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Coordinated cellular movements are key processes in tissue morphogenesis. Using a cell-based
modeling approach we study the dynamics of epithelial layers lining surfaces with constant and varying
curvature. We demonstrate that extrinsic curvature effects can explain the alignment of cell elongation with
the principal directions of curvature. Together with specific self-propulsion mechanisms and cell-cell
interactions this effect gets enhanced and can explain observed large-scale, persistent, and circumferential
rotation on cylindrical surfaces. On toroidal surfaces the resulting curvature coupling is an interplay of
intrinsic and extrinsic curvature effects. These findings unveil the role of curvature and postulate its
importance for tissue morphogenesis.
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Geometry, and in particular local curvature, influences
biological systems at various length scales [1]. One
example associated with curved epithelial layers is collec-
tive rotation. Persistent and synchronous rotation on a
sphere has been observed in vivo [2–6], in vitro [7–10], and
in silico [6,11]. These phenomena differ significantly from
collective behavior in flat space and are attributed to the
geometric and topological properties of the sphere.
Nevertheless, the underlying mechanisms that trigger such
collective rotation remain unclear even for surfaces as
simple as a sphere, not to mention the curved environments
that epithelial tissues encounter during morphogenesis. To
better understand how curvature influences epithelial layers
we consider two prototypical geometries which allow for
validation for specific cell types [12,13].
At the single cell level it has been shown that cells sense

and respond to curvature [14–16], essentially by regulating
the transcellular network architecture [17–19] and aligning
the filaments with the principal curvature directions [18].
Experimental realizations furthermore show a dependence
on cell type, while, e.g., filaments of fibroblasts align with
the minimal curvature direction [16,18], the elongation
direction of MDCK cells aligns with the maximal curvature
direction [18]. Also the nucleus plays a role and cell
migration on curved surfaces is shown to follow the path of
least nuclear mechanical stress [14,15]. These phenomena,
which describe the response to cell-scale curvature, are
termed curvotaxis [14] and can be extended to collective
cell behavior on curved surfaces. Coordinated rotation has
been associated with the alignment of filaments with
principal curvature directions, cell-cell adhesion, and
apical-basal polarity [9,10]. In [12] cylindrical epithelia
of MDCK cells are considered. The results indicate that
proper cell-cell adhesion is essential, as well as aligned

cellular polar order. This alignment is again in the principal
curvature directions. In contrast, the orientation of the actin
network does not seem to be essential for collective
rotation. Also geometries with varying curvature, e.g.,
toroidal surfaces have been considered [13]. However, in
[13] only cell elongation is addressed.
In this Letter we propose a minimal cell-based surface

model that reproduces these effects for MDCK cells. Two-
dimensional vertex models, e.g., [20–22] and multiphase
field models [23–29] have been successfully used to
simulate epithelial tissue in flat space. Extensions to curved
surfaces are still rare, see [6,30] for vertex models and [11]
for multiphase field models considered on a sphere. None
of these approaches account for extrinsic curvature con-
tributions. These terms, which somehow translate the three-
dimensional nature of a thin layer, for an epithelial layer,
e.g., the difference between the apical and basal side, into
an effectively two-dimensional framework on the curved
surface, will be shown to be essential to model the
curvature effects discussed above. Extrinsic curvature
effects are well established in the theory of surface liquid
crystals [31,32]. These theories force the director field to be
tangential to the surface and the corresponding free
energies contain coupling terms between the director field
and the principal curvature directions of the shape operator
[31–34]. These terms follow naturally if the energies are
derived as thin film limits from three-dimensional theories
[33–35] and have shown various implications on phase
transitions [36], active nematodynamic flows [37–39], and
shape deformations [40].
We consider a multiphase field model that allows for cell

deformations, local cellular rearrangements, and detailed
cell-cell interactions, as well as extrinsic curvature coupling
[29,41]. We consider two-dimensional phase field variables
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ϕiðx; tÞ one for each cell, with x defined on the surface S.
Values of ϕi ¼ 1 and ϕi ¼ −1 denote the interior and
exterior of a cell. The cell boundary is implicitly defined as
the zero-level set of ϕi. We consider various topologically
equivalent surfaces S, see Fig. 1. The dynamics for each ϕi
reads

