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We introduce and study the discrete-time version of the quantum East model, an interacting quantum
spin chain inspired by simple kinetically constrained models of classical glasses. Previous work has
established that its continuous-time counterpart displays a disorder-free localization transition signaled by
the appearance of an exponentially large (in the volume) family of nonthermal, localized eigenstates. Here
we combine analytical and numerical approaches to show that (i) the transition persists for discrete times, in
fact, it is present for any finite value of the time step apart from a zero measure set; (ii) it is directly detected
by following the nonequilibrium dynamics of the fully polarized state. Our findings imply that the
transition is currently observable in state-of-the-art platforms for digital quantum simulation.
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Introduction.—Establishing the precise conditions for
real space localization in interacting systems, even in one
dimension, turns out to be extremely challenging. Despite
intense efforts to crack it [1–9], it currently remains a
major unsolved problem in theoretical physics. It has been
argued that a form of many-body localization should
emerge as a consequence of an external quenched disorder,
which, under some conditions, might defeat interactions.
Whether this mechanism can lead to a stable phase of
matter remains an actively debated topic [7–9]. A funda-
mental problem is that localization studies are either limited
to small systems accessible to numerical or experimental
simulation or uncontrolled perturbative approximations.
Nevertheless, for many-body localization to be established
as a phase of matter, it has to exist in the thermodynamic
limit: it should not (only) be a property of eigenstates, but
(also) of dynamics.
Recently, it has been suggested that, other than by

disorder, real space localization can also be triggered by
kinetic constraints which render transport a higher-order
process. An advantage of this approach is its immunity to
fluctuating rare events such as ergodic bubbles. A minimal
example of this mechanism is realized in the so-called
quantum East model [10–15] (and its bosonic version [16])
where a localization transition in the quantum Hamiltonian

is in one-to-one correspondence with a first-order activity-
inactivity transition in the corresponding classical stochas-
tic glass model. In agreement with this picture, Ref. [17]
observed an eigenstate localization transition in the quan-
tum East model for an exponentially large family of
eigenstates.
In this Letter, we take a fundamental step further and look

for the possibility of dynamical localization in a Floquet, or
Trotterized, version of the quantum East model, where
localization is challenged by a steady pumping of energy
into the system [18–20]. This setting can be seen as the
kinetically constrained analog of Floquet many-body locali-
zation [21–23]. We replace the continuous Hamiltonian
dynamics by a discrete sequence of conditional unitary gate
operations—a quantum circuit—that can be conveniently
implemented on platforms for digital quantum simulation,
such as trapped ions [24–27] and superconducting circuits
[28–33]. Using time-dependent perturbation theory, we
argue that the model displays a localization transition by
tuning the parameters of the model. We demonstrate that in
the dynamically localized phase themodel can be efficiently
simulated by time-dependent matrix product methods [i.e.,
time-evolving block decimation (TEBD) algorithm] [34–
36] to an arbitrary precision, showing very good quantitative
agreement with the perturbative prediction. Moreover, we
find qualitative agreement between the dynamical picture of
localization in the infinite system and the localization of
eigenstates in the finite system.
The model.—Our starting point is the quantum East

model [10] defined by the following Hamiltonian operator
(in arbitrary energy units):
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HðaÞ ¼
X2L−1
j¼1

PjðaXjþ1 − IÞ þ aX1 − I: ð1Þ

Here a is the dimensionless coupling constant, 2L is
the system size, fXj; Yj; Zjg are Pauli matrices acting
nontrivially at site j, I is the identity operator, and
Pj ¼ ðI þ ZjÞ=2.
We are interested in discrete sequences of unitary

operations Uða; τÞ that reproduce the dynamics generated
by Eq. (1) in a special scaling limit. Namely,

lim
t→∞

Uða; t=tÞt ¼ e−iHðaÞt; ð2Þ

where t is the number of discrete time steps, while t plays
the role of physical time. This procedure is known as
Trotter-Suzuki decomposition [37,38] and does not
uniquely specify the unitary operator: there are many
choices of Uða; τÞ fulfilling Eq. (2). Here we consider
one that is local in space, i.e., it has the following brickwork
structure (see Fig. 1):

