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Entanglement in bipartite systems has been applied to generate secure random numbers, which are
playing an important role in cryptography or scientific numerical simulations. Here, we propose to use
multipartite entanglement distributed between trusted and untrusted parties for generating randomness of
arbitrary dimensional systems. We show that the distributed structure of several parties leads to additional
protection against possible attacks by an eavesdropper, resulting in more secure randomness generated than
in the corresponding bipartite scenario. Especially, randomness can be certified in the group of untrusted
parties, even when there is no randomness in either of them individually. We prove that the necessary and
sufficient resource for quantum randomness in this scenario is multipartite quantum steering when each
untrusted party has a choice between only two measurements. However, the sufficiency no longer holds
with more measurement settings. Finally, we apply our analysis to some experimentally realized states and
show that more randomness can be extracted compared with the existing analysis.
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Introduction.—Randomness plays an important role in
scientific simulation and cryptography [1,2]. Different
from the classical theory, where any system admits at least
a deterministic description, measurements in quantum
mechanics have an inherently random character [3]. As
another remarkable feature of quantum theory, entangle-
ment can be used to certify randomness. For example,
measurement outcomes leading to a Bell inequality viola-
tion cannot be deterministically predicted within any no-
signaling theory [4–6], thus intrinsic randomness exists
among the outcomes. Therefore, some protocols for ran-
domness generation were derived from this feature [7–20]
and demonstrated experimentally [21–27].
Quantum steering is an intermediate type of quantum

correlation between Bell nonlocality [4] and entangle-
ment [28]. It describes the phenomenon where measure-
ments performed by one party can remotely adjust the state
of the other party [29–31]. In this scenario, entanglement
can be verified without relying on any assumed models of
the steering party’s devices [32]. This leads to a one-sided
device-independent approach to certify randomness [19],
which is more robust to noise than the fully-device-
independent protocols based on Bell nonlocality [33–41].

In view of a potential real-world quantum network
distributing multipartite entanglement, it is a relevant
topic to explore the generation of randomness distributed
over many nodes in an entanglement-based network. So
far, multipartite quantum steering [42,43] has been suc-
cessfully demonstrated in photonic networks [43–45],
continuous-variable optical networks [46–49], and atomic
ensembles [50]. The majority of theoretical studies and
experiments for randomness generation, however, have
focused specifically on the bipartite scenario [19–23],
where a well-known theorem by Schrödinger [51–54]
guarantees that any no-signaling state assemblage can
originate from a global quantum state. Consequently, the
considered task can be expressed in terms of a semidefinite
programming (SDP) problem over all no-signaling bipartite
assemblages. In the multipartite case, however, there exist
no-signaling assemblages that do not admit a quantum
realization [55]. Hence quantifying the amount of certifi-
able randomness accurately is now a serious challenge.
Moreover, in order to determine the minimal resources

required for quantum cryptography, and also for funda-
mental interest, the relationship between quantum correla-
tions and randomness has been discussed. Great effort
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has been devoted to demonstrating that entanglement,
steering, and nonlocality are necessary for certifying
randomness [13–21], but the quantitative connections
remain subtle [11–14]. In these cases, the untrusted parties
implemented two measurements only, but increasing the
number of measurement settings could bring many bene-
fits, e.g., additional nonlocal and steerable states can be
found [56–61]. For the general cases, however, whether
nonlocality or steering is sufficient for certifying random-
ness remains elusive.
In this Letter, we present the certification of randomness

in multipartite quantum systems of any dimension. As
shown in Fig. 1, the scenario we considered is close to the
actual situation where only a few of the users have know-
ledge of their measurement apparatuses (transparent boxes)
while the remaining users do not (black boxes). By using
the definition of multipartite steering [43], we prove as
our first main result that in the protocols with two
measurement settings on the untrusted nodes, multipartite
steering is necessary and sufficient for certifying random-
ness, independent of the number of outcomes. In the case
of more than two settings, this perfect equivalence is
broken; some states become steerable but cannot be used
to certify randomness. As our second main result, we
demonstrate that in multipartite systems it can happen
that each individual party cannot have certified randomness

