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Floppy microscale spring networks are widely studied in theory and simulations, but no well-controlled
experimental system currently exists. Here, we show that square lattices consisting of colloid-supported
lipid bilayers functionalized with DNA linkers act as microscale floppy spring networks. We extract their
normal modes by inverting the particle displacement correlation matrix, showing the emergence of a
spectrum of soft modes with low effective stiffness in addition to stiff modes that derive from linker
interactions. Evaluation of the softest mode, a uniform shear mode, reveals that shear stiffness decreases
with lattice size. Experiments match well with Brownian particle simulations, and we develop a theoretical
description based on mapping interactions onto a linear response model to describe the modes. Our results
reveal the importance of entropic steric effects and can be used for developing reconfigurable materials at
the colloidal length scale.
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Networks below the mechanical stability threshold
exhibit large-scale, low-energy deformation modes [1].
These floppy modes play an important role in a wide range
of systems, ranging from elastic networks [2,3] to particle
packings [4], and are also important for understanding the
rheological behavior of colloidal gels [5] and biopolymer
networks [6], the glass transition in disordered solids [7],
and protein flexibility [8]. Floppy modes in frictionless
ordered [1] and disordered [2,9] packings and networks have
been shown to be strictly zero-energy deformations. In
contrast, floppy modes in microscale networks have been
predicted by simulations and theoretical arguments to be
stabilized by thermal fluctuations, resulting in nonzero shear
moduli even below the isostatic point [10–13], and they are
expected to possess an anomalous temperature dependence
of the shear modulus [10,11].
While bonded colloidal structures that can rearrange

have been experimentally realized using patchy particles
[14] and colloids coated with surface-bound DNA linkers
which can roll over each other’s surfaces close to the
melting temperature [15,16], neither allows for a fixed bond
network topology, and they are thus limited to structures
accessible by free energy minimization. An experimental
model system that combines full flexibility with a fixed
bond network topology and springlike bonds is currently
missing, yet it would allow testing of these predictions and

lead to a better understanding of thermally excited
floppy modes. In addition, it would enable the translation
of concepts developed in mechanical metamaterials to
the microscale, where floppy modes are exploited to obtain
specifically engineered capabilities such as shape morphing
[17] or topology-dependent mechanical properties [18].
Here, we present an experimental system that behaves as

a floppy microscale spring network and allows in situ
observation of the dynamics and thermal excitations by
optical microscopy. We build two-dimensional colloidal
square lattices and find that they display soft shear modes
with a small but finite stiffness 2–3 orders of magnitude
softer than the stiffer compression modes, which is different
from disordered [5] or large crystalline [19,20] systems.
The extracted modes show good agreement with Brownian
particle simulations and a theoretical mapping onto a linear
response model.
Creating experimental floppy colloidal square latti-

ces.—To create floppy square lattices, we employ col-
loid-supported lipid bilayers (CSLBs) functionalized with
two complementary strands of DNA linkers, as shown in
Fig. 1(a) and described in Verweij et al. [21] and in Sec. I of
the Supplemental Material [22] in more detail. At room
temperature, the linkers provide selective, irreversible
binding, while inert DNA strands and PEGylated lipids
provide steric stabilization. The DNA can freely move
within the fluid bilayer, unaffected by the individual
particle rotation, which allows the particles to fully recon-
figure with respect to each other while remaining bound.
We assemble 2.12� 0.06 μm diameter particles one by one
into square lattices of size n × nwith n ¼ 2, 3, 4, 5, 7 using
optical tweezers. This is an easily scalable floppy system,
as it is isostatic in the infinite limit using simple constraint
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counting [26], but it admits 2n − 3 floppy modes that
correspond to shear deformations between layers when cut
to a finite size [1] (see also Sec. III A of the Supplemental
Material [22]). An example of such a floppy mode
displacement for a 3 × 3 lattice is schematically shown
in Fig. 1(b). Once assembled from complementary CSLBs
marked with different fluorescent lipids [see Fig. 1(e)], the
square lattice structure cannot change its network topology,
because bonds between particles diagonally opposite of
each other are not possible by design.
We observe the dynamics of the assembled lattices with a

brightfield microscope at a frame rate of 20 fps. The
particles move predominantly in 2D (with a gravitational
height of 53 nm) and are freely jointed to very good
approximation [21,27]. Because of their size, the thus
assembled lattices undergo thermal motion in the form
of translation and rotation, but also by changing their
conformations, which is evident from the snapshots taken
30 s apart shown in Fig. 1(f) and in Movies 1–5 of the
Supplemental Material, where the thermally excited shear
modes are clearly visible.
We start by showing that the multivalent DNA bonds