∂tϕi þ v0ðvi ·∇SϕiÞ ¼ ΔS
δF
δϕi

; ð1Þ

for i ¼ 1;…; N, where N denotes the number of cells. F is
a free energy and vi a vector field used to incorporate
activity, with a self-propulsion strength v0. The operators
∇S and ΔS denote the covariant derivative and Laplace-
Beltrami operator on S, respectively. All quantities are
nondimensional quantities. As in previous studies
[11,25,29,42–44], we consider conserved dynamics.
The free energy reads F ¼ FCH þ FEC þ FIN. The first

contribution is a (de Gennes-)Cahn-Hilliard energy [45,46]

FCH ¼
XN

i¼1

1

Ca

Z

S

1

GðϕiÞ
�
ϵ

2
k∇Sϕik2 þ

1

ϵ
WðϕiÞ

�
dS;

which stabilizes the interface, with WðϕiÞ ¼ 1
4
ð1 − ϕ2

i Þ2 a
double-well potential, ϵ a small parameter determining the
width of the diffuse interface and 1=GðϕiÞ a de Gennes
coefficient. This term does not influence the asymptotic
limit (ϵ → 0) [45] but helps to keep −1 ≤ ϕi ≤ 1, which
becomes important on curved surfaces [46]. We consider
GðϕiÞ ¼ 3

2
j1 − ϕ2

i j. Ca is the capillary number. This

covariant formulation only accounts for intrinsic curvature
effects. Minimizing this energy by solving Eq. (1) with
v0 ¼ 0 on a cylindrical surface leads to a geodesic circle
with no preferred orientation, see Fig. 1 (purple cell). This
does not resample the observed properties of single
cells [18].
We associate a director field with the cell shape. In flat

space this has been considered in [26,29]. Adapting the
definition to the surface we obtain the surface Q-tensor
fields

qi ¼
0
@

R
S
ð∂t2ϕiÞ2−ð∂t1ϕiÞ2

2
dS

R
S −∂t1ϕi∂t2ϕidS

R
S −∂t1ϕi∂t2ϕidS

R
S
ð∂t1ϕiÞ2−ð∂t2ϕiÞ2

2
dS

1
A;

where t1ðxÞ and t2ðxÞ denote orthonormal vectors of the
tangent plane at x∈S, which are related by parallel
transport to the principal curvature directions in the center
of mass of the cell i, see Supplemental Material [47] for
details, which includes Refs. [48,49]. Together with νðxÞ,
the outward-pointing normal to the surface S, they define
the Darboux frame. The eigenvectors of the tensor fields qi
correspond to the direction of largest elongation and
contraction and the corresponding eigenvalues measure
the degree of deformation. Using these directions to define
director fields di allows us to associate nematic order to the
epithelial tissue [11,26,29,50]. In our case qi and di are
tangential tensor and vector fields, respectively. Coarse-
grained quantities of the surface Q-tensor fields q and the
director fields d are considered in surface liquid crystal
models and related by q ¼ Sðd ⊗ d − 1

2
gÞ [36], where S is

a nematic order parameter and g is the metric of the surface
S. Already in typical one-constant approximations of the
corresponding surface energies, if derived as a thin film
limit from the corresponding 3D models, additional geo-
metric coupling terms occur [31–34]. In case of the surface
Frank-Oseen model the term of interest reads

k∇Cdk2 ¼ k∇Sdk2 þ hν ⊗ Bd; ν ⊗ Bdi; ð2Þ

where B ¼ −∇Pν denotes the shape operator and h·; ·i the
scalar product on S [51]. Thereby∇C denotes the Guenther
derivative and ∇P the surface tangential gradient, see
Supplemental Material [47]. There are various physical
implications resulting from the choice of derivative, see
[36] for an overview. Relevant to our case is only the
alignment of d with principal curvature directions resulting
from the second summand in Eq. (2). This coupling term
has been added in an ad hoc manner in [37] to account for
linear curvature contributions in surface active nematody-
namics. We consider it in the phase field context for each
cell and define the extrinsic curvature part of the free
energy by

