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Genetic oscillations are generated by delayed transcriptional negative feedback loops, wherein repressor
proteins inhibit their own synthesis after a temporal production delay. This delay is distributed because it
arises from a sequence of noisy processes, including transcription, translocation, translation, and folding.
Because the delay determines repression timing and, therefore, oscillation period, it has been commonly
believed that delay noise weakens oscillatory dynamics. Here, we demonstrate that noisy delay can
surprisingly denoise genetic oscillators. Specifically, moderate delay noise improves the signal-to-noise
ratio and sharpens oscillation peaks, all without impacting period and amplitude. We show that this
denoising phenomenon occurs in a variety of well-studied genetic oscillators, and we use queueing theory
to uncover the universal mechanisms that produce it.
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Introduction.—Living organisms rely on periodic phe-
nomena such as the cell cycle and circadian rhythms to
survive and adapt. Biochemical interaction networks pro-
duce the oscillations in protein concentration and activity
that drive such phenomena [1–3]. Negative feedback loops
play an essential role in network topologies that generate
periodic dynamics [4]. Generating oscillations requires
sufficient temporal delay in this feedback [4,5], for the
absence of delay results in convergence to a steady state.
Delay is an inherent component of many biochemical
reaction networks. It results from the sequential assembly
of functional proteins via transcription, translation, folding,
and phosphorylation [6–8] or arises when cytoplasmic
proteins pass various obstacles and enter the nucleus to
inhibit their own genes [9].
Modeling processes such as regulator protein for-

mation and protein diffusion using explicit delays rather
than intricate descriptions of the intermediate steps can be
advantageous from analytical and inferential points of view
[7,10]. When introducing explicit delay representing
the cumulative timing of complex processes with many
stochastic intermediate steps, it is realistic to use distri-
buted (random) delay. Nevertheless, many studies have
used fixed delay for simulation and analysis [11–14].
Oscillator studies that use fixed delay have found that
fixed delay acts constructively, meaning that more delay
enhances the stability of the oscillation.
By contrast, it is natural to conjecture that distributed

delay weakens oscillations, based on the supposition that
generating a strong oscillation necessitates precise timing
of the repression signal. For instance, a partial repression

signal received during the protein production phase could
prevent sufficient buildup of protein level, thereby diminish-
ing oscillation amplitude. This conjecture has been verified
in some important cases. For instance, generating strong
circadian rhythms requires PERIOD proteins to enter the
nucleus to inhibit their own production at a precise time of
day [15–17]. The distributed delay that results from the
stochasticity associated with protein generation and travel
weakens the circadian rhythm [15,18,19]. Consequently,
biological filtering mechanisms to mitigate the hetero-
geneous nuclear entry time have been investigated [15,16].
Recent analysis has shown that increasing the ave-
rage delay while maintaining the number of sequential
processes that produce distributed delay can weaken
oscillations [20].
Here, we demonstrate that distributed delay can act

constructively by denoising a variety of well-studied
stochastic genetic oscillators. This is surprising, because
distributed delay accelerates signaling in feed-forward
architectures [6], a phenomenon that can interfere with
oscillation formation because of the need for sufficient
delay in the negative feedback. We inject noise into the
delay distribution by increasing the coefficient of variation
(cv), defined as the ratio of the standard deviation of the
distribution to its mean, while holding mean delay fixed.
We find that until delay cv reaches a moderate level, this
process improves the signal-to-noise ratio (SNR) and
sharpens oscillation peaks, all without impacting period
and amplitude. We use queueing theory to uncover the
universal mechanisms that drive this unexpected denoising
phenomenon: The aforementioned accelerated signaling
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induces sharper oscillation peaks, while a compensatory
mechanism stabilizes the period of oscillation.
Results—Mather oscillator: Denoising phenomenon.—

