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Pulsar timing arrays (PTAs) have reported evidence for a stochastic gravitational wave (GW)
background at nanohertz frequencies, possibly originating in the early Universe. We show that the
spectral shape of the low-frequency (causality) tail of GW signals sourced at temperatures around
T ≳ 1 GeV is distinctively affected by confinement of strong interactions (QCD), due to the corresponding
sharp decrease in the number of relativistic species, and significantly deviates from ∼f3 commonly adopted
in the literature. Bayesian analyses in the NANOGrav 15 years and the previous international PTA datasets
reveal a significant improvement in the fit with respect to cubic power-law spectra, previously employed for
the causality tail. While no conclusion on the nature of the signal can be drawn at the moment, our results
show that the inclusion of standard model effects on cosmological GWs can have a decisive impact on
model selection.
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Introduction.—A stochastic background of gravitational
waves (GWB) may be the only direct probe into the early
stages of cosmological evolution, where it can be produced
by physics beyond the standard model (SM). The recently
reported evidence for a nanohertz GWB in the NANOGrav
15 years [1,2] (NG15), European PTA data release 2
(EPTA-DR2) [3,4], Parkes [5,6], and Chinese [7] PTA
datasets, whose uncorrelated component was already
detected with previous data [8–11], has attracted ample
attention in the astrophysics, cosmology, and particle
physics communities.
One of the most urgent endeavors is determining whether

the signal is of cosmological or astrophysical origin, in the
latter case sourced by supermassive black hole binaries
(SMBHBs); see, e.g., [12,13] for an overview. This is
difficult for multiple reasons. First, while the NG15
analysis suggests that the astrophysical model may face
challenges [14], the current understanding of SMBHBs is
not sufficiently precise to draw conclusions [11,15,16];
second, the spectrum of a cosmological GWB generically

depends on the microphysical nature of the source and
often requires case-by-case numerical simulations.
In this Letter, we show that a distinctive signature is

nonetheless imprinted model independently by the early-
Universe dynamics of the SM, in the GW spectra of a broad
class of early-Universe sources. These are often referred to
as causality limited, i.e., radiating GWs on timescales
comparable to the corresponding Hubble time. Examples
are first-order phase transitions (PTs) [17], annihilation of
cosmic domain walls [18], collapse of large density
perturbations [19] (see also [16,20–33]), and several
well-motivated beyond the SM (BSM) scenarios (see
instead [16,26,34–37] for PTA-related analyses of other
types of possible cosmological GWBs).
Our starting point is a fortuitous coincidence of scales:

The nanohertz frequencies probed by PTAs coincide with
those of GWs that reenter the Hubble horizon at the epoch
of the QCD crossover phase transition, i.e., at temperatures
T ∼ 100 MeV (see, e.g., [38]). While the crossover is not
expected to source GWs, the rapid drop of relativistic
degrees of freedom in the thermal bath significantly
changes the equation of state (EOS) of the Universe, that
is precisely determined by means of lattice QCD [39].
A causality-limited GW source, active before the QCD

crossover, produces a model-independent low-frequency
GW signal, which we refer to as the causality tail (CT), that
is affected by the SM-induced change in the EOS. The CT
spectrum is altered by the redshift of the SM radiation bath
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(previously pointed out for other GW signals [40–42]) and
the different evolution of GWs [43–45].
This Letter derives the spectral shape of CT signals at

nanohertz frequencies, that can be readily used by PTA
collaborations, GW, and BSM communities for model
comparison (improving upon simple power-law CTs,
currently adopted by NG15 [26] and EPTA-DR2 [16];
see also [21,22]). Importantly, we show that our novel
inclusion of QCD-induced features significantly impacts
the interpretation of current PTA data, by performing a
Bayesian search for a CT signal in the international PTA
data release 2 (IPTA-DR2) [11,46] and NG15 [2].
Standard model features in the causality tail of

primordial GW backgrounds.—For cosmological GWBs,
a powerful property is ensured in a broad class of
primordial sources where GWs are generated locally,
independently in each spatial patch, and in a limited
amount of time. We denote by fCT the frequency of
GWs entering the Hubble radius when emission shuts
off. The remarkable property of the CT is that GWs with
frequencies f < fCT evolve independently of the source,
because the corresponding wavelengths are larger than the
source’s correlation length. The evolution of each tensor
mode hkðtÞ in this regime is sensitive only to the expansion
of the Universe and GW propagation [41,47–76].
Cosmological PTs are a typical example [59,67,77,78].
In this case, bubble collisions, sound waves, and plasma
turbulence act as causality-limited sources, each with its
own finite correlation length.
The GW energy fraction is customarily defined as