FIG. 1. Geometries and cell shapes. Red and blue lines mark
periodic boundaries, which are glued together in (b) and (c) (not
to scale). Three individual cells are shown in their equilibrium
configuration in (a) and (b). The colors correspond to the
parameter Ec which models extrinsic curvature effects, see
Eq. (3). Ec ¼ 0 (purple) leads to a (geodesic) circle on both
geometries. Ec > 0 (green) favors an alignment in direction of
maximum absolute curvature and Ec < 0 (yellow) an alignment
in direction of minimal absolute curvature. The elongation is
marked and enhanced for visibility. On toroidal surfaces cell
shapes depend on position. In (c) trajectories and final positions
and shapes of the cells are shown. The effect of extrinsic
curvature is not visible. All shapes are obtained by solving
Eq. (1) with v0 ¼ 0.
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FEC ¼ Ec
XN

i¼1

Z

S
hν ⊗ B∇Sϕi; ν ⊗ B∇SϕiidS; ð3Þ

where the parameter Ec determines the preferred direction
and strength of this geometric coupling. We furthermore
use that the integral mean of ∇Sϕi is orthogonal to the
elongation of the cell and is thus related to di. While FEC
can become negative, the area conservation of ϕi and FCH
guarantee a well-posed problem within reasonable param-
eter settings. Figure 1 shows the effect of FCH and FEC on a
single cell on different geometries if v0 ¼ 0. While the
shape is independent on position in flat space and on
cylinders, both having zero Gaussian curvature (K ¼ 0)
and being ruled surfaces, the shape depends on position on
the torus. Here, FCH can be reduced by moving the cell
towards regions of maximal K. FEC with Ec > 0ð< 0Þ
deforms the cell from elongation in toroidal (poloidal)
direction in regions of lowest K, inside, to elongation in
poloidal (toroidal) direction in regions of highest K, out-
side, if the absolute maximal principal curvature direction
changes from inside to outside. Further details are provided
in the Supplemental Material [47]. However, the influence
of FEC is less pronounced on toroidal surfaces as the
difference between the magnitude of the principal curvature
directions is smaller than on the cylindrical surfaces.
The energy component FIN accounts for interaction

between cells. We define ψ i ¼ 1
2
ðϕi þ 1Þ. A common

way to model repulsive and attractive forces is

FIN ¼ 1

In

XN

i¼1

X
j≠i

Z

S
arepψ2

iψ
2
j − aattk∇Sψ ik2k∇Sψ jk2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≔fIN

dS;

with interaction strength In and coefficients arep and aatt; see
[24,52] for the corresponding form in flat space. We modify
this formulation and consider the equilibrium condition
ðϵ=2Þk∇Sϕik2≈ð1=ϵÞWðϕiÞ resulting from the tanh-
profile of ϕi and approximate aattk∇Sψ ik2k∇Sψ jk2≈
ãattWðϕiÞWðϕjÞ, with the rescaled coefficient ãatt. This
leads to the numerically more appropriate form without
derivatives, where

fIN ¼ ãrepðϕi þ 1Þ2ðϕj þ 1Þ2 − ˜̃aattðϕ2
i − 1Þ2ðϕ2

j − 1Þ2

with rescaled coefficients ãrep and ˜̃aatt, as in [25,53–55]; see
Supplemental Material [47] for the resulting short-range
interaction potential.
Activity is incorporated by self-propulsion defining vi.