The production of mature proteins in genetic regulatory
networks involves multiple sequential reactions [Fig. 1(a)],
resulting in complex systems with numerous kinetic
parameters. To simplify models of such networks, an
effective delay τ is often used as a proxy for protein
production [21–25]. Oscillatory dynamics can emerge
when a mature transcription factor inhibits its own pro-
duction and thereby creates a delayed negative feedback
loop, provided the production delay is sufficiently long [4].
The degrade-and-fire oscillator [7] [Mather oscillator,
Fig. 1(b)] is an important example that utilizes delayed
negative feedback. It consists of a single gene that produces
a repressor protein that down-regulates its own produc-
tion and is cleared by dilution and enzymatic degrada-
tion. Delay is required for the production reaction, while
the dilution and enzymatic degradation reactions occur
instantaneously.
We use a delay birth-death (dBD) framework [27] to

model the Mather oscillator, in particular, and investigate
the effect of distributed delay on stochastic oscillators, in
general. In this stochastic framework, each reaction comes
equipped with a propensity function as well as a probability
distribution that describes the (random) delay time between
reaction initiation and reaction completion. We use a

Gillespie-type stochastic simulation algorithm [26] to
simulate stochastic oscillators. This algorithm accurately
generates sample trajectories from the underlying stochas-
tic process.
For the Mather oscillator, the birth reaction has propensity

function fbirthðRÞ ¼ ðαC2
0Þ=½ðC0 þ RÞ2�, where R denotes

the number of mature repressor proteins. Dilution and
enzymatic degradation propensities are given, respectively,
by fdilðRÞ ¼ βR and fdegðRÞ ¼ ðγRÞ=ðR0 þ RÞ, where the
functional form of fdeg captures Michaelis-Menten kinetics.
(See Table S1 [28] for parameter details.)
We first verify that the stochastic dBD model of the

Mather oscillator can generate oscillatory dynamics when
the delay τ is fixed (i.e., cv½τ� ¼ 0). The model does not
oscillate when τ is small [Fig. 1(c)(i)], while a stable
oscillation emerges as the production delay increases
[Fig. 1(c)(ii)]. As τ increases beyond the level at which
oscillatory dynamics appear, a strong oscillation with
large amplitude, long period, and plateaued peaks emerges
[Fig. 1(c)(iii)].
Although fixed delay has been widely used to investigate

biological systems [11–14], assuming a distributed delay is
more realistic due to the inherent stochasticity associated
with the numerous reactions required for protein synthesis
[24,25,29,30]. Thus, we now investigate the impact of
distributed delay on the Mather oscillator by supposing that
τ follows a gamma distribution. The gamma family can
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FIG. 1. Distributed delay sharpens peaks for the Mather oscillator. (a) Synthesizing mature regulator proteins requires a sequence of
intricate processes, including transcription elongation, mRNA translocation, translation, and protein folding. Protein synthesis can be
described by an effective delay τ. (b) The Mather oscillator consists of a delayed negative feedback loop, wherein mature repressor
proteins repress transcription. Mature repressor proteins are cleared from the system by enzymatic degradation and dilution. (c) When τ
is fixed, tuning it upward induces oscillations in mature repressor protein count RðtÞ. Without delay (τ ¼ 0), the Mather oscillator does
not oscillate (i). As the delay increases (τ ¼ 0.5), oscillations emerge (ii), and a longer delay (τ ¼ 20) generates strong oscillations with
plateaued peaks (iii). (d) When τ follows a gamma distribution with E½τ� ¼ 20, the peaks of the oscillation sharpen as cv½τ� increases,
while the period and amplitude of the oscillation appear to remain stable [(i)–(iii)]. From (i) to (iii), cv½τ� values are 0.005, 0.1, and 0.2,
respectively. The simulations were performed using a Gillespie-type stochastic simulation algorithm [26]. Trajectories show counts of
mature repressor proteins, each of which requires a random individual delay time to produce.
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capture the theoretical dynamics of various intracellular
reaction networks [31] as well as effectively approximate
biological delay distributions inferred from experimental
data [32]. Writing E½·� for mathematical expectation, here
we set E½τ� ¼ 20, a value for which fixed delay produces a
strong oscillation with plateaued peaks [Fig. 1(c)(iii)]. This
expected delay is a significant fraction of the oscillation
period for our parameters. Such extended temporal delays
can arise within genetic oscillators, accounting for factors
such as protein trafficking times required for nuclear entry
in eukaryotic cells [16], or intricate interactions involving
many genes [33]. Indeed, the emergence of plateau-shaped
oscillations has been empirically demonstrated in several
synthetic oscillators that utilize multiple genes [33,34].