Uða; τÞ ¼ eiτUeða; τÞUoða; τÞ; ð3Þ

with

Ueða; τÞ ¼ U1;2ða; τÞ � � �U2L−1;2Lða; τÞ;
Uoða; τÞ ¼ e−iτaX1U2;3ða; τÞ � � �U2L−2;2L−1ða; τÞ; ð4Þ

where we use a standard notation Ox;y for an operator O
acting nontrivially only at the sites x, y and define a local
conditional gate Uða; τÞ ¼ e−iτðaP⊗X−P⊗IÞ. The (Trotter)
time step τ, usually referred to as the Trotter step, sets the
strength of the unitary operation (3). It is easy to verify that
(2) holds for the evolution operator defined in Eq. (3). Note
that the discrete-time dynamics generated by Eq. (3) is
equivalent to a continuous-time dynamics in the presence
of a periodic drive.

To probe the localization properties of the quantum
circuit (3) we consider a “local quantum quench.” Namely,
we prepare the circuit in the initial state

j↓ � � �↓i; ð5Þ

which is an eigenstate of the bulk evolution due to the
identity Uða; τÞj↓↓i ¼ j↓↓i, but is not stationary at the left
boundary. As a consequence, only the sites within a light
cone spreading from the left boundary undergo a nontrivial
evolution, see Fig. 1. Intuitively, one can think of our local
quench protocol as creating a localized disturbance in
ðx; tÞ ¼ ð0; 0Þ in a state that is otherwise stationary.
Importantly, this quench problem is also a caricature of
local-operator spreading in a generic quantum many-body
system after an operator-to-state mapping. Here, j↓i [and
(5)] represents the identity and j↑i stands for any other
traceless local operator that starts growing from the left
edge. The question of localization now translates to that of
the existence of a conserved local operator.
A simple measure of how the disturbance created by the

local quench spreads through the system is given by the
partial norms

Wðx; tÞ ¼
X

sj¼↑;↓

jhs1…sx−1↑↓ � � �↓jUða; τÞtj↓ � � �↓ij2: ð6Þ

Since Wðx; tÞ ≥ 0 and
P

x Wðx; tÞ ¼ 1, the partial norms
can be thought of as the probability of having the rightmost
up spin at position x. Specifically, whenever the disturb-
ance remains localized at the boundary, we have Wðx; tÞ ≈
0 for x ≫ x0 ¼ Oðt0Þ, while when it spreads through the
light cone the partial norms attain nonzero values for all
x ≤ 2t. We emphasize that due to the light cone
Wðx > 2t; tÞ ¼ 0. The factor 2 is a direct consequence
of the brickwork structure of (3), as each time step
propagates information for up to two sites to the right.
In fact, to facilitate our numerical analysis we consider

slightly modified quantities that bear the same physical
information as those in Eq. (6): Instead of the partial norms
of the state Uða; τÞtj↓ � � �↓i, we look at those of the state
along the diagonal cut in the right panel of Fig. 1. The latter
quantities are

Nðx;tÞ¼
X

sj¼↑;↓

jhs1…sx−1↑↓ � � �↓jUlða;τÞtj↓ � � �↓ij2; ð7Þ

where we introduced the “ladder evolution operator”
(cf. Fig. 1),

Ulða;τÞ¼eiτe−iτaX1U1;2ða;τÞU2;3ða;τÞ���UL−1;Lða;τÞ; ð8Þ

which is related to Uða; τÞ by a similarity transformation
[39]. The quantities in Eq. (7) are more convenient than