but, surprisingly, the eavesdropper cannot attack them
simultaneously. That means these parties can still collabo-
rate to generate joint secured randomness. This result is
acquired by accurately quantifying the amount of multi-
partite certified randomness. We calculate upper and lower
bounds through the seesaw algorithm and the generalized
Navascués-Pironio-Acín (NPA) hierarchy [62–64] which
tests for membership in the set of quantum behaviors,
respectively. Last but not least, we certify randomness
for both discrete-variable and continuous-variable systems
and adopt existing experimental data [58], showing that
more randomness can be generated in the multipartite
scenario than the previous experiment in the bipartition
case [27].
Randomness in multipartite quantum networks.—We

consider a tripartite scenario, in which three distant parties,
Alice, Bob, and Charlie, receive an unknown tripartite
entangled state ρABC from the controller, as shown in Fig. 1.
Neither Bob nor Charlie trusts their devices, which are
treated as “black boxes.” Still, their measurements are given
by an unknown positive operator valued measure (POVM),
which is a set of positive semi-definite matrices fMigi
satisfying

P
i Mi ¼ I. Bob and Charlie apply measure-

mentsMbjy andMcjz withmB andmC inputs, and nB and nC
outputs, respectively, where y∈ ½mB�, z∈ ½mC�, b∈ ½nB�
and c∈ ½nC�. Note that ½o� ≔ f0; 1;…; o − 1g. The third
party, Alice, has complete knowledge of her device, which
allows her to perform quantum state tomography, and
thus to obtain a set of unnormalized states σbcjyz ¼
TrBC½IA ⊗ Mbjy ⊗ McjzρABC� (referred to as a state assem-
blage) conditioned on Bob’s and Charlie’s measurements
and results.
We assume a potential eavesdropper, Eve, who has

access to her part of a quadripartite state ρABCE and wants
to predict the outcomes b and c of measurements y� and z�
simultaneously. Since Eve knows which measurements
Bob and Charlie will choose to extract randomness, which
is different from the works [24,34–40] that take the input
distributions into account, she can optimize her attack to
obtain the information about these outcomes but still needs
to coincide with the observed assemblage. Consequently,
Eve gives guesses e∈ ½nB� and e0 ∈ ½nC� by performing
a POVM measurement fMe;e0 ge;e0 . The total guessing
probability that Eve’s guesses e ¼ b and e0 ¼ c is
Pgðy�; z�Þ ¼

P
e;e0 PBCEðb ¼ e; c ¼ e0; e; e0jy�; z�Þ. Hence

randomness, quantified by the min-entropy [65], Hmin ¼
− log2½Pgðy�; z�Þ�, can be certified whenever the guessing
probability Pg < 1. This means Eve cannot be completely
sure of both Bob and Charlie’s measurement results
simultaneously.
In order to figure out Eve’s optimal strategy, we

maximize her guessing probability over all measurement
strategies and the possible state accessible to her, which

FIG. 1. Schematic view on randomness generation in a multi-
partite network as discussed in this Letter. A controller sends a
tripartite state ρABC to three nodes. Two of these nodes (Bob and
Charlie) perform measurements with the aim to use the results as
a source of randomness. The measurements of Bob and Charlie
are not characterized, consequently they are represented by black
boxes. A third trusted party (Alice) performs well-characterized
measurements, determining the set of conditional states, thereby
limiting the potential attacks by an eavesdropper. We find that the
separation between Bob and Charlie allows us to generate more
randomness than as if they are grouped together; the separation
limits the observed correlations between them, but the potential
attacks of an eavesdropper become even more limited. If Bob and
Charlie have two measurement settings only, then randomness
generation is equivalent to quantum steering.
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results in the following optimization problem:

max Pgðy�; z�Þ ¼
X

e;e0
Tr
��
Mb¼ejy� ⊗ Mc¼e0jz� ⊗ Me;e0

�
ρBCE

�

with respect to ρABCE; fMbjygb;y; fMcjzgc;z; fMe;e0 ge;e0
such that TrBC

��
IA ⊗ Mbjy ⊗ Mcjz

�
ρABC

� ¼ σobsbcjyz; ∀ b; c; y; z;