ΩGWðfÞ≡ 1

ρcr

dρGWðfÞ
d ln f

; ð1Þ

where ρcr is the critical energy density today. ΩGWðfÞ
exhibits a spectral shape, that is typically peaked at some
frequency f⋆ > fCT. The CT of the spectrum behaves as
ΩGWðf ≲ fCTÞ ∝ f3 in a universe filled by a perfect
relativistic fluid with EOS wðtÞ ¼ p=ρ ¼ 1

3
; see, e.g., [51].

This tilt of the CT can be modified by two effects: (i) The
GW energy density ρGWðfÞ in the CT is determined by the
Universe’s expansion history and the GW propagation [43];
(ii) the critical energy density ρcr ¼ ργ;0=Ωγ;0 in Eq. (1)
[where Ωγ;0h2 ¼ 2.47 × 10−5 is the SM radiation abun-
dance today and h≡H0=ð100 km=s=MpcÞ is the reduced
Hubble constant] is affected by entropy injections origi-
nating, e.g., from freeze-out processes occurring for (B)SM
particles in the thermal bath [41].
The first effect concerns the evolution of super-Hubble

tensor modes [43]. After the GW source shuts off, the
emitted super-Hubble modes freeze due to Hubble friction,
remain practically constant until horizon reentry, and then
proceed with underdamped oscillations diluted as 1=a. As a
result, the CT scales as

dρGWðfÞ
d ln f

�
�
�
�
f<fCT

∝ f3þ2½ð3w−1Þ=ð3wþ1Þ� ð2Þ

for a generic w. This scaling is additionally affected by
relativistic free-streaming particles, as discussed below.
The second effect concerns only the SM radiation bath,

since GWs are decoupled. This leads to a temperature-
dependent modulation

ΩγðTÞ ¼ Ωγ;0

�
g�;sðT0Þ
g�;sðTÞ

�
4=3

�
g�ðTÞ
g�ðT0Þ

��
a0
a

�
4

; ð3Þ

g�ðTÞ ¼ ρ=ðπ2T4=30Þ and g�;sðTÞ ¼ s=ð2π2T3=45Þ being
the effective number of degrees of freedom in energy (ρ)
and entropy (s) densities, respectively, and aða0Þ is the
scale factor (today). From the thermodynamical relation
sT ¼ pþ ρ, one infers the temperature-dependent
EOS wðTÞ ¼ 4

3
½g�;sðTÞ=g�ðTÞ� − 1.

During the QCD crossover, heavy hadrons form and both
g�;sðTÞ and g�ðTÞ decrease rapidly. Their values, and the
EOS shown in Fig. 1, are precisely determined with lattice
QCD techniques [39]. The temporary decrease of wðTÞ is
due to the pressureless contribution of QCD matter to the
thermal bath, followed by its rapid depletion. Therefore,
the CT is distinctively modified, when the corresponding
GWs with wave number k reenter the Hubble horizon
during the QCD crossover. Their frequency is set by
f ¼ k=2π ¼ aH=2π, which in terms of temperatures reads
(see [79])

FIG. 1. Top: EOS during the QCD crossover. The inset shows w
in an expanded range of temperatures. Bottom: impact of the
variation of wðTÞ and g⋆ðTÞ on the CT of a primordial GWB
(plotted with an arbitrary amplitude). The dashed line shows the
f3 scaling obtained in a pure radiation-dominated universe.
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f ≃ 3.0 nHz ·