FIG. 1. Left: state (5) after t ¼ 3.5 time steps of discrete
dynamics. White bullets denote the state j↓i and the blue circles
the activation part of the conditional gate Uða; τÞ. The brick-wall
Floquet propagator Uða; τÞ is highlighted in yellow. Right:
explicit simplification of the dynamics out of the light cone.
Dashed lines indicate the cut for the ladder evolution in Eq. (7).
The ladder propagator Ulða; τÞ [cf. (8)] is highlighted in orange.
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those in Eq. (6) because with the same computational effort
one can access times that are twice as long.
Infinite system at finite times.—Let us begin considering

the time evolution of the partial norms Nðx; tÞ in the
thermodynamic limit L → ∞. In this case, the main
qualitative features of their evolution can be understood
by performing a simple perturbative analysis [the same can
be done for Wðx; tÞ, see the Supplemental Material [39] ].
We begin by introducing the interaction representation of
the time-evolution operator

Ulða; τÞt ¼
�Yt
k¼0

Ũlðτa; τkÞ
�
eiτt

P
j
Pj ; ð9Þ

where we defined

Ũlða; τÞ ¼ eiτe−iaX1e−iτZ1
Y→

k∈ f1;…;2L−1g
Ũk;kþ1ða; τÞ; ð10Þ

with Ũða; τÞ ¼ e−iaP⊗Xe−iτZ . We now fix x, t, τ and expand
(6) in powers of a. Looking at the local gate in the
interaction picture, i.e.,

Ũ1;2ða; τÞ ¼ 1 − iaP1X2e−iτZ2 þOða2Þ; ð11Þ

we have that NðxÞ is at least of order a2x. Indeed, due to the
structure of Eq. (3), to get a spin up at position x we need to
at least flip all the spins on its left. This also tells us

Nðx; tÞ≃N0ðx; tÞ≡ jh↑ � � �↑|fflffl{zfflffl}
x

↓ � � �↓jUða;τÞtj↓ � � �↓ij2; ð12Þ

where≃ denotes equality at the leading order in a. A simple
combinatorial calculation then allows us to express it in
terms of q-deformed binomial coefficients [39]

Nðx; tÞ ≃ N0
1ðx; tÞ≡ ðaτÞ2x

����
�
t

x

�
q

����2; ð13Þ

wherewe set q ¼ eiτ. Interestingly, the perturbative analysis
commutes with the limit (2). Indeed, limτ→0N0

1ðx; t=τÞ ¼
½2a sinðt=2Þ�2x=ðx!Þ2, coincides with the leading order of (7)
if one replaces (9) with its Trotter limit [39].
Let us now move on to analyze the localization proper-

ties of the perturbative solution. To this end, we assume that
N0

1ðx; tÞ gives the only relevant contribution to the partial
norm. The first key feature ofN0

1ðx; tÞ is that its localization
properties depend on whether or not τ is a rational multiple
of 2π, namely, whether it can be written as 2πc=d for some
coprime integers c and d. When true, the q-Lucas theorem
[40] connects the behavior of q-deformed and regular
binomials

�
t

x

�
q
¼

� bt=dc
bx=dc

��
mod ðt; dÞ
mod ðx; dÞ

�
q
; ð14Þ

where bxc is the largest integer smaller than x and
mod ðc; dÞ is the remainder of the division of c∈N by
d∈N. Using the Stirling approximation we find that
Eq. (13) has a maximum at x̄ ¼ ðaτÞ2dt=½1þ ðaτÞ2d�.
Therefore, the support of N0

1ðx; tÞ grows in time, ruling
out localization.
On the other hand, whenever τ is not a rational multiple

of 2π, the deformed binomial coefficients are bounded in
time. Namely, we have

log

����
�
t

x

�
q

����
2

¼
Xt−x
p¼1

log

�
1 − cos½τðxþ pÞ�

1 − cosðτpÞ
�
≃Oðt0Þ: ð15Þ

In the last step, we used that, since fmod ðτp; 2πÞgtp¼1

covers ½0; 2πÞ uniformly in the large t limit, we have

Xt−x
p¼1

log
�
1 − cos½τðyþ pÞ�	 ≃ ðx − tÞ log 2; ∀ y: ð16Þ

Therefore, theOðtÞ in Eq. (15) cancels, and we are left with
an Oðt0Þ term. Plugging the bound Eq. (15) into Eq. (13),
we find that N0