One might expect that delay noise weakens the
oscillation, because delay noise accelerates signaling
in feed-forward genetic circuits, thereby decreasing the
apparent delay [6]. However, we see that, as cv½τ�
increases from low to moderate, the period and ampli-
tude of oscillation remain stable [Figs. 1(d)(i)–1(d)(iii)].
Importantly, peaks become sharper, suggesting that
increasing cv½τ� to a moderate level may induce higher-
resolution timing. Beyond moderate levels of cv½τ�,
sufficiently strong delay noise will substantially weaken
the oscillation.
Mather oscillator: Quantification of denoising.—To

quantify the impact of delay noise on oscillation precision,
we specify three quantification methods for the mature
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FIG. 2. Denoising phenomenon for the Mather oscillator: quantification and explanation. (a) We quantify the impact of distributed
delay on the oscillation using period extracted from the autocorrelation function ½CðsÞ�s≥0 (i), amplitude and peak sharpness obtained
from each cycle of the smoothed trajectory (ii), and mean SNR obtained by averaging over trajectory segments that contain ten cycles
(iii). Here, the high-frequency harmonics of order greater than five are considered noise. Trajectories used for quantification contain
more than 500 cycles. (b) As cv½τ� increases from zero to 0.1 (gray regions), period and mean amplitude remain essentially constant,
while mean peak sharpness and mean SNR increase. As cv½τ� increases beyond 0.1 (white regions), mean amplitude and mean SNR
slightly decrease. The orange square, red disk, and blue triangle correspond to the trajectories in Fig. 1(d). (c) Mean SNR increases,
because peak sharpening suppresses high-frequency harmonics [(i) and (ii)], and then declines as cv½τ� continues to grow, because
fundamental signal power starts to decrease (iii).

PHYSICAL REVIEW LETTERS 132, 078402 (2024)

078402-3



repressor protein signal. First, we approximate the auto-
correlation function of the trajectory ½RðtÞ�t≥0:

CðsÞ ¼
R ½RðtÞ − R̄�½Rðtþ sÞ − R̄�dt

R ½RðtÞ − R̄�2dt ; ð1Þ

with a damped cosine function, defined by C̃ðsÞ ¼
e−s=η cosð2πs=TÞ, and then estimate the period of oscil-
lation T [Fig. 2(a)(i)]. Second, for each cycle [between blue
triangles in Fig. 2(a), upper left], we smooth using a
moving average filter (of length 10% of the cycle data
point count) and then define amplitude by max−min and
peak sharpness by 1−ðTfall;90−Trise;90Þ=ðTfall;10−Trise;10Þ,
where the ratio compares time spent above 90% to time
spent above 10% [Fig. 2(a)(ii)]. Third, we partition the
trajectory into blocks containing ten cycles, compute
the power spectral density for each block, and average
the resulting SNR over blocks to produce mean SNR
[Fig. 2(a)(iii)]. Here, high-frequency harmonics of order
greater than five are considered noise. See Supplemental
Material [28] for details on how we define SNR and how
this definition has been applied in previous work [35–38].
As cv½τ� increases away from zero [Fig. 2(b), gray

regions], period and mean amplitude remain essentially

constant, while mean peak sharpness and mean SNR
increase. The favorable SNR behavior results from the
suppression of high-frequency harmonics due to peak
sharpening [Figs. 2(c)(i) and 2(c)(ii)]. Mean SNR initially
increases for a range of values of h, the number of
harmonics we exclude from the noise (see [28] for this
result). When cv½τ� further increases [Fig. 2(b), white
regions], mean amplitude and mean SNR decrease as
fundamental signal power decreases [Fig. 2(c)(iii)], indi-
cating that moderate delay noise yields optimal mean SNR.
Denoising biochemical oscillators: Generality and