�
g�;sðTÞ
20

�
1=6

�
T

150 MeV

�

: ð4Þ

We solve the equations of motion for hkðtÞ (see [79]),
accounting for the temperature dependence of w and g�,
and obtain the spectrum shown in Fig. 1. A clear deviation
from the commonly employed f3 approximation is found,
accidentally located in the nanohertz range where PTA
experiments are most sensitive.
Beside the SM effects presented above, a nanohertz CT

signal probes the cosmic expansion history back to ∼TQCD.
In particular, the possible presence of a fraction fFS ≡
ρFS=ρtot of free-streaming species [43] (including the
irreducible contribution from GWs at frequencies higher
than the CT ones) is easily accounted for, as explained in
[79]. We tabulate the CT spectrum, shown in Fig. 1, in [79].
GWBs at PTAs.—PTA collaborations typically assume a

power-law GW strain (see [79] for the relevant definitions)
that implies a GWB

ΩCGWðfÞh2 ≃ 6.3 × 10−10
�
ACGW

10−15

�
2
�

f
fyr

�
nT
; ð5Þ

where fyr ≡ ð1 yrÞ−1 ≃ 32 nHz. For a cosmological GWB,
we use the subscript CGW rather than CP. While a GWB
from SMBHBs is expected, its properties are not yet fully
known. In particular, population synthesis studies predict a
wide range for amplitude and tilt [11,12,15,16,26,123–
127]. The simple prediction nT ¼ 2

3
is valid only for a

continuous population with circular orbits and GW-driven
energy loss [128].
The causality tail (CT) of a CGW is commonly modeled

as a power law with nT ¼ 3. The main novelty of our work
is that the actual CT is significantly different, when fCT lies
above the frequency bins employed in PTA analyses, i.e.,
10 nHz≲ fCT ≲ f⋆, and this can impact the data fit relative
to the simple nT ¼ 3 approximation that had been used
previously.
A crucial difference between astrophysical and CGW

backgrounds is that only the latter contribute to the
energy budget in the early Universe and can affect
cosmological observables as any other relativistic free-
streaming component beyond the SM. CGWs contribute
to the effective number of neutrino species as Neff≡
3.044þ ΔNCGW

eff , with ΔNCGW
eff ¼ ρCGW=ρν;1 and ρν;1 is

the energy density of a single neutrino species. Specifically,
the total (integrated) GW abundance is ΩCGWh2 ≃ 1.6 ×
10−6ðΔNCGW

eff =0.28Þ [59]. Measurements of the cosmic
microwave background (CMB) [129] and baryon acoustic
oscillations (BAO) constrain ΔNeff ≤ 0.28 at 95% C.L. For
the peaked sources of interest, ΩCGW ≃ΩCGWðf⋆Þ and the
constraint on CGW backgrounds reads

ACGW ≤ 5 × 10−14
�
fyr
f⋆

�
nT=2 ð95%C:L:Þ; ð6Þ

for signals that can be approximated with power laws
up to f⋆. While this assumption is often not valid (see,
e.g., [130,131] for PTs), the ΔNCGW

eff bound can be
applied model independently to the CT, thereby giving
ACT ≤ 5 × 10−14ðfyr=fCTÞ. This often captures the app-
roximate strength of the constraint, since typically
fCT ≲ ð0.1–1Þf⋆ and the spectrum flattens close to the
peak. By comparison with Eq. (5), it is evident that CMB
constraints can affect signal interpretation when fCT ≳ fyr,
if nT > 0 (see also [132]).
Bayesian analysis.—We now discuss the relevance of

our results when performing Bayesian analyses of IPTA-
DR2 [11] and the recent NG15 [2] datasets. We do not
consider other datasets such as EPTA-DR2 [4] and PPTA
[6] which are broadly compatible, although less stringent,
than NG15 [133]. We aim to quantify the impact of the
QCD-induced deviations from a power law with nT ¼ 3 on
signal interpretation, following the procedure of the PTA
collaborations.
We compare the CTmodel to the power law nT ¼ 3, both

with only one free parameter, ACT and ACGW, respectively.
We impose ΔNeff constraints in (below) Eq. (6) to ACGW
(ACT). We set fCT ¼ fyr (such that the first bins of both
datasets are deep in the CT) and similarly f⋆ ¼ fyr for the
nT ¼ 3 model and comment on other choices below. We
also compare CT with common power-law processes with
free exponent nT , as well as with nT ¼ 2