1ðx; tÞ is localized within a distance x0 ¼
−1=ð2 log aτÞ from the left boundary for all times.
The second key feature is the τ dependence of ac—the

critical a for localization—in the case of irrational τ=ð2πÞ.
In our setup, this amounts to asking for what range of a we
expect the perturbative result to apply (at least qualita-
tively). From Eq. (13) we see that for finite τ the parameter
that has to be small to ensure the validity of the perturbative
approach is aτ. Instead, in the limit τ → 0, the perturbative
solution requires a itself to be small [39]. This suggests that
ac should be of the form

acðτÞ ¼ minðα; β=τÞ; ð17Þ

for some α; β∈R.
Remarkably, by computing Nðx; tÞ and N0ðx; tÞ via a

simple version of the TEBD algorithm [39] we find that all
these qualitative features persist away from the perturbative
regime. Some representative examples of our numerical
results are presented in Figs. 2 and 3, where, as a further
indicator of localization, we also report the entanglement
entropy Sðx; tÞ between the x leftmost sites and the rest of
the system at time t.
For small enough a we see that disturbance created by

the local quench remains localized only for irrational values
of τ=ð2πÞ. This is clearly shown in the insets of Fig. 2:
While for rational τ=ð2πÞ we see the peak (and its position)
of the entanglement entropy growing linearly in time, for
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irrational τ=ð2πÞ we see it saturating [additional corrobo-
rating plots of the (spatio)temporal behavior of Sðx; tÞ,
Wðx; tÞ, and entanglement spectra are found in the
Supplemental Material [39] ]. Note that we observe this
stark difference between rational and irrational τ=ð2πÞ also
for times that are significantly out of the perturbative
regime (t ≫ 1=a) and at which Eq. (13) is not quantita-
tively accurate: see the comparison in the main panel of
Fig. 2. As a result of this localized behavior, for irrational
τ=ð2πÞ we are able to run our TEBD simulations with
essentially no truncation error for hundreds of time steps.

On the other hand, for a larger than a certain critical
value acðτÞ the system transitions to the ergodic regime
also for irrational τ=ð2πÞ, see Fig. 3. In this case, the
perturbative result does not describe the system’s behavior
even at the qualitative level: the support of the partial norms
grows linearly in time signaling a delocalization of the
disturbance caused by the impurity. Concerning the τ
dependence of acðτÞ, our numerical results are compatible
with the functional form in Eq. (17) [39]. Namely, the
critical a appears approximately τ independent for small τ,
while it starts to decay as τ−1 when τ is increased beyond a
threshold value.
Finite systems at infinite times.—Interestingly, the

phenomenology observed above in the thermodynamic
limit is also observed for finite volumes. Here we again
look at a quench from the initial state in Eq. (5) but keep L
finite while taking t → ∞. A convenient indicator of the
localization transition is then the time averaged square
of the Loschmidt echo (LE) jh↓ � � �↓jUt

lj↓ � � �↓ij2 [this
quantity is the same for brick-wall U and ladder
propagators Ul]. Assuming that there are no degene-
racies in the spectrum of Ul, the LE can be
written as limt→∞ð1=tÞ

P
t
s jh↓ � � �↓jUlða; τÞsj↓ � � �↓ij2 ¼P

i jh↓ � � �↓jEiij4 ≡ Ij↓���↓i, where the sum over i, j goes
over all eigenstates. Ij↓���↓i is the inverse participation ratio
(IPR), which measures the spreading of the initial state in
the eigenbasis of the time-evolution operator. It can be
interpreted as the purity of the probability distribution fPig,
with Pi ¼ jh↓ � � �↓jEiij2 being the Born probability of
measuring the eigenstate jEii in j↓ � � �↓i. For random
eigenstates jEii, the probability distribution is flat, i.e.,
Pi ¼ 2−L, which gives Ij↓���↓i;Haar ¼ 2−L. In contrast, in the
localized phase, we expect that, up to exponential correc-
tions, the initial state spreads up to a finite distance k, so
Utj↓ � � �↓i ¼ jψij↓i⊗ðL−kÞ, which leads to an IPR constant
in L. Namely, Ij↓���↓i;loc ≥ 2−k for all L.
We computed Ij↓���↓i numerically for several values of a,

