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Quantum measurements based on mutually unbiased bases (MUBs) play crucial roles in foundational
studies and quantum information processing. It is known that there exist inequivalent MUBs, but little is
known about their operational distinctions, not to say experimental demonstration. In this Letter, by virtue
of a simple estimation problem, we experimentally demonstrate the operational distinctions between
inequivalent triples of MUBs in dimension 4 based on high-precision photonic systems. The experimental
estimation fidelities coincide well with the theoretical predictions with only 0.16% average deviation,
which is 25 times less than the difference (4.1%) between the maximum estimation fidelity and the
minimum estimation fidelity. Our experiments clearly demonstrate that inequivalent MUBs have different
information extraction capabilities and different merits for quantum information processing.
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Introduction.—Quantum measurements play a key role
in extracting information from quantum systems and in
achieving various quantum information processing tasks,
such as quantum computation, quantum communication,
quantum metrology, quantum sensing, and quantum sim-
ulation [1–3]. Rank-1 projective measurements are the
simplest quantummeasurements discussed in most elemen-
tary textbooks on quantum mechanics. Nevertheless, their
properties become elusive if we consider two or more
projective measurements. Since each rank-1 projective
measurement is tied to an orthonormal basis, and vice
versa, the study of rank-1 projective measurements is
intertwined with the study of orthonormal bases.
Two rank-1 projective measurements are mutually

unbiased or complementary if the outcome of one meas-
urement is completely random whenever the outcome of
the other measurement is certain. The corresponding bases
are mutually unbiased bases (MUBs) [4–7]. MUBs are
closely tied to the complementarity principle [8] and
uncertainty relations [9–13], which play key roles in
quantum mechanics. Moreover, they have numerous appli-
cations in quantum information processing, including
quantum cryptography [7,13–16], quantum random access
codes [17,18], quantum state estimation [5,6,19–21],
quantum verification [22,23], and entanglement detec-
tion [24–26]. MUBs can be constructed using various
interesting objects, including finite fields [5–7], mutually

unbiased Hadamard matrices [7,27], mutually orthogonal
Latin squares [28], and symplectic spreads [29]. Except for
prime-power dimensions, however, it is still a major open
problem to determine the maximum number of bases in
MUBs, even in dimension 6 [30].
Two sets of MUBs are (unitarily) equivalent if they can

be turned into each other by unitary transformations up
to the order of basis elements and overall phase factors.
Otherwise, they are inequivalent. Inequivalent MUBs exist
in certain dimensions of at least 4 [27], and this intriguing
phenomenon has attracted the attention of many researchers
in various research areas [7,16–18,27,29,31–33]. However,
little is known about the operational distinctions between
inequivalent MUBs, and there is no experimental demon-
stration before as far as we know.
As notable exceptions, Aguilar et al. showed that

inequivalent MUBs can achieve different success proba-
bilities in quantum random access codes [17]. Designolle
et al. showed that inequivalent MUBs may have different
degrees of measurement incompatibility as quantified by
the noise robustness [31]. Hiesmayr et al. showed that some
MUBs are more effective than others in detecting entan-
glement [32]. It is not clear whether these results can be
demonstrated in experiments in the near future. Very
recently, starting from a simple estimation problem, one
of the authors showed that inequivalent MUBs may have
different information-extraction capabilities and can be
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distinguished by the estimation fidelity [33], which is
amenable to experimental demonstration.
In this Letter, using photonic systems, we experimentally

demonstrate the operational distinctions between inequi-
valent triples of MUBs in dimension 4 based on a simple
three-copy estimation problem. To this end, we use polari-
zation and path degrees of freedom of a photon to form
a ququad. Then we implement a three-copy estimation
protocol in which the projective measurements are deter-
mined by triples of MUBs, so that the estimation fidelities
are tied to the intrinsic properties of MUBs. Notably, we
can implement each projective measurement in one shot
instead of simulating each basis-state projection sequen-
tially as in previous experiments on high-dimensional
MUBs [34–36]. The projective measurements we realized
have average fidelity above 0.995. The experimental
estimation fidelities coincide well with the theoretical
predictions with only 0.16% average deviation, which is
25 times less than the difference (4.1%) between the maxi-
mum estimation fidelity and the minimum estimation
fidelity. In this way, our experiments clearly demonstrate
different information-extraction capabilities of inequivalent
MUBs, which has never been demonstrated before.
A simple estimation problem.—Suppose a device can

prepare N copies of a random pure quantum state ρ on a
d-dimensional Hilbert space H according to the Haar
measure. We are asked to estimate the identity of ρ as
accurately as possible as quantified by the average fidelity.
If we perform the quantum measurement characterized by
the positive operator-valued measure (POVM) A ¼ fAjgj
on ρ⊗N , then the probability of obtaining outcome Aj is
pj ¼ trðρ⊗NAjÞ. Let ρ̂j be the estimator corresponding to
outcome j. Let PNþ1 be the projector onto the symmetric
subspace in H⊗ðNþ1Þ and DNþ1 ¼ trðPNþ1Þ. Then the
average fidelity reads [33]

