Note also that

D̃νDμD̃νDμ ¼ cos
Fμν þ F̃μν

2
− i sin

Fμν þ F̃μν

2
σ3μσ

3
ν;

�
D̃νDμD̃νDμ

�
≔ q̃ ¼

�
cos

Fμν þ F̃μν

2

�
; ð18Þ

which is a generalization of Eq. (5). The remaining steps
are entirely analogous to the discussion without insertions.
The two-point moment at leading order is given by the sum
of chord diagrams

2−dhTrHk2OHk1Oi
¼

X
diagrams

qNo:of H-H intersections q̃No:of O-H intersections; ð19Þ

and the four-point insertion rule works out similarly,

2−dhTrHk4OHk3OHk2OHk1Oi
¼

X
diagrams

qNo:of H-H intersections q̃No:of O-H intersections

× q̃No:of O-O intersections
12 ; ð20Þ

where “No. H-H intersections” means the total number of
intersections among H chords in a diagram and likewise
for O-H and O-O, where the weight for the latter is
q̃12 ≔ hcos F̃μνi. These are exactly the same chord diagram
rules for the DS-SYKmodel, and there the q parameters are

q ¼ e−2p
2=N; q̃ ¼ e−2pp̃=N; q̃12 ¼ e−2p̃

2=N: ð21Þ

The NCFT1 limit of both models is given by [8]

q; q̃ → 1−; log q̃= log q fixed; ð22Þ

in the temperature range

ð− logqÞ32 ≪ T ≪ ð− logqÞ12: ð23Þ

In this regime, the correlation functions have a conformal
form and the operator dimensions are given by

ΔO ¼ log q̃= log q; ð24Þ

which in the DS-SYK model implies ΔO ¼ p̃=p and in the
hypercube model implies

ΔO ¼
D�

Fμν þ F̃μν

�
2
E

4hF2
μνi

: ð25Þ

Operator growth and the Parisi model as a typified SYK
model.—Next we will argue that the Parisi model is a useful
model for operator growth in the SYK model shares.
Consider first the “growth” of ρ ¼ e−βH as β increases.
This change can be encoded as evolution on

spanfΨI1…ΨIk ; k ≥ 0g: ð26Þ

Given thatΨ2
I ¼ 1, the evolution happens on the hypercube

of operators

d ¼
	
N

p



; ðZ2Þd →

Y
I

ΨnI
I

����nI ∈ f0; 1gd
�

ð27Þ

when we start the evolution at the origin. The right-hand
side is an overcomplete set of operators, but this is a valid
description for motions that start at the origin and make
fewer than OðNÞ hops (or we can go to the sparse SYK
model [24,25] where d ∼ N and alleviate the over-
completeness).
In slightly more detail, consider the plaquette whose

corners are ΨSΨ0;1
I Ψ0;1

J , where ΨS includes all the other
monomials’ contribution. We can move from a corner by
multiplying by ΨK (K ¼ I or J) on the right. This is
induced by “evolution” in β. The flux on a plaquette is
uniform in the sense before and depends only on I ∩ J. To
go to the Parisi model, we now replace the overdetailed
information of the phases by an average phase. So a
typified version of operator growth dynamics in the
DS-SYK model is just given by a Parisi model.
For the growth of a more general operator, it is important

to choose the right class of operators. The most universal
choice it to choose another random operator whose size
scales as

ffiffiffiffi
N

p
(but with different coefficients than the

Hamiltonian) and denote it by Obase. Its Heisenberg time
evolution now takes place in the hypercube,

ðZ2Þd × ðZ2Þd →
�
ΠJΨ

mJ
J ObaseΠIΨ

nI
I jmJ; nI ∈ f0; 1gd�

ð28Þ

and it propagates the state both on the left and on the right
lattice, i.e., the model is just the product of two lattices
as above (but with a nontrivial inner product that mixes
them, which is given by chord combinatorics). We can see
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that some standard measures of operator growth can be
easily extracted from it. For example, evolution in the
Krylov basis [26] is just the coarse information of the
distance of the lattice point to the origin (for example, in
the way of [27,28]). In the approach above, one can discuss
the evolution of more complicated features of the operator
by keeping more partial data about the location on the
hypercube.
Fock-space dynamics.—Clearly the model can be gen-

eralized by including more complicated patterns of hop-
pings in Fock-space. In fact, we can extrapolate between
the pure Parisi model and SYK-type models as actions in
Fock-space by taking H ¼ P