τ, and L: our main numerical results are summarized in
Fig. 4. The behavior of the IPR aligns remarkably well with
the phenomenology of finite-time data. The bottom panel
of the figure shows the IPR versus L for different values of
a and three choices of τ. Identifying the localization
transition as the transition between constant and exponen-
tially decaying IPR, we can estimate acðτÞ. The last two τ
are similar in size, but they are, respectively, irrational and
rational multiples of 2π. We see that the difference between
these two cases is stark also in this setting: the irrational
τ=ð2πÞ shows a transition at sizable a, while rational τ=ð2πÞ
shows ergodic behavior for the same choice of a. In the
phase diagram, the rational τ=ð2πÞ generate some irregular
behavior reminiscent of Arnold tongues [41]. Some further
discussion and additional finite-volume data are reported in
the Supplemental Material [39].

FIG. 3. Two cases of ergodic finite t and infinite size dyna-
mics: left, right columns correspond, respectively, to a ¼ 0.3,
τ ¼ ð ffiffiffi

5
p

− 1Þπ=2 just beyond localization transition and to
a ¼ 1.0; τ ¼ ð ffiffiffi

5
p

− 1Þπ=2 well in the ergodic phase. We plot
entanglement entropy profiles Sðx; tÞ, partial norm profiles
Nðx; tÞ, and domain wall component profiles N0ðx; tÞ (insets) for
t ¼ 17; 18;…; 36 (red to blue).

FIG. 2. Profiles of N0ðx; tÞ for a ¼ 0.1 (left column), a ¼ 0.2
(right column), and for τ ¼ ð ffiffiffi

5
p

− 1Þπ=2 (top row), τ ¼ 2π=3
(bottom row). The data are shown for times t ¼ 20; 40;…; 120
(red to blue curves), except for the bottom-right panel where only
t ¼ 20, 40, 60 can be computed due to fast growth of entangle-
ment [insets indicate entanglement entropy profiles Sðx; tÞ,
t ¼ 10; 20;…, of respective cases]. Colored bullets depict per-
turbative results for shortest and longest simulated time.
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Discussion and outlook.—We introduced a discrete-time
version of the quantum East model [10] and analyzed its
localization properties in real time. Combining a perturba-
tive analysis with exact numerics, we identified a locali-
zation transition taking place in this system despite the
periodic drive: for couplings smaller than a critical value
acðτÞ the effect of a boundary perturbation remains
localized in space, while it spreads ballistically for
a > acðτÞ. This is also shown by a stark difference in
the entanglement scaling (linear versus bounded), which is
more marked than what is reported in other accounts of
localization in Floquet settings [21,42]. Interestingly, this
transition has a nonanalytic dependence on the Trotter time
τ and takes place only when the latter is an irrational
multiple of 2π. In fact, an irrational Trotter step and
dynamical constraints can be identified as the two key
mechanisms for the onset of localization. To understand
this, one can imagine expanding the state of the system at
time t in the computational basis. Because of the dynamical
constraints, there will be far fewer states appearing in this
sum than those allowed by the locality of the interactions.
Moreover, all configurations are dampened by a factor
ðτaÞx, where x is the position of the up spin, that is further
from the left boundary. This, however, is not enough to