There are various possibilities, which differ by complexity,
ranging from random motion [56] to considering mecha-
nochemical subcellular processes [24,43] and physical
implications, e.g., polarity and velocity alignment and
contact inhibition [57], see [29] for a comparison. Here
we define vi ¼ cosðθiÞei1 þ sinðθiÞei2 with the angle θi

which is controlled by rotational noise dθiðtÞ ¼ffiffiffiffiffiffiffiffi
2Dr

p
dWiðtÞ with diffusivity Dr and a Wiener process

Wi and the local orthonormal coordinate system ðei1; ei2Þ in
the tangent plane of the center of mass of cell i. We
consider an elongation model with ei1 pointing in the
direction of largest elongation, similar to the approach
considered in flat space in [26]. In each time step the
preferred direction of movement is set by the largest
elongation with some noise centered around this orienta-
tion. Collective motion results from the deformability of the
cells [58,59]. In the current setting all cells have the same
size, cell growth and division are neglected.
The problem is solved numerically using surface finite

elements [51,60] and the parallelization concept introduced
in [61]; see Supplemental Material [47] for details, which
includes Refs. [62–67].
We consider three cylindrical surfaces with equal surface

area jSj but different curvature and 60 equally sized cells
with a packing fraction of 90% placed on them with
random initial direction of movement. For geometric
quantities and parameters see Supplemental Material
[47]. Figure 2 shows data for one cylinder and Ec > 0,
clearly indicating collective rotation, consistent with the
experiments for MDCK cells in [12].
All simulations on cylindrical surfaces are summarized

in Fig. 3. We consider each cell within a time frame after an
initialization phase used to randomize the cell ordering and
plot the distribution of their orientation and direction of
movement with respect to the angle with the longitudinal
direction for three different simulations, see Supplemental
Material [47] for details. The color coding corresponds to
the magnitude of the averaged velocity. Without extrinsic
curvature contribution [Ec ¼ 0, see Figs. 3(d)–3(f)] no
clear trend is visible for any preferred direction of

FIG. 2. Evolution on a cylinder. (a) Time instance of the
evolution together with overlayed cell shapes (ϕi ¼ 0) and cells
at previous time steps for three cells. For corresponding movie
see Supplemental Material [47]. (b) and (c) Kymographs and
graphs displaying the average velocities of the cells from (a) in
azimuthal and longitudinal directions as function of time.
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elongation or movement. The preference for 30° and 60° in
(d) and (e), can be associated with a size constraint resulting
from the high packing fraction. These numbers correspond
to the equilibrium configuration of a hexagonal packing of
circles. Analyzing the neighbor distribution (not shown)
confirms a more dominated hexagonal packing compared
with Fig. 3(f), for which the direction of movement is more
distributed. For Ec < 0 and Ec > 0 the cells collectively
elongate and move in the longitudinal and azimuthal
direction, respectively. Any size constraint is overcome
by the complex interaction of cells with curvature and each
other. Increasing curvature enhances these effects. This is
associated with stronger elongation, more pronounced
movement in longitudinal or azimuthal direction, and
increased velocity, see Figs. 3(a)–3(c) and 3(g)–3(i). The
detailed data in Fig. 2 correspond to (h). Corresponding
data for (a)–(i) are provided in Supplemental Material [47].
While the effect of extrinsic curvature is rather small for
single cells, it is enhanced in coordinated motion leading to
qualitatively different behavior. However, the enhancement
of the elongation with principal curvature directions also
strongly depends on the self-propulsion mechanism.
Corresponding results for a random model, where ei1 is
chosen as the direction of the velocity vector from the last
time step, which can be considered as a generalization of
active Brownian particles on surfaces to deformable objects
[56], are shown in Supplemental Material [47]. For the
considered parameters this mechanism leads to a preferred
elongation direction only for the cylindrical surfaces with
the strongest curvature ðrCyl; hCylÞ ¼ ð0.41; 9.49Þ, but to no