F̄ ¼
X

j

Z
dρpj trðρρ̂jÞ ¼

P
jtr
�
QðAjÞρ̂j

�

ðN þ 1Þ!DNþ1

≤ FðA Þ ≔
X

j

��QðAjÞ
��

ðN þ 1Þ!DNþ1

; ð1Þ

where the integration is over all pure states and

QðAjÞ ≔ ðN þ 1Þ!tr1;…;N

�
PNþ1ðAj ⊗ 1Þ�: ð2Þ

The upper bound in Eq. (1) is saturated if and only if each
estimator ρ̂j is supported in the eigenspace of QðAjÞ
associated with the largest eigenvalue. Here, FðA Þ is
the maximum average fidelity that can be achieved by
the POVM A and is called the estimation fidelity [33]. It is
invariant under unitary transformations of the form U⊗N

and thus encodes valuable information about the intrinsic
properties of the POVM A . It is pretty useful for

understanding elementary quantum measurements, includ-
ing characterizing projective measurements, symmetric
informationally complete measurements, and MUBs,
distinguishing inequivalent symmetric informationally
complete measurements and MUBs, and demonstrating
quantum incompatibility [33].
In the above analysis, the ensemble of Haar random pure

states can be replaced by any ensemble of pure states that
forms a t-design with t ¼ N þ 1, which might be more
appealing to practical applications. Recall that a set of K
states fjψ jigj in H is a t-design if the operatorP

jðjψ jihψ jjÞ⊗t is proportional to the projector Pt onto
the symmetric subspace in H⊗t [37–39].
Distinguishing inequivalent MUBs.—Here, we are par-

ticularly interested in inequivalent triples of MUBs in
dimension 4, which can be distinguished by the three-copy
estimation fidelity [33] as illustrated in Fig. 1. The three
bases are denoted by fjαjigj, fjβjigj, and fjγjigj, respec-
tively, where j ¼ 1, 2, 3, 4; the corresponding rank-1
projective measurements read A ¼ fjαjihαjjgj, B ¼
fjβjihβjjgj, and C ¼ fjγjihγjjgj. To be specific, the first
basis is chosen as the computational basis; the second and
third bases correspond to the columns of the two Hadamard
matrices, respectively [27,33]:

HB ¼ 1

2

0
BBB@

1 1 1 1

1 ieix −1 −ieix

1 −1 1 −1
1 −ieix −1 ieix

1
CCCA;

HC ¼ 1

2

0
BBB@

1 1 1 1

−eiy eiz eiy −eiz

1 −1 1 −1
eiy eiz −eiy −eiz

1
CCCA; ð3Þ

where x; y; z∈ ½0; π� are three real parameters. By con-
struction, it is easy to verify that

Inequivalent

4-design

state

MUBs 1

MUBs 2

FIG. 1. The basic idea for distinguishing inequivalent triples of
MUBs. After preparing three copies of each state ρ in a given 4-
design and performing three projective measurements associated
with each triple of MUBs, the fidelity between the optimal
estimator ρ̂ and ρ is evaluated. The estimation fidelity of each
MUB is determined by averaging the fidelity trðρρ̂Þ over the 4-
design and many repetitions. Two MUBs are inequivalent if their
estimation fidelities are different.
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jhαjjβkij2 ¼ jhβkjγlij2 ¼ jhαjjγlij2 ¼
1

4
ð4Þ

for j, k, l ¼ 1, 2, 3, 4. So the three bases for given x, y, z are
indeed mutually unbiased. As shown in Ref. [33], the
estimation fidelity FMUBðx; y; zÞ ≔ FðA ⊗ B ⊗ C Þ can
be used to distinguish inequivalent MUBs. Moreover, the
difference between the maximum and minimum estimation
fidelities is about 4.1%, which is amenable to experimental
demonstration.
To determine the estimation fidelity in experiments, we

prepare three copies of each ququad state ρi from a given
4-design composed of K states and perform the three
projective measurements A , B, and C , respectively. If the
outcomes j, k, l are obtained, then we construct an esti-
mator ρ̂jkl on the eigenspace of Qðjαjihαjj ⊗ jβkihβkj ⊗
jγlihγljÞ corresponding to the largest eigenvalue and
evaluate its fidelity with ρi. To suppress statistical fluc-
tuation, the same measurements are repeated M times for
each state ρi in the 4-design. Denote by ρ̂im the mth
estimator for the ith state ρi, where m ¼ 1; 2;…;M and
i ¼ 1; 2;…; K. Then the estimation fidelity is calculated as
follows:

FMUBðx; y; zÞ ¼
1

KM

X

i

X

m

trðρiρ̂imÞ: ð5Þ

To facilitate experimental realization, we constructed
two 4-designs with small cardinalities in dimension 4. The
first 4-design is constructed from an orbit of length 960
of the restricted Clifford group and is referred to as the
Clifford 4-design henceforth. By contrast, the full Clifford
orbit has length 3840 (see Secs. S1 and S2 in the
Supplemental Material [40]). This theoretical result is
of independent interest, given that the Clifford group is

only a 3-design, and the restricted Clifford group is only a
2-design [43–46]. The second one is a (approximate)
numerical 4-design composed of 200 states, which is gene-
rated using the optimization algorithm in Refs. [47,48] (see
Sec. S3 in the Supplemental Material [40]).
Experimental setup.—The experimental setup for real-

izing the three-copy estimation protocol is illustrated in
Fig. 2. We use the polarization (horizontal H and vertical
V) and path (up and down) degrees of freedom of a single
photon to form a ququad. The setup is composed of two
modules: the state preparation module, which can generate
an arbitrary ququad state, and the measurement module,
which can perform one of the projective measurements A ,
B, and C .
In the state preparation process, a light pulse from a

Ti-sapphire laser centered around 780 nm, with a repetition
rate of 76.11 MHz and pulse duration of about 150 fs,
passes through a frequency doubler. Then the 12 mW up-
converted ultraviolet pulse is focused onto a BBO crystal
cut for the type-II beamlike phase-matched spontaneous
parametric down-conversion process to create a pair of
degenerate noncollinear photons [49]. One photon is
detected by a single-photon-counting module as a trigger,
while the other acts as a heralded single-photon source. The
heralding efficiency is approximately 15%. The twofold
coincidence rate is about 11 000 counts per second. The
single photon is initialized inH polarization by a polarizing
beam splitter (PBS). Any polarization state can be prepared
by a combination of a half-wave plate (HWP) and a quarter-
wave plate (QWP). A beam displacer (BD) that separates
the H component and V component by 4 mm allows us to
produce a bipartite state of polarization and path, where
each photon has certain probability to be in one of those
paths, relying on the incoming polarization state. The
following two combinations of HWPs and QWPs adjust

E1

E2

E3

E4

State preparation Measurements

Laser

SHG
Lens
BBO

Trigger

PBS

BD

HWPHWP HWP QWP

45° 0°

FIG. 2. Experimental setup. The module of state preparation generates a heralded single photon using the type-II beamlike phase-
matched spontaneous parametric down-conversion process and prepares the desired ququad state in polarization and path degrees of
freedom. The measurement module implements one of the three projective measurements A , B, and C associated with a triple of
MUBs. The four detectors at positions E1 to E4 correspond to the four outcomes of the measurement. Key elements include polarizing
beam splitters (PBSs), half wave plates (HWPs), quarter wave plates (QWPs), and beam displacers (BDs). The wave plates without
angles specified are subject to rotations during the experiments.
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the polarization states in the two paths so as to generate the
desired ququad state.
Then, the state is sent into the measurement module,

which performs one of the projective measurementsA ,B,
and C (see Sec. S4 in the Supplemental Material [40]). The
regulation of the parameters x, y, z featuring inB and C is
realized by changing the rotation angles of some HWPs.
Four single-photon-counting modules at the end corre-
spond to four outcomes of the measurement. The phase
stability of the interferometers is checked and recalibrated
every 2 h by an automatic control program.
Experimental results.—In our experiment, we consid-

ered 18 triples of MUBs corresponding to the parameters
x ¼ π=2, y∈ f0; π=2g, and z∈ f0; π=8; π=4;…; πg, which
share the two bases A and Bðx ¼ π=2Þ. To characterize
each projective measurement that was actually realized, we
sent 36 states, the tensor products of the six eigenstates of
three Pauli operators, to the measurement device and
performed quantum measurement tomography. Each state
was prepared and measured 10 000 times. Then the four
projectors were reconstructed from the measurement sta-
tistics using the method in Ref. [50] and the overall fidelity
was evaluated as in Ref. [51]. This procedure was repeated
ten times to determine the mean fidelity and error bar
(standard deviation). Overall fidelities of the realized
measurements for A and Bðx ¼ π=2Þ are 0.9990�
0.0001 and 0.9977� 0.0003, respectively, while those
for C ðy; zÞ are shown in Table I. The average overall
fidelity of these measurements is above 0.995, demonstrat-
ing that they were realized with high quality.
Next, we implemented the three-copy estimation proto-