analysis.—We investigate the impact of distributed delay
on several additional well-studied biochemical oscillators
to verify that the denoising phenomenon we have discov-
ered is not specific to the Mather oscillator (Fig. 3). We
study the Kim-Forger model [39], wherein repression is
based on protein sequestration [40] and enzymatic degra-
dation is absent; the dual-feedback oscillator [7,41], an
extension of the Mather oscillator that includes an activa-
tion loop, where the activator and repressor are cleared by
coupled enzymatic degradation; and the repressilator, con-
structed by cyclically coupling three Mather oscillators. We
model the oscillators using the dBD framework [27], as we
did with the Mather oscillator. See Tables S2–S4 [28] for
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FIG. 3. Distributed delay denoises various oscillators built upon a core negative feedback loop. We demonstrate that distributed delay
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model details and propensity functions. Each of the genetic
oscillator models exhibits period robustness, mean ampli-
tude robustness, and unimodal mean SNR profile across a
range of values of E½τ�. Unimodality results from the trade-
off between mean peak sharpness and mean amplitude
[Figs. 3(a)–3(d)]. These results suggest that distributed
delay universally denoises genetic oscillators, regardless of
transcriptional repression mechanism (e.g., Hill-type or
protein sequestration), protein clearance mechanisms (e.g.,
presence of enzymatic degradation), or network structure
(e.g., single or multiple feedback loops).
We introduce and analyze a two-phase model in order to

uncover the universal mechanisms that denoise genetic
oscillators (see [28]). The two-phase model is a simplifi-
cation of the Mather oscillator that retains the core negative
feedback loop. We obtain it by eliminating enzymatic
degradation and replacing the birth propensity fbirthðRÞ
with a switch (α if R is below repression threshold L and 0
if R meets or exceeds L). To analyze the two-phase model,
we use ideas from queueing theory [6,42] and combine
stochastic analysis with deterministic techniques to show
that the denoising phenomenon results from the following
two harmonious effects.
First, injecting noise into the delay distribution induces

faster signal formation [6], reducing the typical number of
proteins produced per cycle and thereby sharpening oscil-
lation peaks. Second, we express the time between tran-
scription initiation and protein clearance in a convolutional
manner and show that the support of the convolution
essentially does not depend on cv½τ�. This feature of the
support explains why the period of oscillation is robust to
increases in cv½τ�. Our analysis assumes that protein
clearance via dilution can be neglected during signal
formation and is, therefore, valid when signaling threshold
L is low and transcription initiation rate α is high. See [28]
for the details that support this intuitive picture as well as a
demonstration that the analysis accurately predicts mean
period as a function of cv½τ�.
Discussion.—In this Letter, we asked how distributed

delay impacts the dynamics of biochemical oscillators.
For a variety of well-studied genetic oscillators, we have
established a counterintuitive result: Injecting moderate
noise into the delay distribution sharpens oscillation peaks
and improves SNR while affecting neither period nor
amplitude.
Signals featuring sharp oscillation peaks provide high-

resolution timing [43,44]. Examples include signals for
plant growth [45] and starch degradation [46]. The value of
sharp oscillation peaks may extend well beyond high-
resolution timing. The mechanisms by which circadian
oscillators maintain constant period over a range of temper-
atures remain unclear. Gibo and Kurosawa [47] argue that,
for circadian oscillators to compensate for temperature, it is
essential that circadian waveform shapes depend on tem-
perature. In particular, higher temperatures correspond to

more nonsinusoidal waveforms. Nonsinusoidal features
of neural oscillations in the brain may provide crucial
physiological information related to neural communication,
computation, and cognition [48]. Ongoing development of
adaptive, data-driven time-frequency analysis supports the
study of exotic waveforms [49].
More work is needed to fully assess the impact of

distributed delay on oscillatory systems. A systematic
study of network topologies would be a natural next step.
Connections between network topology and oscillator
robustness have been extensively examined [50,51].
For instance, local structures that complement core topol-
ogies can significantly modulate the robustness of oscilla-
tions [50]. It would be interesting to extend such studies by
including distributed delay. This could be done by intro-
ducing parametrized families of delay distributions and then
studying an augmented parameter space that includes kinetic
parameters and delay distribution parameters.
Beyond oscillators, the impact of distributed delay

on the dynamics of biochemical systems with multiple
metastable states remains to be assessed. It is known that
introducing fixed delay can dramatically stabilize bistable
gene networks [52]. Kyrychko and Schwartz [53] have
found that broadening the width of the delay distribution
reduces switching rates for a model system that admits
a saddle point and a single metastable state. For stocha-
stic systems, the interplay between distributed delay
and large deviation asymptotics remains a fruitful
research area.
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