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Quantum information scrambling is a unitary process that destroys local correlations and spreads
information throughout the system, effectively hiding it in nonlocal degrees of freedom. In principle,
unscrambling this information is possible with perfect knowledge of the unitary dynamics [B. Yoshida and
A. Kitaev, arXiv:1710.03363.]. However, this Letter demonstrates that even without previous knowledge of
the internal dynamics, information can be efficiently decoded from an unknown scrambler by monitoring
the outgoing information of a local subsystem. We show that rapidly mixing but not fully chaotic
scramblers can be decoded using Clifford decoders. The essential properties of a scrambling unitary can be
efficiently recovered, even if the process is exponentially complex. Specifically, we establish that a unitary
operator composed of t non-Clifford gates admits a Clifford decoder up to t ≤ n.
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Introduction.—A famous English nursery rhyme [1]
states that, once an egg is broken, it is quite arduous to
put it together, no matter how many resources the king may
employ. At the quantum mechanical level, breaking an egg
corresponds to information scrambling [2–7], that is, the
spreading of information—initially localized in a part of a
quantum system—into quantum correlations all over the
entire system.
The primary consequence of quantum information

scrambling is that no local measurements can fully recon-
struct the scrambled information. This phenomenon has
been extensively explored, e.g., in the context of black hole
physics [8–14]: after information falls into a black hole, it
cannot be recovered solely by examining the outgoing
Hawking radiation. In this context, it has been conjectured
that black holes are fast scramblers [15–17], i.e., within a
time τ� ¼ Oðlog nÞ, which scales logarithmically with the
number n of systems’ degrees of freedom, the information
spreads nonlocally.
The scrambling capability of a unitary dynamics can be

probed by the decay of out-of-time-order correlators
(OTOCs) [18] that capture the sensitivity of the dynamics
to local perturbations and is, as such, the quantum
equivalent of the butterfly effect [19]. A scrambler Ut
can be realized by a Clifford circuit doped by a number t
of non-Clifford resources [20–23]. Clifford unitaries U0

are structurally very simple; indeed, they can be both
represented and learned by polynomial resources [24,25].
In spite of this, they can be fast scramblers [26–29].

On the other hand, doped unitaries Ut become exponen-
tially more complex in t to be represented and simu-
lated [30,31].
Although scrambling destroys local correlations, in a

seminal paper [10], it was shown that local quantum
information tossed in the input of a scrambler can actually
be recovered by measuring a local output subsystem of size
slightly larger compared to the scrambled information.
However, this successful recovery relies on the precise
knowledge of U†

t [32], which allows for the construction of
a decoder capable of distilling back the scrambled infor-
mation, effectively reversing the scrambling process.
In this Letter, we relax the assumption of perfect

knowledge of the scrambler dynamics Ut, which can be
too strong in many contexts of interest, and pose the
question of whether one can learn, after tossing in known
test states, how to retrieve the scrambled information by
solely observing a local output subsystem, without any
previous knowledge of the dynamics Ut.
Informally, the main result of this work is to show that

this is indeed possible. The learning cost is exponential
in t, but, and this is striking, the decoder V is in itself a
simple Clifford operator, even for a very complex Ut. It
turns out that the Clifford part of Ut is sufficient to decode
the information of Ut. This can be efficiently encoded in V,
while all its complexity (given by the injection of non-
Clifford resources) turns out to be useless.
More precisely, the algorithm presented in this Letter

learns a Clifford decoder V for Ut by polyðn; 2tÞ query
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accesses to Ut [33]. The fidelity F ðVÞ of the retrieved
information by V is

F ðVÞ ≥ 1

1þ 22jAjþt−2jDj ; ð1Þ

while the probability PðVÞ of learning the decoder V is

PðVÞ ≥ 1 − 2t−2ðn−jDjÞ: ð2Þ

Here, n is the total number of qubits of the scrambler Ut,
jAj is the number of qubits of input information, jDj is the
number of readout qubits.
Equations (1) and (2) also set the domain of effectiveness