between the CSLBs can be approximated by harmonic
springs. To do so, we quantify the particle positions
of a pair of particles from brightfield microscopy videos

using a tracking method with subpixel accuracy named
HoloPy [21,28]. This allows for detecting variations
on the order of nanometers, so not only are the floppy
modes tracked with high accuracy, but also elastic normal
modes that happen on the scale of several tens of nano-
meters. We plot the bond length variation Δrij − hΔrijit in
Fig. 1(c), where Δrij is the distance between the centers of
particles i and j, and h…it denotes an average over the
measurement time. A Gaussian fit with spring constant
kbond ¼ 43� 1 μNm−1 agrees well with the experimental
data. The multivalent patch of DNA linkers therefore acts
as a spring, implying that CSLB-based colloidal structures
are effectively microscale spring networks, at least to
lowest order. The springlike bond networks are schemati-
cally drawn in Fig. 1(d).
Results and interpretation.—We analyze the particle

trajectories [see Fig. 2(a)] to obtain the vibrational modes
for a 2 × 2 lattice with N ¼ n2 ¼ 4 particles and 2N ¼ 8
degrees of freedom. We subtract the motion due to the
three trivial translational and rotational degrees of free-
dom to obtain the trajectories shown in Fig. 2(b) (see
Sec. I C of the Supplemental Material [22] for details).
As expected, particles move predominantly on the diag-
onals, corresponding to the shearlike motion observed in
experiments.

(a) (d) (g)(e) (f)

(b) (c)

FIG. 1. Flexible colloidal square lattices. (a) A schematic overview of the binding mechanism. Silica particles are coated with a fluid
lipid bilayer functionalized with linker double-stranded (ds) DNA with single-stranded sticky ends that enable strong and specific
binding yet are laterally mobile, thereby providing the ability for rearrangements after binding. Colloidal stability is provided by
PEGylated lipids and inert dsDNA. (b) A schematic example of a floppy mode deformation in a 3 × 3 square lattice. (c) The distribution
of the distance between two particles i and j, Δr⃗ij − hΔr⃗ijit, measured on particle pairs can be well approximated with a normal
distribution yielding a bond stiffness of kbond ¼ 43� 1 μNm−1. (d) Time-averaged particle positions as measured in experiments, where
the bond network is indicated in black. (e) Confocal images of the n × n square lattices with n ¼ 2, 3, 4, 5, 7, where the color indicates
functionalization with different, complementary DNA linkers. (f) Brightfield snapshots of the same lattices taken 30 s apart. (g) Spring
networks used in the theoretical description, with the particle bonds indicated in black and the effective diagonal interactions indicated in
gray. Scale bars are 10 μm.
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For colloidal glasses [29–31] and crystals [19,20], which
do not have floppy modes, equilibrium fluctuation-
dissipation relations have been exploited to link particle
fluctuations to stiffnesses in the dynamical matrix, in a
spirit similar to passive microrheology [32]. We use this
fluctuation-inversion method based on equipartition in the
form developed by one of us [33] to obtain the stiffness
matrix K. Briefly, we compute the 2N particle displace-
ment vector δr⃗ðtÞ ¼ r⃗ðtÞ − hr⃗ðtÞit, where h…it denotes a
time average over the experiment [see Fig. 2(c)]. From this,
the 2N × 2N covariance matrix of the displacements,
Cp ¼ hδr⃗ðtÞ · δr⃗ðtÞi, is calculated [see Fig. 2(d)]. In the
long-time limit and in linear response, the stiffness matrix
K is related to Cp by K ¼ kBTC−1

p [33] [see Fig. 2(e)],
where we now need to use the pseudoinverse, becauseCp is
singular [34] as a result of subtracting the trivial modes.
The eigenvectors of Cp andK represent the normal modes,
and the eigenvalues ofK, κ, represent the mode stiffnesses.
Cp only contains two distinctive values, matching the
earlier observation that particles move on diagonals. In
K, in addition to the diagonal terms that indicate confine-
ment, we observe large stiffness values along the pair bond
directions, as well as smaller values that indicate next-
nearest-neighbor (NNN) interactions.
The 2N − 3 ¼ 5 mode stiffnesses κ are shown in