tendency for collective motion in the azimuthal or longi-
tudinal direction.
On toroidal surfaces curvature varies along the poloidal

direction, see Supplemental Material [47]. As seen for a
single cell, this has consequences for cell shape and
position. We consider the same setting on two toroidal
surfaces of equal area with 144 cells. Figure 4 summarizes
the results. As in Fig. 3 we plot the distribution of the
direction of movement and the elongation direction. The
angle is with respect to the poloidal direction. On both
surfaces the toroidal direction is the preferred direction of
movement and elongation for Ec < 0, see Figs. 4(a), 4(b),
4(g), and 4(h) and the poloidal direction is the preferred
direction of movement and elongation for Ec > 0, see
Figs. 4(e), 4(f), 4(k), and 4(l). These tendencies are more
pronounced for the torus with ðRT; rtÞ ¼ ð1.81; 0.81Þ. Here
the maximal absolute principal curvature direction is
always the poloidal direction, while for the torus with
ðRT; rTÞ ¼ ð1.35; 1.08Þ it varies from the toroidal direction
(inside) to the poloidal direction (outside). This change in
direction leads to preferred elongation and movement
directions depending on position. In both cases varying
Gaussian curvature impedes the emergence of collective
motion. The difference in magnitude between the principal
curvature values is smaller if compared with the cylindrical
surfaces. In addition, collective movement in the poloidal
direction is simply restricted by the geometry. These effects
can explain the observed behavior of a preferred direction
of movement and elongation, but no collective motion on
the torus.

FIG. 3. Distribution of direction of motion and elongation direction on cylindrical surfaces ðrCyl; hCylÞ. The angle between
longitudinal direction and direction of movement or elongation direction is used as angular coordinate and the ratio of cells with this
property as radial coordinate. (a)–(i) Direction of movement color coded by mean velocity, (j)–(r) direction of elongation. The data are
averaged over time and three simulations for each configuration.
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We next consider the elongation as a function of K, see
Figs. 4(m)–4(o). While we do not see an effect for the torus
with ðRT; rTÞ ¼ ð1.81; 0.81Þ, for the torus with ðRT; rTÞ ¼
ð1.35; 1.08Þ there is a slight dependency of the elongation
direction on Kcell for Ec < 0 and Ec > 0. For Ec > 0 it
agrees, at least qualitatively, with measurements for MDCK
cells on toroidal surfaces within the region of negative K
[13]. Quantitative differences can be associated with
significantly different numbers of cells, different mea-
surement techniques and possible influences of the con-
sidered geometry in [13]. The direction of movement has a
less pronounced dependency on K, see Supplemental
Material [47].
Incorporating extrinsic curvature contributions into a

cell-based surface multiphase field model allows us to
effectively resolve the three-dimensional nature of epi-
thelial layers, e.g., the difference between the apical and
basal side. This reveals essential effects of curvature on
single cells and their collective motion. The alignment of
cells with principal curvature directions leads under appro-
priate propulsion mechanisms and cell-cell interactions to
collective motion on specific geometries. On cylindrical
surfaces this can lead to long-term changes from a
quiescent state to spontaneous collective rotation, as
observed in vitro for MDCK cells [12]. Cylindrical surfaces
are not only special mathematical objects, they are repre-
sentative of many epithelial tissues, such as tubular vessels,

ranging from small capillaries to large arteries, tubular
glands, and ducts [16,18]. On more general surfaces with
varying K the geometric effect on the collective behavior is
a competition of intrinsic and extrinsic curvature contri-
butions. Both couplings vastly increase the range of tissue
parameters to control the flow of the epithelial layer.
Combining this with shape changes induced by these
tangential flows, as considered in coarse-grained models
for fluid deformable surfaces [68–70], has the potential to
transform our understanding of morphogenesis.

Data and simulation code are available upon reasonable
request.
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