ρABCE ≥ 0; Tr½ρABCE� ¼ 1;

fMbjygb; fMcjzgc; fMe;e0ge;e0 ∈POVM; ∀ y; z; ð1Þ

where ρBCE ¼ TrA½ρABCE�, ρABC ¼ TrE½ρABCE� and
fσobsbcjyzgb;c;y;z is the assemblage observed by Alice. The
first constraint guarantees that Eve’s strategy is compatible
with the assemblage observed by Alice.
Multipartite steering as a resource for certified

randomness.—Multipartite steering is defined when both
Bob and Charlie hold the untrusted devices and the
assemblage fσobsbcjyzgb;c;y;z cannot be explained by a fully
separable model, i.e., ρA∶B∶C ≠

P
λ pλρ

A
λ ⊗ ρBλ ⊗ ρCλ . For

this, strong tests in terms of SDPs exist [30,43]. Combining
this definition with certifiable randomness, we find that
multipartite steering is necessary for certifying multipartite
randomness on Bob and Charlie. Specifically, in the case of
mB ¼ mC ¼ 2, multipartite steering is necessary and suf-
ficient for certifying randomness. However, in the case of
more settings, sufficiency no longer holds.
The ideas of the arguments are as follows: (i) Since the

assemblage σobsbcjyz is unsteerable if it can be described by a

local hidden state model, where the distribution can
be written as a convex sum of local deterministic distri-
butions [30], the existence of multipartite steering is a
necessary condition for generating randomness. (ii) For the
reverse direction, we start with the case of mB ¼ mC ¼ 2,
i.e., Bob measures fy�; ȳ�g and Charlie measures fz�; z̄�g.
No verifiable randomness on Bob and Charlie’s sides
means that Eve can predict their outcomes of measurements
y� and z� perfectly, which implies the conditional states at
Alice’s side generated by y� and z� are the same as those
generated by Eve’s measurement Me;e0 . Thus, the state
assemblage observed by Alice can be seen as generated by
the set of measurements fMe;e0 ; ȳ�; z̄�g. Eve’s measurement
Me;e0 is, however, compatible with Bob’s and Charlie’s
measurements ȳ� and z̄� since they are made locally on
separate parties. This compatibility ensures that the joint
probability distribution of Bob and Charlie is local [66,67],
and thus the assemblage is unsteerable by independent Bob
and Charlie [68,69]. Hence, the fact that quantum steering
in an actual multipartite scenario is sufficient to certify
nonzero randomness is proved; more details can be found
in the Supplemental Material [70]. However, the proof
also shows that this sufficiency can be broken with
more settings. For instance, when mB ≥ 3, the additional

measurement settings can bring incompatibility to the set
of Bob’s measurements (expressing steerability [66–68]).
But it does not affect Eve’s unit guessing probability for y�
(still zero randomness). Notice that the above argument
is generally valid for multipartite as well as bipartite
scenarios.
Quantification of certified randomness in multipartite

scenarios.—Steering-based randomness in multipartite sce-
narios was first studied in Ref. [27] by considering
bipartitions of the W state, where the measurements
performed by Bob and Charlie are global, e.g., a global
settingMðbcÞjðyzÞ ≠ Mbjy ⊗ Mcjz. This can be considered as
a special case of a bipartite scenario, where the task of
randomness certification can be expressed in terms of an
SDP over all no-signaling bipartite assemblages within
quantum theory [19]. However, in an actual multipartite
scenario where the measurements performed by Bob
and Charlie are local, the technique to reduce problem
(1) to an SDP generally fails. In the following, we simplify
the problem (1), which subsequently allows for deri-
vation of upper and lower bounds based on a seesaw
application of SDPs and the generalized NPA hierarchy,
respectively [70].
First, since Eve only implements a single POVM, we can

always use a joint classical-quantum state [72] ρABCE ¼P
e;e0 je; e0iEhe; e0j ⊗ σee

0
ABC to describe their behaviors

without loss of generality. Here, σee
0

ABC is an unnormalized
quantum state conditioned on Eve’s outcome e, e0. Thus,
the maximization problem (1) can be simplified to maxi-
mize