ensure that the configurations with large x are suppressed—
i.e., localization—because each configuration can be
reached in many different ways, i.e., by many different
“trajectories.” This means that, in the expansion of the state
at time t, each configuration is multiplied by a “combina-
torial weight,” which can, in principle, overcome the
dampening. An irrational Trotter step avoids this by
introducing destructive interference between the different
trajectories, hence ensuring that the combinatorial weight
never overcomes the exponential dampening. In the con-
tinuous time limit, τ → 0, the dampening factor goes to 0
and the combinatorial weight diverges; therefore, one has to
combine the two effects. The outcome suggested by our
analysis is that in this limit the system is localized for any
a < 1, in agreement with Ref. [17]. This is not in contrast
with the statement that the Floquet quantum East model is
localized only for irrational τ=ð2πÞ, as in this case the limits
of τ → 0 and t → ∞ do not commute [43].
A natural question is what are the initial states for which

localization occurs. We note that our analysis can be
repeated for all states written as tensor products of arbitrary
finite-block states with an infinite block of down spins on
the right. This is consistent with the local-operator spread-
ing analogy discussed earlier, as such states are those
corresponding to local operators. States not fitting this form
evade our treatment, leaving their analysis for future
research. Our expectation is that those states will not show
localization as in the continuous-time setting [17]. Indeed,
they lack the first ingredient of the localization mechanism
we identified, i.e., the presence of dynamical constraints. A
key future direction is the rigorous characterization of the
observed transition within the convenient discrete space-
time setting introduced here.

P. K. thanks Giacomo Giudice for fruitful discussions.
B. B. was supported by the Royal Society through the
University Research Fellowship No. 201101. P. K.
acknowledges financial support from the Alexander von
Humboldt Foundation. T. P. acknowledges the Program P1-
0402 and Grants No. N1-0219 and No. N1-0233 of the
Slovenian Research and Innovation Agency (ARIS).

[1] D. Basko, I. Aleiner, and B. Altshuler, Metal–insulator
transition in a weakly interacting many-electron system with
localized single-particle states, Ann. Phys. (Amsterdam)
321, 1126 (2006).

[2] A. Pal and D. A. Huse, Many-body localization phase
transition, Phys. Rev. B 82, 174411 (2010).

[3] M. Serbyn, Z. Papić, and D. A. Abanin, Local conservation
laws and the structure of the many-body localized states,
Phys. Rev. Lett. 111, 127201 (2013).

[4] V. Ros, M. Müller, and A. Scardicchio, Integrals of motion
in the many-body localized phase, Nucl. Phys. B891, 420
(2015).

FIG. 4. Top: logarithm of the IPR at L ¼ 13 as a function of τ
and a. We see the transition for smaller (bigger) τ at a ¼ 1
(a ∝ 1=τ). The dashed lines denote the three τ’s considered in the
bottom panel. Bottom: logarithm of the IPR versus L for three
values of τ and several values of a (0.5; 0.7;…; 1.5 top to bottom
for the first plot and 0.05; 0.15;…; 0.55 for the second and third).
The solid gray line corresponds to random eigenstates. For the
first two τ’s the transition occurs around a ¼ 1 and a ¼ 0.3. The
third τ is a rational multiple of 2π, and its transition occurs at a
much smaller a. For a detailed analysis of this plot, see the
Supplemental Material [39].

PHYSICAL REVIEW LETTERS 132, 080401 (2024)

080401-5

https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1103/PhysRevB.82.174411
https://doi.org/10.1103/PhysRevLett.111.127201
https://doi.org/10.1016/j.nuclphysb.2014.12.014
https://doi.org/10.1016/j.nuclphysb.2014.12.014


[5] T. Thiery, F. Huveneers, M. Müller, and W. De Roeck,
Many-body delocalization as a quantum avalanche, Phys.
Rev. Lett. 121, 140601 (2018).

[6] D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn,
Colloquium: Many-body localization, thermalization, and
entanglement, Rev. Mod. Phys. 91, 021001 (2019).

[7] J. Šuntajs, J. Bonča, T. Prosen, and L. Vidmar, Quantum
chaos challenges many-body localization, Phys. Rev. E 102,
062144 (2020).

[8] D. Abanin, J. Bardarson, G. De Tomasi, S. Gopalakrishnan,
V. Khemani, S. Parameswaran, F. Pollmann, A. Potter, M.
Serbyn, and R. Vasseur, Distinguishing localization from
chaos: Challenges in finite-size systems, Ann. Phys.
(Amsterdam) 427, 168415 (2021).