of the algorithm. As long as t ≤ n, which we refer to as
“quasichaotic regime” [34], the unitary Ut is exponentially
complex, yet one can still learn its efficient Clifford decoder
at the cost of linearly increasing the size of the readout
qubits D. However, approaching the quasichaotic regime,
the number of readout qubits increases with t, indicating
a more complex and mixing scrambling process that seems
to be not locally reversed. As soon as t > n, we observe
that both the fidelity (1) and the probability of learning (2)
decay exponentially in t for any choice of jDj, until one
reaches full quantum chaos at t ≥ 2n [21], where the
unitary Ut resembles the properties of a random unitary
operator, and for which the fidelity and learning probability
are exponentially small in n.
Decoding scramblers.—In this Letter, a scrambler is a

unitary Ut acting on a joint system A ∪ B of n ¼ jAj þ jBj
qubits with output C ∪ D, i.e., Ut∶ A ∪ B ↦ C ∪ D (see
Fig. 1). The initially localized information is represented by
the state in subsystem A while subsystem D represents the
readable output subsystem.

Let us formally define a scrambling unitary. Consider
two subsystems X and Y, the OTOC ΩXYðUtÞ is defined as

ΩXYðUtÞ ¼
1

2n
�
tr
�
PXU

†
t PYUtPXU

†
t PYUt

��
X;Y; ð3Þ

where PX, PY are Pauli strings with support on X and Y,
respectively, and h·iX;Y represents the average with respect
to the local Pauli groups, i.e., the local observables, on X
and Y. The unitary Ut is a scrambler if and only if the
OTOCs ΩXYðUtÞ behave as [32]

ΩXYðUtÞ ≃
1

22jXj
þ 1

22jYj
−

1

22ðjXjþjYjÞ : ð4Þ

Let us now describe an adversarial setup often used in the
context of information scrambling [10,32,35]. We consider
Alice R and Bob B0 sharing respectively an EPR pair (Bell
pair) with the input state AB of the scrambler Ut, i.e., the
state of the whole system ARBB0 is

jΨti≡ UtjBB0ijARi; ð5Þ

where we denote jΛΛ0i ¼ 2−jΛj=2
P

2jΛj
i¼1 jiiΛjiiΛ0 an EPR

pair between Λ and Λ0 and ΠΛΛ0 ≡ jΛΛ0ihΛΛ0j.
One then questions how much (local) correlation

between A and R survives after the unitary dynamics Ut.
In this regard, the decoupling theorem [10] states that,
after the scrambling dynamics Ut, the mutual information
IðRjDB0Þ≡ jAj þ log 22jAjΩADðUtÞ between R and D ∪ B0

for any D such that jDj ¼ jAj þ log ϵ−1=2 is, thanks to
Eq. (4), ϵ-maximal,

IðRjDB0Þ ¼ jAj − ϵ; ð6Þ

FIG. 1. (a) Diagrammatic representation of jΨVi, where the upward direction represents the progression of time. The steps of the
decoding algorithm generating jΨiV are (1) parallel application of Ut (obtaining so jΨti, diagrammatically shown in the purple box) and
of the decrypter V 0 on the initial state jRAijBB0ijA0R0i; (2) application of D† (obtaining DjΨit, as diagrammatically shown in the violet
box) andDT . This process dumps the stabilizer entropy onto the F, F0 subspaces. (3) The final steps involve the application ofR� and of
a projective measurement on DD0. Panel (b) provides an example of a doped random Clifford circuit Ut, whereas panel (c) displays the
circuit D†Ut, whereD is a diagonalizer for the circuit Ut given in panel (b). Panel (d) illustrates the adjoint action of both circuits on the
generators of the group PE. The circuit Ut shown in panel (b) only preserves the generator IIZII, transforming it into another Pauli
operator, whereas the adjoint action of D†Ut preserves all generators, showing how the diagonalizer can move non-Cliffordness away
from the subsystem of interest.
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and thus A is completely decoupled from R, i.e.,
IðRjAÞ≡ jAj − IðRjDB0Þ ¼ ϵ. Since now the information
is perfectly correlated with Bob’s qubits, there exists a
unitary V that decodes the information and enables Bob to
distill an EPR pair between Alice R and a reference system
of the same dimension of R, say R0. As a result, Bob can
access all the information in Alice’s possession by just
looking at B0 together with any subsystem D containing
slightly more qubits than the ones in A.
As shown in [32], to read the output subsystem D, Bob