P
e;e0 Tr½ðIA ⊗ Mb¼ejy� ⊗ Mc¼e0jz� Þσee0ABC� by search-

ing for the triple fσee0ABC;Mbjy;Mcjzg, where the dimension
of Eve’s system is not relevant anymore.
Then, upper bounds on the randomness HDim

min with a
fixed dimension can be achieved by optimizing over
individual variables of the triple, each corresponding to
an SDP (seesaw algorithm). Furthermore, a lower bound
HNS

min can be obtained by relaxing the constraints on Eve to
the impossibility of superluminal signaling. This means
that HNS

min can be calculated by solving an SDP problem
over an assemblage σee

0
bcjyz ¼ Tr½IA ⊗ Mbjy ⊗ Mcjzσee

0
ABC�

with no-signaling constraint.
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Finally, in order to give a more realistic range of quantum
realizations, the generalized NPA hierarchy [64] provides a
series of tests, which an assemblage must pass if it admits a
quantum realization. Hence some lower bounds HQk

min are
given by replacing the constraints from the no-signaling set
to the Qk sets, where k corresponds to different generalized
NPA levels; more details in the Supplemental Material [70].
We find that by optimizing fMbjy;Mcjzg independently, an
actual multipartite scenario can bring more randomness
than the bipartition scenario with optimizing the global
measurement fMðbcÞjðyzÞg, denoted as HGlo

min, although they
are both multiple parties involved.
Besides, in the multipartite scenario, the separate ran-

domness generated by either party can also be considered.
Now Eve only guesses the measurement outcomes of one
untrusted party. Therefore, the randomness solely on Bob’s
outcomes can be certified by changing the objective
function of Eq. (1) into

P
e Tr½ðMb¼ejy� ⊗ MeÞρBE� where

ρBE ¼ TrAC½ρABCE�, and so for Charlie. Note that this
randomness is still constrained by the observed assemblage
fσobsbcjyzgb;c;y;z in a tripartite scenario, which is different from
the previous bipartite case. Similarly, we can derive upper
and lower bounds for the separate randomness [70].
Now, we apply our findings to various experiment-

relevant multipartite states, from discrete-variable to
continuous-variable systems.
(i) GHZ state.—Consider a d-dimension GHZ state over

N subsystems mixed with white noise, ρμ ¼ μjΨihΨjþ
½ð1 − μÞ=dN �I, where jΨi ¼ ð1= ffiffiffi

d
p ÞPd−1

i¼0 jii⊗N and vis-
ibility μ∈ ½0; 1�. Starting with the simplest case of N ¼ 3
and d ¼ 2, Bob and Charlie both perform three Pauli
measurements fX̂; Ŷ; Ẑg, and the assemblage fσobsbcjyzgb;c;y;z
is observed by Alice’s tomography. Figure 2(a) shows the
upper and lower bounds for the certifiable randomness on
Bob and Charlie’s outcomes generated by y� ¼ z� ¼ X̂.
The min-entropy is positive for μ > 0.5 and achieves its
maximum of 2 bits at μ ¼ 1. Compared with the random-
ness HGlo

min for the bipartition scenario, more randomness
can be certified.
Figure 2(b) shows the separate randomness generated

solely on Bob’s (or Charlie’s) side, which exists when
μ > 0.70. This means when μ ≤ 0.69, Eve can guess Bob’s
(or Charlie’s) outcome perfectly with her optimal strategy
for Bob (or Charlie), but with the same observed assem-
blage and setups, she cannot guess the outcome of the other
party with unit probability [70]. Compared with Fig. 2(a),
certifying separate randomness requires higher state vis-
ibility. In particular, when 0.50 < μ ≤ 0.69, there exists
nonzero randomness on the untrusted parties together, even
though Eve can predict one of them individually, which
leads to additional protection against possible attacks.
We further investigate general cases of GHZ states with

different numbers of parties N and dimensions d. For
four parties, the measurements of three nodes are not