3
. For the NG15

analysis only, we also contrast CT with the SMBHB
expectation obtained by the NG15 Collaboration [26],
via population synthesis studies assuming circular orbits

FIG. 2. The GW spectrum for the CT (solid line), nT ¼ 3
(dashed line), and free power-law (dotted line) models, selecting
the maximum posterior values obtained with IPTA-DR2 [11]
(blue) and NG15 [2] (green) datasets. The shaded region shows
the CMBþ BAO bound on ΔNeff , and the dotted line the reach
of CMB-S4 experiments. The lower limits of the posteriors are
determined by the priors of [2,11]. See Fig. 3 for parameter
posteriors.
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and GW-only energy loss. Reference [79] lists all param-
eters and prior choices.
The GW spectra for maximum-posterior values of

parameters obtained by our analyses are shown in
Fig. 2. Both plots show why the CT presented in our
work is expected to improve the fit to PTA data, when
compared to the nT ¼ 3 power law: For ACT ¼ ACGW, the
CT allows for a larger amplitude of ΩGW in the first bins
(roughly by a factor of 2–3).
In Fig. 3, we show the posterior distribution for the

relevant signal parameters of the models considered. For a
qualitative comparison, one can approximate the CT as a
power law with slope evaluated through a given number of
frequency bins. The result of this procedure is shown by the
vertical gray lines in Fig. 3, obtained by fitting the CTwith
a power law through the lowest fourth to eighth frequency
bins of NG15, where evidence for GWs is reported. The 1,
2, and 3σ posteriors on power-law parameters reported by
IPTA-DR2 and NG15 are also shown. We expect the CT to
provide as good a fit to the NG15 data as a power-law
model with parameters inside the 2σ region of the poste-
riors, whereas the f3 signal lies at the border of the 3σ
region. We stress that this is only approximate, since the CT
deviates significantly from a power law at the relevant
frequencies.
We finally compare models by computing the Bayes

factors Bij, quantifying the preference of model i with
respect to model j. These are reported in Table I. One
important result is the comparison between the CT and
power-law nT ¼ 3 signals. As highlighted in bold in
Table I, the CT provides, in a statistically significant
way, a better fit than f3 to both datasets.
Testing against the possible astrophysical interpretation

of the GWB is subject to uncertainties on the SMBHB
signal. For NG15, no substantial evidence in favor of nor
against the CT is observed in comparing with the SMBHB
expectation of [26] and the nT ¼ 2

3
model, while the

evidence for a free power law over the CT is substantial.
On the other hand, both power-law models are favored over
the CT in the older IPTA-DR2. Most importantly, the result
for nT ¼ 3 is strongly disfavored with respect to a generic
power-law fit, while it becomes only mildly disfavored
when the proper CT is considered. This shows that the
inclusion of the unavoidable QCD effects is appreciable
and can both qualitatively and quantitatively change the
comparison between CGW from localized sources and the
data. Future data releases will have more constraining
power to further test the compatibility of the CT signal with
the observations.
Let us comment on how different fCT values affect our

model comparison. The CMB bound on power-law CGW s
becomes stronger for fCT > fyr, as shown in Fig. 3 for peak
frequency f⋆ ¼ 1; 3fyr. For the NG15 dataset, the CT
signal is excluded at 3σ only if fCT ≳ 100 nHz. The future
reach of CMB-S4 [134] observations is also plotted. One

could instead consider f⋆ < fyr, in which case the peak of
the signal would lie within the range of frequencies
constrained by NG15. However, such analysis would be
model dependent, as the properties of the GWB peak are
controlled by the specific source under consideration. We
leave such investigation for future work.
We note that the best-fit models, corresponding to the

curves in Fig. 2, are associated to negligible values of fFS
from GWs of frequency f ¼ fCT. Additional contributions
from high-frequency and other free-streaming species are
model dependent but would affect our results only if
ΔNCGW

eff ≳ 0.1. In this case, an excess in upcoming cos-
mological surveys [134–136] is expected.
Discussion and implication for particle physics.—We

have pointed out that SM physics predicts a specific shape
for the CT of a GW signal, clearly distinguishable from
ΩGW ∼ f3 already with present datasets. This applies to any
GW source that is active before QCD confinement (i.e.,
T ≳ GeV; see [79]) and provides a much-needed signature
to help determining whether the current PTA excess is of
cosmological or astrophysical origin. If the SMBHB