first appends a reference state jA0R0i, applies the decoder
V∶ A0 ∪ B0 ↦ C0 ∪ D0, and then projects the resulting state
onto jDD0i. After decoding, we obtain the final state
jΨVi ¼ π−1=2V ΠDD0VT jΨtijA0R0i, where πV is a normaliza-
tion and T is the transposition. The fidelity F ðVÞ between
jΨVi and the target EPR pair jRR0i quantifies the success
of the decoding protocol by Bob and is defined as
F ðVÞ≡ hΨV jΠRR0 jΨVi. The closer F ðVÞ is to one, the
better the decoding.
In [32] it has been proven that a perfect decoder V would

be the inverse scrambling operation U†
t , i.e., F ðU†

t Þ ¼
1 − ϵ. However, as we will see, a perfect decoder is not
unique. There are potentially an infinite number of perfect
decoders V with possibly very low gate fidelity with Ut.
The Clifford decoder.—Let us show in a simplified

fashion how the perfect decoding of a scrambler Ut can
be achieved by a Clifford decoder V. We will see that the
Clifford decoder V can be written as

V ¼ DRD†V 0; ð7Þ

i.e., as a product of three Clifford operators, namely the
“diagonalizer” D, the “randomizer”R, and the “decrypter”
V 0. While here we operate under the assumption that the
knowledge of V is given and explore the role of each
component D, R, V 0 in Eq. (7). In the subsequent section,
we will elaborate on how Bob can learn the Clifford
decoder V from the output of the scrambler Ut.
A Clifford unitary U0 on the total system of n qubits

sends Pauli strings to Pauli strings. As we dope the unitary
by t non-Clifford resources, Ut will not generally send
every Pauli string in another Pauli string. However, Ut
may still behave like a Clifford operation just on a subset of
the Pauli group. To be precise, let PΛ denote the Pauli
group on the subsystem Λ, and let GΛðUtÞ denote such
a preserved subset of the Pauli group, i.e., GΛðUtÞ ≔
fP∈PΛjU†

t PUt ∈Png. In [34], we prove that jGΛðUtÞj ≥
22jΛj−t, i.e., a fraction of 2−t Pauli operators are preserved
by the action of Ut.
As we show in [34], for any t-doped Clifford circuit

there exists a Clifford operation D and two subsystems
E1; E2 ⊂ D such that PE1

⊆ D†GDðUtÞD ⊆ PE2
. However,

for the purpose of this Letter, we work in the following
simplified setting: assume that there exists a subset E of
qubits E ⊂ D and a Clifford operation D∶ D ↦ E ∪ F

such that D†GDðUtÞD ¼ PE. In words, the diagonalizer D
moves the non-Cliffordness around the subsystem D and
concentrates it all into the subsystem F≡DnE. The
simplified scenario described above corresponds to a
special class of circuits in which E1 ≡ E2; see [36].
By measuring the output subsystem E only, the unitary

operation D†Ut is indistinguishable from a Clifford oper-
ator: the action on any Pauli string PE ∈PE is, by
construction, a Pauli string in Pn

ðD†UtÞ†PEðD†UtÞ∈Pn: ð8Þ

By applying the diagonalizer, Bob effectively splits the
output subsystem D into two parts: E that contains only
Clifford information, and its complement F that contains all
the non-Cliffordness of Ut. In what follows, let us denote
the adjoint action of D†Ut on Pauli operators P as P̃≡
ðD†UtÞ†PðD†UtÞ to lighten the notation.
The question is this: Can Bob only look at the

subsystem E and learn the information scrambled by Ut
by employing a Clifford decoder? The decoupling theorem
says that the joint subsystem E ∪ B0 contains all the
information (up to an error ϵ) about R, provided that
jEj ¼ jAj þ log ϵ−1=2. Therefore, the answer is Yes, pro-
vided that Bob looks only at the joint subsystem E ∪ B0 by
tracing out the subsystem F. In practice, this operation is
equivalent to projecting onto the jEE0i instead of jDD0i,
and can be achieved by applying a randomizer, i.e., a
Clifford operation R that, acting on F0 ∪ C0, scrambles the
unwanted information contained in F0 throughout the
system C0. The action of the randomizer results in hiding
the non-Clifford information contained in F in the sub-
system C, which is equivalent to tracing out the subsystem
F with probability governed by the size of C. In practice, a
randomizer R is just a random Clifford operator, which is
scrambling with overwhelming probability [27].
At this point, a decrypter V 0 that reads the clean Clifford

information out of the subsystem E is sufficient to
completely decode the information in a Clifford-like
fashion. V 0 is a Clifford unitary operator that obeys the
following property:

ðD†V 0Þ†PEðD†V 0Þ ¼ P̃E ∀ PE ∈PE; ð9Þ

i.e., it mimics the (Clifford-like) action (8) of the operator
D†Ut only on the local Pauli group PE. The reason behind
this capability is that the unitary operator D†Ut is practi-
cally indistinguishable from a Clifford operator from the
point of view of an observer that measures the subsystem E
only; see Eq. (8). Let us denote the adjoint action of D†V 0

on P∈P as P̂≡ ðD†V 0Þ†PðD†V 0Þ.
In summary, the decoding protocol consists of the

following steps starting from Eq. (5): (i) apply the diag-
onalizer D on the output D of the scrambler Ut, (ii) append
jA0R0i, (iii) apply the decrypter V 0T followed byD� (the star
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denotes the conjugate operation), (iv) apply the randomizer
R� on F0 ∪ C0, and (v) project onto jDD0i. The final state
jΨVi with V ¼ DRD†V 0 can be represented diagrammati-
cally as in Fig. 1.
We are just left to show that the decoder V built as

described above achieves the promised fidelity in Eq. (1). It
is possible to show [37] that for V ¼ DRD†V 0, the fidelity
reads

F ðVÞ ¼ 1

4jAj

�
tr
�
P̃DR†P̂DR

��
D�

tr
�
PAP̃DPAR†P̂DR

��
D;A

: ð10Þ

We recall that P̃, P̂ represents the adjoint action ofD†Ut and
D†V 0 on P, respectively. From Eq. (10), it is possible to see
that selecting the randomizer R as a random Clifford
operator is equivalent to tracing out the unwanted non-
Clifford information. Indeed, in the Supplemental Material
[37], we show that, with failure probabilityOð2−2jCjÞ [39] in
the choice of the randomizer R, the fidelity reads

F ðVÞ ≃ 1

4jAj

�
tr
�
P̃EP̂E

��
E�

tr
�
PAP̃EPAP̂E

��
E;A

: ð11Þ

The above equation tells us that the action of the random-
izer is equivalent to tracing out the F≡DnE subsystem:
the average h·iE is now restricted on E only.
From the definition of the decrypter in Eq. (9), one has

that P̂E ¼ P̃E, therefore trðP̃EP̂EÞ ¼ 2n and by definition
in Eq. (3) one has 2−nhtrðPAP̃EPAP̂EÞiA;E ¼ ΩAEðUtÞ.
Therefore, from Eq. (11), and using Eq. (4) for Ut being
scrambling, we obtain the following value for the fidelity:

F ðVÞ ≃ 1

1þ 22jAj−2jEj
: ð12Þ

The above equation shows that, by employing the diago-
nalizer and a randomizer, Bob is able to distill an EPR pair
between R and R0 with fidelity approaching one exponen-
tially fast in jEj − jAj. However, there is an important
caveat: the size of the subsystem E does depend on the
number t of non-Clifford gates. For t ¼ 0, E ¼ D. More
generally, we are only assured that jEj ≥ jDj − t=2, recov-
ering Eq. (1). If we allow an ϵ error for the fidelity, we
have the following condition jDj ≥ jAj þ t=2þ log ϵ−1,
i.e., to make a constant error ϵ, Bob must collect a linearly
increasing (in t) number of output qubits D, rendering the
unscrambling process increasingly nonlocal. At the same
time, Eq. (2) shows that the success probability shrinks
with jDj. This is because the randomizer becomes less
effective in scrambling if C is small and jCj ¼ n − jDj. The
algorithm breaks down as t ∼ n, as both the probability of
learning and the fidelity of recovery start decaying expo-
nentially in n.