col to determine the estimation fidelity FMUBðx; y; zÞ. To
this end, we prepared three copies of each state in the
Clifford 4-design and performed the three projective
measurements A , Bðx ¼ π=2Þ, and C ðy; zÞ, respectively.
To suppress statistical fluctuation and determine the error
bar, the preparation and measurement procedure were
repeated 10 000 × 10 times. For simplicity, we share the
measurement outcomes of A and Bðx ¼ π=2Þ for all 18
sets of MUBs. The estimation fidelity FMUBðx; y; zÞ calcu-
lated by Eq. (5) is shown in plot (a) in Fig. 3. The
experimental results (circles with error bars) coincide well
with the theoretical predictions (solid lines). This claim is
further corroborated by Table II, which shows the average
and maximum deviations between experiments and
theory. The experimental errors mainly come from the
instability and drift of the phases of the Mach-Zehnder

interferometers. Figure 3 clearly delineates the variation of
the estimation fidelity with the parameters y, z for x ¼ π=2,
which highlights the operational distinctions between in-
equivalent MUBs. Notably, the estimation fidelity reaches
the maximum 0.5197 at x ¼ y ¼ z ¼ π=2 and the mini-
mum 0.4992 at x ¼ π=2, y ¼ 0, z ¼ π; the difference
0.0205 is 25 times larger than the average deviation shown
in Table II.
Next, we implemented the three-copy estimation proto-

col based on the numerical 4-design instead of the Clifford
4-design. The results shown in plot (b) in Fig. 3 and Table II
are quite similar to the counterparts based on the Clifford
4-design, although the two 4-designs are very different.
These results further demonstrate that the operational
distinctions between inequivalent MUBs are independent
of the choice of 4-designs. Incidentally, inequivalent triples
of MUBs in dimension 4 cannot be distinguished by noise

TABLE I. Overall fidelity of the measurement C ðy; zÞ realized in the experiment. Each fidelity value is the average over ten repeated
reconstructions, and the error bar indicates the standard deviation over the ten repetitions.

z 0 π=8 π=4 3π=8 π=2 5π=8 3π=4 7π=8 π

C ðy ¼ π=2Þ 0.9979(2) 0.9966(4) 0.9943(12) 0.9962(8) 0.9975(8) 0.9966(10) 0.9948(8) 0.9956(7) 0.9975(4)
C ðy ¼ 0Þ 0.9977(3) 0.9965(7) 0.9938(10) 0.9959(10) 0.9976(2) 0.9954(12) 0.9939(7) 0.9947(10) 0.9978(4)

FIG. 3. Experimental results (circles with error bars) and theo-
retical predictions (solid lines) on the three-copy estimation
fidelity FMUBðx; y; zÞ ¼ FðA ⊗ B ⊗ C Þ based on the Clifford
4-design (a) and numerical 4-design (b), respectively. The
error bars indicate the standard deviations over ten repeated
experiments.
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robustness considered in Ref. [31], which manifests the
advantage of our approach.
As a comparison, the two-copy estimation fidelity

achieved by any product measurement based on MUBs
equals 0.4667 [33], assuming that the state ensemble forms
an ideal 4-design. Note that inequivalent MUBs cannot be
distinguished by the two-copy estimation fidelity, which
provides information only about pairwise overlaps of the
basis states [33]. To demonstrate this result, we reprocessed
the experimental data to determine the two-copy estimation
fidelity. The experimental two-copy estimation fidelities
achieved by A ⊗ Bðx ¼ π=2Þ are 0.4664� 0.0001 and
0.4668� 0.0001 based on the Clifford 4-design and
numerical 4-design, respectively, while those for A ⊗ C

and B ⊗ C are shown in Fig. 4 together with theoretical
predictions. The average and maximum deviations are
shown in Table II. Again, the experimental results agree
very well with theoretical predictions even if the numerical
4-design is not ideal.
Summary.—In this work, we implemented a three-copy

estimation protocol to demonstrate the operational distinc-
tions between inequivalent triples of MUBs. In our experi-
ments, we used polarization and path degrees of freedom
of a photon to form a ququad and performed projective
measurements associated with 18 triples of MUBs in
dimension 4 with high quality. The experimental estimation
fidelities agree well with theoretical predictions with only
0.16% average deviation, which is accurate enough to
distinguishing inequivalent MUBs. Our experiments
clearly demonstrate that inequivalent MUBs may have
different information-extraction capabilities, which have
operational consequences. These results are of intrinsic
interest not only to foundational studies, but also to many
tasks in quantum information processing, such as quantum
state estimation, entanglement detection, and quantum
communication. In the future, it would be interesting to
explore the operational distinctions between inequivalent
pairs of MUBs and inequivalent MUBs in higher
dimensions.
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