characterized while the rest node performs well-
characterized measurements. The results are shown in
Fig. 3, which agree with our above qualitative discussions.
In particular, it is clearly seen that for the case of two
measurement settings, the thresholds of multipartite ran-
domness (generated on the untrusted parties together) are
consistent with the conditions for showing multipartite
steering. Increasing the number of measurements decreases
the threshold of multipartite steering for the 3-qubit GHZ
state from 0.5 (with measurements X̂ and Ŷ) to 0.428 (with
measurements X̂, Ŷ, and Ẑ). However, the threshold for
certified randomness remains at 0.5 even for three meas-
urement settings.
(ii) W-like state.—In Ref. [58], a class of W-like states

jΨWi ¼ αj001iABC þ βj010iABC þ γj100iABC were exper-
imentally prepared to demonstrate the shareability of quan-
tum steering with different measurement settings. Adopting
their tomographic data for ðα; β; γÞ ¼ ð0.575; 0.582; 0.576Þ,

FIG. 2. Randomness certified in a noisy GHZ state with N ¼ 3,
d ¼ 2. (a) Multipartite randomness certified on Bob and Charlie
together. (b) Separate randomness that Eve only guesses the
outcomes of Bob (or Charlie). Upper bounds with fixed dimen-
sions dB ¼ dC ¼ 10 (orange square) are close to the lower
bounds that correspond with different generalized NPA levels
(red solid curve for Q1, blue dashed line for Q2) and the no-
signaling principle (black solid curve) [73]. The green solid curve
shows the certified randomness when Bob and Charlie’s mea-
surements are global.

FIG. 3. The relationship of thresholds between the randomness
on the untrusted parties together and multipartite steering in
different GHZ states with two or three measurement settings. The
left (right) blocks mean the observed assemblage is unsteerable
(steerable). The arrows mean there is no randomness in their
corresponding ranges of visibility.
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nearly a W state, we calculate the amount of randomness
for different scenarios, as listed in Table I. It can be seen
that the amount of reliable random bits HQ2

min certified
by local measurements is significantly higher than that
achieved by the method with global measurements adopted
in the previous experiment [27].
(iii) Three-mode squeezed vacuum state.—A three-mode

entangled Gaussian state can be generated by mixing two
squeezed inputs with squeezing level r and one extra
vacuum state as shown in Fig. 4(a). For the continuous-
variable systems, we can bin the homodyne measurement
outputs into a finite number of outcomes like Fig. 4(b)
[20,74], where each outcome is associated with a condi-
tional state. By analyzing the corresponding assemblage,
we evaluate the upper and lower bounds of randomness
on Bob and Charlie’s measurement results as well as the
separate randomness on Bob or Charlie only. Note that
the min-entropy is maximized over binning periods
Tx̂;Bob; Tx̂;Charlie ∈ ½2; 10� independently; more details in
the Supplemental Material [70]. As Bob and Charlie always
steer Alice together with quadrature measurements fx̂; p̂g,
the multipartite randomness on Bob and Charlie exists for
any transmission factor η2 of the second beam splitter, as
illustrated in Fig. 4(c). However, when η2 is in the range of
[0, 0.11] or [0.89, 1], Eve can guess right the measurement
outcomes of Bob or Charlie individually.

Conclusion.—We first presented the randomness certif-
ication from multiple untrusted parties in an asymmetric
network and discussed the relation between multipartite
steering and certifiable randomness. When the untrusted
parties perform two measurement settings locally, we
proved that the multipartite steering is necessary and
sufficient for generating randomness by connecting the
randomness with incompatible measurements. Increasing
measurement settings contributes to demonstrating steering
but does not necessarily certify randomness in a larger
parameter range, which helps us to determine the minimal
resource in quantum cryptography. Second, we quantified
multipartite randomness on some typical states from
discrete-variable to continuous-variable systems. The
results showed that the amount of multipartite randomness
is significantly improved, which can promise additional
security in networks. So far, multipartite steering has been
demonstrated in various platforms [23,43–50], which lays a
favorable foundation for generating multipartite random-
ness. Further, as the loss of events in real-world applica-
tions will open a “detection loophole” whenever parties are
untrusted, we also provide evidence that the loss does not
affect the relation between randomness and multipartite
steering [70]. Several experiments of quantum random-
number generation based on a loophole-free Bell test have
been successfully implemented [36–40]. We also expect the
state-of-the-art experiment would perform a loophole-free
demonstration of certifying randomness in such an asym-
metric network.
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