Fig. 2(f) with increasing stiffness. For the experimental
data, a ∼103 difference in stiffness is visible between the

softest mode and the stiffer modes. The modes themselves,
obtained from the eigenvectors of K, are plotted in
Fig. 2(g). The softest mode is the expected shear mode
that involves no changes in bond lengths and thus is a
floppy mode. The other four normal modes are signifi-
cantly stiffer, as bonds have to be compressed or extended.
Theoretical description.—To better understand the

experimental results and test if all relevant interactions
are taken into account, we perform Brownian particle
simulations (see Sec. II of the Supplemental Material
[22]). In these simulations, particle neighbors are fixed
and connected by springs of stiffness kbond ¼ 32 μNm−1.
We solve the overdamped Langevin equation in two
dimensions with explicit thermal noise and friction. The
correct topology is assured by an additional one-sided,
repulsive spring of stiffness kbond that only becomes active
when two particles overlap that are not neighbors. The
resulting soft mode stiffness is in excellent agreement with
the experimental result, and the stiffer modes 3–5 match
experiments very well, but we find a noticeably lower value
for mode 2 [see the data point labeled “sim” in Fig. 2(f),
and Fig. S4 in the Supplemental Material]. Differences
between experiments and simulations might stem from
variations in the spring constants arising from varying DNA
concentrations between particles [35] and consecutive
binding of colloids, small 3D movement causing the
springs to appear softer, imperfections of the colloids, or

(a)

(d) (e) (f)

(b) (c) (g)

FIG. 2. Mode calculation for a 2 × 2 structure. (a) Typical trajectories for a 2 × 2 lattice, where the different colors represent the four
different particles. (b) The same trajectories after subtracting translation and rotation, where the average position over time hr⃗ðtÞit is
shown and the particles are labeled. (c) A schematic showing the equilibrium position hr⃗ðtÞit, the position at time t, r⃗ðtÞ, and the

displacement vector δr
!ðtÞ. (d) Experimentally measured covariance matrix of the displacement vectors Cp, which is pseudoinverted to

obtain (e) the stiffness matrixK. (f) The eigenvalues ofK representing the mode stiffnesses κ for experiments (expt), Brownian particle
simulations (sim) with kbond ¼ 32 μNm−1, and a map onto linear response (lin) with kbond ¼ 32 μNm−1 and kdiag ¼ 10 nNm−1. (g) The
experimentally obtained eigenvectors of K represent the vibrational modes.
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tracking errors (see Sec. V of the Supplemental Material
[22] for a discussion).
We now map these results to a linear response model

where we assume fixed bond lengths and a uniform
opening angle distribution to get an effective diagonal
bond with a stiffness of kdiag ¼ 1

2
ð2=d2Þ½kBT=VarðθÞ� ¼

ð108kBT=π2d2Þ (see Sec. III B of the Supplemental
Material [22]), where the factor 1

2
comes from dividing

the spring over two diagonals. For d ¼ 2.12 μm and above
assumptions, kdiag ¼ 10 nNm−1. The resulting spring net-
works are indicated in Fig. 1(g). We can then obtain
the modes and their stiffnesses by diagonalizing the
constructed stiffness matrix (see Sec. III C of the
Supplemental Material [22]) with neighbor stiffness kbond
and NNN diagonal effective stiffness kdiag. A similar
approach was employed by Ref. [14] to derive effective
angle springs and low-energy modes in a Kagome lattice.
We obtain three modes with a stiffness of 2kbond, one with a
stiffness of 2ðkbond þ kdiagÞ, and one with stiffness 2kdiag
[labeled with “lin” in Fig. 2(f)]. The stiffness of the soft
mode, 20.0 nNm−1, is very similar to experiments and
simulations, both with 19.2 nNm−1, while the stiff modes
are of the same order of magnitude. Comparison between
linear response and simulations reveals that the stiff modes
acquire a nonlinear component due to the large deforma-
tions. The most notable difference for compression mode 2
can be matched to a projection of the floppy mode onto this

mode. In experiments, this effect is nearly fully counter-
acted by an experimentally observed angle-bond length
correlation (see Sec. Vof the Supplemental Material [22]).
Larger square lattices.—Having obtained a comprehen-

sive understanding of the 2 × 2 structure, we now turn to
larger square lattices with more soft modes. In Figs. 3(a)–
3(c), the mode stiffnesses are shown as a function of mode
number for experiments, Brownian particle simulations,
and the linear response approach discussed below, respec-
tively. For our finite systems, Maxwell constraint counting
[26] corresponds to 2n2 translational degrees of freedom
that are countered by 2n2 − 2n bonds, giving us 2n − 3