Learning the Clifford decoder.—The Clifford decoder
(7) is capable of decoding the input information scrambled
by the t-doped Clifford circuit Ut. In this section, we
show how one can learn each component D, R, V 0 of the
Clifford decoder V by observing the output subsystem D.
Specifically, we assume black-box access to Ut, meaning
we can apply one or multiple copies of Ut on a quantum
register and measure the output D. We note that the ability
to construct the decoder V solely by analyzing the outputD
is desirable in contexts in which the output subsystem C is
inaccessible to the observer [10].
While the rigorous version of the learning algorithm

needs to be found in [34], here we highlight the key steps
of the learning process. As we said, given the output
subsystemD, there exists a subgroup GDðUtÞ consisting of
Pauli strings that are sent to Pauli strings by the adjoint
action of Ut. By employing entangling measurements (yet
stabilizer) on the output of Ut on test Pauli operators
PD ∈PD, one can decide whether U

†
t PDUt is a Pauli string

or not. By repeating this procedure multiple times for
different test Pauli operators, one can effectively learn a set
of generators gDðUtÞ for the group GDðUtÞ. Notice that the
above procedure reveals also the image group, denoted as
U†

t GDðUtÞUt, of GDðUtÞ through the adjoint action of Ut.
The total time and query complexity of the algorithm is
polynomial in n while exponential in the number of non-
Clifford gates t.
At this point, having learned the groups GDðUtÞ and

U†
t GDðUtÞUt, one can construct the Clifford decoder V

through classical postprocessing in polynomial time.
To build the diagonalizer D, it is sufficient, through
manipulation of the tableau representation of Clifford
circuits [30], to construct a Clifford operation that sends
GDðUtÞ to a Pauli group PE on a subsystem E of size jEj ¼
log jGDðUtÞj. As the swap operator between qubits belongs
to the Clifford group, the learner can freely choose
the subsystem E among the qubits in D. Similarly, it is
possible to distill the decrypter V 0 that sends GDðUtÞ to
U†

t GDðUtÞUt ≡ ðD†UtÞ†PEðD†UtÞ. Notice that existence
of both D and V 0 is guaranteed by the Gottesman-Knill
theorem [40]. Finally, to build the randomizer R, it is
sufficient to draw a Clifford operator uniformly at random.
As a result, Bob is able to construct the Clifford decoder V
by having black-box access to the scramblerUt and reading
the output D of Ut in time polyðn; 2tÞ.
Black-hole scrambling and Clifford decoding.—In this

section, we provide a brief overview of the potential
implications of our findings in the context of black hole
physics. Black holes are inherently isolated objects and
thus, if the laws of quantum mechanics hold, their internal
dynamics must be unitary. Traditionally, black holes have
been conceptualized as exhibiting maximally chaotic uni-
tary behavior [41,42], being often described as random
unitary operators [43], to account for their intrinsic
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complexity. Furthermore, black holes are widely believed
to be the fastest scramblers in nature [15].
However, the assumption of resembling random unitary

dynamics for fast scrambling might be overly stringent.
This is because, as discussed above, Clifford circuits excel
at efficiently scrambling information. We can thus chal-
lenge the conventional notion of characterizing black holes
as maximally chaotic systems and instead focus solely on
their (fast) scrambling properties. Under this perspective,
the internal dynamics of a black hole could potentially
be described by Clifford circuits or, more generally, by
t-doped Clifford circuits, which are increasingly more
chaotic with t [21].
If this hypothesis holds, our results carry significant

implications. Specifically, they suggest that information A
entering a black hole and subsequently expelled through
Hawking radiation D could be effectively learned by an
observer employing a Clifford decoder. By introducing test
information into the black hole and analyzing the outgoing
Hawking radiation, Bob could learn how to decode the
information contained in the radiation emitted by a black
hole, without accessing the black hole interior C. This
decoder could then be employed to investigate the physics
in the proximity of the black hole.
Conclusions.—Complex quantum operations require an

exponential number of classical resources to be represented
and simulated. However, important properties of complex
(but not fully chaotic) quantum operations—like the decod-
ing of scrambled information from Hawking radiation—can
be both learned and simulated efficiently in a classical
computer by pushing the complex behavior residing in the
non-Clifford resources to noisy subsystems. We speculate
this behavior can be extended to the general framework of
quantum error-correcting codes. A practical direction to
pursue for future research is to investigate the robustness of
Clifford decoding in the presence of noise. If we see the
scrambling of the information tossed in the scrambler as a
quantum process, all its efficient decoders are equivalent in
characterizing it. It would thus be interesting to see how the
algorithm proposed here can be expanded to improve
process tomography.
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