FIG. 3. Upper: 2D posterior for a power-law model for IPTA-
DR2 [11] and NG15, the latter enforcing Hellings-Downs (HD)
correlations in the analysis [2,4]. The vertical lines indicate
approximations of the CT. The yellow star shows the best-fitting
CT amplitude. We show current (dashed line) and future (dot-
dashed line) ΔNeff bounds affecting any power-law signal
extending up to f⋆ ¼ 1; 3fyr. The excluded region lies above
the corresponding line. Lower: 1D posteriors on A for the power-
law model (marginalizing over the second parameter nT) and for
the CT and f3 models. The smaller amplitude observed for the
free nT case follows from the A − nT degeneracy observed in the
upper panel, and the arbitrary choice of defining the spectral
amplitude at fyr; see Eq. (5).
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interpretation (or a different CGW signal) is preferred, then
our work should prove useful in the future to disentangle
additional contributions from cosmological sources (see,
e.g., [137,138]).
We have shown that a CT spectrum remains compatible

with the PTA signal in both IPTA-DR2 and NG15 datasets
with a much reduced tension compared to the commonly
employed nT ¼ 3 approximation, while it provides a
similar fit to NG15 as simple SMBHB models.
The detection of a CT signal would have dramatic

implications for particle physics, most likely pointing to
the breaking of a (global or gauge) symmetry in a dark
sector (DS), for instance, via a PT (or causing the
annihilation of domain walls for discrete symmetries) at
temperatures T ≳ GeV. Some macroscopic properties of
the corresponding GW source can be estimated rather
model independently. A large GWB amplitude requires a
significant energy fraction α⋆ ≡ ½ρDS=ð3H2M2

pÞ�T¼T⋆
of

their source. Either this is the SM (e.g., a first-order PT at
QCD confinement which requires additional ingredients
[139]), or this energy should decay to SM, because if it
remains in dark relativistic species, it contributes as [23]

ΔNDS
eff ≃ 0.28

�
74

g�ðT⋆Þ
�

1=3
�
α⋆
0.1

�

: ð7Þ

As we detail in [79] (see also [23,25,140]), depending on
the model-dependent suppression ϵ⋆ ≲ 1 (e.g., the sub-
Hubble size of the source), a cosmological GWB with
amplitude ACGW ≳ 10−14.6 implies α⋆ ≳ 0.07ϵ−1=2⋆ and,
therefore, a ΔNeff within the reach of upcoming CMB
and LSS surveys [134–136,141]. This conclusion is
stronger for a GWB with larger nt. Alternatively, the
required couplings between the SM and the dark sector
may be complementarily probed at colliders, laboratory
experiments, and astrophysical environments.
Finally, in our work we have conservatively employed

the SM prediction for the EOS of the Universe. We notice
that the measurement of the CT at PTAs offers a probe of
the whole cosmological expansion history up to TQCD, as
encapsulated by Eq. (4). Modifications to the CT could
occur in BSM scenarios where wðTÞ, g�ðTÞ, or fFS are
varied, or if the Universe undergoes a phase of matter
domination below the QCD crossover (we present a search
for this scenario in [79]). Additionally, PTAs could test the

EOS of hot QCD matter in the early Universe (see, e.g.,
[139,142]), in the presence of a CT signal.
The near-future detection of a GWB at PTAs could

disclose a unique window around the epoch of the QCD
crossover. As highlighted in this Letter, this coincidence of
scales provides a robust feature to assist in the discrimi-
nation between the astrophysical and cosmological origin
of the GWB.
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