[9] D. Sels and A. Polkovnikov, Dynamical obstruction to
localization in a disordered spin chain, Phys. Rev. E 104,
054105 (2021).

[10] M. van Horssen, E. Levi, and J. P. Garrahan, Dynamics of
many-body localization in a translation-invariant quantum
glass model, Phys. Rev. B 92, 100305(R) (2015).

[11] P. Crowley, Entanglement and thermalization in many body
quantum systems, Ph.D. thesis, University College London
(UCL), 2017.

[12] S. Roy and A. Lazarides, Strong ergodicity breaking due to
local constraints in a quantum system, Phys. Rev. Res. 2,
023159 (2020).

[13] P. Brighi, M. Ljubotina, and M. Serbyn, Hilbert space
fragmentation and slow dynamics in particle-conserving
quantum East models, SciPost Phys. 15, 093 (2023).

[14] A. Geissler and J. P. Garrahan, Slow dynamics and non-
ergodicity of the bosonic quantum East model in the
semiclassical limit, Phys. Rev. E 108, 034207 (2023).

[15] K. Klobas, C. De Fazio, and J. P. Garrahan, Exact “hydro-
phobicity” in deterministic circuits: Dynamical fluctuations
in the Floquet-East model, arXiv:2305.07423.

[16] R. J. Valencia-Tortora, N. Pancotti, and J. Marino, Kineti-
cally constrained quantum dynamics in superconducting
circuits, PRX Quantum 3, 020346 (2022).

[17] N. Pancotti, G. Giudice, J. I. Cirac, J. P. Garrahan, and M. C.
Bañuls, Quantum East model: Localization, nonthermal
eigenstates, and slow dynamics, Phys. Rev. X 10, 021051
(2020).

[18] A. Lazarides, A. Das, and R. Moessner, Equilibrium states
of generic quantum systems subject to periodic driving,
Phys. Rev. E 90, 012110 (2014).

[19] L. D’Alessio and M. Rigol, Long-time behavior of isolated
periodically driven interacting lattice systems, Phys. Rev. X
4, 041048 (2014).

[20] P. Ponte, A. Chandran, Z. Papić, and D. A. Abanin,
Periodically driven ergodic and many-body localized quan-
tum systems, Ann. Phys. (Amsterdam) 353, 196 (2015).

[21] P. Ponte, Z. Papić, F. Huveneers, and D. A. Abanin, Many-
body localization in periodically driven systems, Phys. Rev.
Lett. 114, 140401 (2015).

[22] A. Lazarides, A. Das, and R. Moessner, Fate of many-body
localization under periodic driving, Phys. Rev. Lett. 115,
030402 (2015).

[23] D. A. Abanin, W. De Roeck, and F. Huveneers, Theory of
many-body localization in periodically driven systems, Ann.
Phys. (Amsterdam) 372, 1 (2016).

[24] B. P. Lanyon, C. Hempel, D. Nigg, M. Müller, R. Gerritsma,
F. Zähringer, P. Schindler, J. T. Barreiro, M. Rambach,
G. Kirchmair et al., Universal digital quantum simulation
with trapped ions, Science 334, 57 (2011).

[25] J. T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz, M.
Chwalla, M. Hennrich, C. F. Roos, P. Zoller, and R. Blatt,
An open-system quantum simulator with trapped ions,
Nature (London) 470, 486 (2011).

[26] R. Blatt and C. F. Roos, Quantum simulations with trapped
ions, Nat. Phys. 8, 277 (2012).

[27] C. Monroe, W. C. Campbell, L.-M. Duan, Z.-X. Gong,
A. V. Gorshkov, P. W. Hess, R. Islam, K. Kim, N. M. Linke,
G. Pagano, P. Richerme, C. Senko, and N. Y. Yao, Pro-
grammable quantum simulations of spin systems with
trapped ions, Rev. Mod. Phys. 93, 025001 (2021).
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