floppy modes after taking into account global degrees of
freedom (see also Sec. III A of the Supplemental Material).
We indeed find 1, 3, 5, and 7 soft modes for 2 × 2, 3 × 3,
4 × 4, and 5 × 5 experimental square lattices, respectively.
Similarly to the results for the 2 × 2 structure, we find very
good agreement for the stiffness of the floppy modes, while
the stiffer modes are of the same order of magnitude, and
the simulations show groups of near degenerate modes not
apparent in experiments.
The softest modes, shown in Fig. 3(e), are nearly pure

shear modes. We compute a shear modulus by projecting
the experimental trajectories onto a normalized pure shear
mode: m⃗: pðtÞ ¼ δr⃗ðtÞ · m⃗. The distributions PnðpÞ for
experiments and simulations become more Gaussian with
increasing system size, as is visible in Fig. S7 in the

(a)

(e) (f) (g) (h)

(b) (c) (d)

FIG. 3. Modes for larger systems. (a)–(c): The mode stiffnesses of larger lattices n × n for (a) experiments (expt), (b) simulations
(sim), and (c) a theoretical map onto linear response (lin), where the line width is equivalent to the standard deviation. (d) The shear
stiffness obtained from the variance of the shear mode projection distribution as a function of n, where the experimental standard
deviation is indicated, and the Monte Carlo approach is denoted by “m.c.” (e) Schematics of the softest mode, which is close to a pure
shear mode. (f)–(h): The opening angle distributions for (f) experiments, (g) simulations, and (h) the Monte Carlo approach. Simulations

and linear response results are obtained using kbond ¼ 32 μNm−1 and the kndiag derived below. For the linear response data, κlinshear ¼
ðPνð1=κνÞðm⃗ · ξν

!Þ2Þ−1 with ξν
!

the eigenvector of K for mode ν is plotted in panel (d).
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Supplemental Material. Using equipartition, we can com-
pute the stiffness of the shear mode κshear ¼ kBT=VarðpÞ
[see Fig. 3(d)]. Clearly, the shear modulus decreases with
system size. The diffusion of the lattices does not couple to
this shear mode excitation (see Fig. S8 in the Supplemental
Material).
We can understand its origin and derive its value as

follows: each angle has a range between ðπ=3Þ and ð2π=3Þ,
but due to entropic effects stemming from the geometric
constraints imposed by the square lattice topology, the
angle distribution for larger systems narrows [see Fig. 3(f)],
similarly to what we have previously observed for
flexible colloidal rings [21]. This means that entropic
effects effectively stabilize the open structure, in line
with predictions [10,13] and experiments on patchy par-
ticles [14]. Using a Monte Carlo approach where we
assume fixed bond lengths and only select sterically
allowed angle combinations (see Sec. IV in the
Supplemental Material [22]), we find angle distributions
PðθnxnÞ that closely match experiments and simulations, as
shown in Figs. 3(f)–3(h). This corroborates the entropic
origin of the narrowing of the angle distribution. Moreover,
using this approach, we are able to correctly predict
the shear mode distribution PnðpÞ (see Fig. S7 in the
Supplemental Material) and the shear modulus [see the
“m.c.” symbols in Fig. 3(d)].
To map to linear response, we again introduce NNN

springs that derive from the steric constraints, but we need
to modify our argument: While there are ðn − 1Þ2 floppy
squares in the packing, there are only 2n − 3 independent
opening angles in the stiff bond limit. To take this effect and
the angle distributions into account, we calculate the diagonal
spring interaction kndiag for larger systems by scaling kdiag as
kndiag ¼ ½ð2n − 3Þ=ðn − 1Þ2�½Varðθ2x2Þ=VarðθnxnÞ�kdiag. We
show the resulting mode spectrum in Fig. 3(c). The soft
modes are well described by linear response, and the stiff
modes are on the right order of magnitude. Furthermore, the
nondegeneracy of the stiffer modes in simulations indicates
the presence of higher-order, nonlinear effects due to large
lattice deformations, which are also visible in experiments.
See Sec. V of the Supplemental Material [22] for a more
extensive discussion.
To summarize, our experimental model system provides

a way to make microscale spring networks with a fixed
bond network topology, a linear response model well
describes the soft modes and linear part of the stiff modes,
and we find a modified scaling of the shear modulus with
system size due to entropic effects as predicted [10–13].
Our understanding of floppy colloidal networks can

serve as a starting point for studying thermal effects in
more complex network topologies, as well as designing and
analyzing colloidal structures with global reconfiguration
modes with more advanced functionalities, such as colloi-
dal mechanical metamaterials or self-assembled adaptive
materials.
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