α;A Wα;AOα;A, where Oα;A is
of the form

α ¼ fμ1; ::μpg; A ¼ fn1;…; npg; ni ¼ �;

Oα;A ¼ Πσnjμj � phase terms: ð29Þ
For example, the complex SYK and complex DS-SYK
models [29,30] are precisely these models, with phase
factors present in the Jordan-Wigner representation of
fermions and with the constraint that

P
i ni ¼ 0 to enforce

the U(1) symmetry. This suggests some interesting gener-
alizations of the SYK model relevant for physical situa-
tions. Consider a quantum dot of many fermions with a
conserved charge. If the dot is tuned such that there are no
ψ†
iψ j terms in the Hamiltonian, then we expect that the

model is given by a U(1)-invariant SYK model. But now
we can generalize the U(1)-invariant model to

H ¼
X

Jklijψ
iψ jψ†

kψ
†
l e

i
P

m
ϕijkl;mψ

†
mψ

m
: ð30Þ

The additional phases can all be small, but there are many
of them—as in the Parisi model, one cannot expand in the
phases, but rather they can modify the infrared behavior.
Another interesting application would be doing a similar
construction using canonical bosons. The large amount of
frustrations will make sure there is no low-temperature
condensate [31], which has been difficult to achieve in the
p-local approach.
Discussions.—What is to be learned from such a picture?

Minimally, we can say p locality is not a broad enough
characterization for NAdS2=NCFT1 microscopics. Indeed,
p locality describes a large class of models whose double-
scaled limit gives NAdS2=NCFT1, an example other
than the SYK model is the p-quantum-spin model where
the double-scaled limit was first discovered [19]. However,
the hypercube model is not p local, yet follows exactly the
same combinatorics. Instead, the Fock-space frustration
picture encompasses both and hence is the broader char-
acterization, which should be useful for model-building
purposes. This is particularly important if we want to
realize the NAdS2=NCFT1 relation as the infrared of a re-
normalization-group flow in a holographic CFTD (D > 1)

in an extremal black hole state—we should really be
looking for signatures of frustrations rather than p locality.
To summarize, we get chord combinatorics [as in

Eqs. (7), (19), and (20)] and therefore automatically a
NAdS2=NCFT1 duality if a model has a Fock-space
frustration that is (i) uniform and quench disordered and
(ii) independently and identically distributed on different
(nonparallel) plaquettes of the Fock-space graph, with a
real and tunable average holonomy.
The NAdS2=NCFT1 emerges as the variance of the flux

(hF2
μνi in the Parisi model, p2=N in the DS-SYK model) is

tuned to zero after the thermodynamic limit is taken.
These criteria need to be understood as large-system-size

statements, and deviations suppressed by sufficiently high
powers in the system size should be allowed [32,33]. Also,
these criteria are sufficient but not necessary, as there
are regimes that give NAdS2=NCFT1 but are beyond
the description of chord diagram combinatorics, such as
the fixed p and N → ∞ limit of the SYK model, which
violates the second criterion by having holonomies that are
untunable at large N. Nonetheless, these criteria should not
be violated too violently. For example, if we strongly
violate the uniformity requirement by assigning to each
hypercube edge an independently random phase, we would
end up with radically different chord combinatorics that do
not deliver NAdS2=NCFT1; a local spin chain model would
strongly violate the second criterion by having frustrations
only on a vanishingly small fraction of the graph faces.
Tentatively, the uniformity requirement will be relaxed to
some smooth-variation requirement in a broader setting, but
we do not have a quantitative description at present. It is
even less clear to us how the second criterion should be
relaxed.
Finally, since NAdS2 appears as the long-throat part of a

higher-dimensional geometry, we expect a large timescale
separation in the dual CFTD (D > 1), entailing an adiabatic
scenario. We speculate that such random frustrations can
arise as Berry curvatures when the fast degrees of freedom
are integrated out [34–36].
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