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Studies of dynamics on temporal networks often represent the network as a series of “snapshots,” static
networks active for short durations of time. We argue that successive snapshots can be aggregated if doing
so has little effect on the overlying dynamics. We propose a method to compress network chronologies by
progressively combining pairs of snapshots whose matrix commutators have the smallest dynamical effect.
We apply this method to epidemic modeling on real contact tracing data and find that it allows for
significant compression while remaining faithful to the epidemic dynamics.
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Introduction.—High resolution temporal interaction data
is now simple to obtain and widely available thanks to
methods such as radio frequency identification [1] or
Bluetooth signals [2]. Temporal interactions have rich
dynamics in continuous time, yet we often want to combine
intervals of temporal data into a series of simpler, static
networks in order to compress the data, reduce analytical
complexity, or streamline data collection efforts. For
example, digital contact tracing protocols ping devices at
fixed intervals to save energy and lighten data require-
ments. However, it is nontrivial to determine when and how
to aggregate temporal data without losing critical informa-
tion about the dynamics of the interactions.
Many methods currently exist to represent and analyze

temporal networks [3], and to find patterns in network
structure and dynamics. This includes algorithms for
detecting temporal states [4], dynamical approaches for
generating synthetic temporal network data [5,6], tools to
identify community structure in time-varying networks [7],
data-driven approaches to model dynamics on temporal
networks by determining change points [8], and methods to
represent key temporal features as static networks [9,10].
The dynamics of epidemic spread on temporal networks is
well studied [11–14], as are synchronization [15–17] and
control dynamics [18].
A continuing challenge is the interplay of dynamics on

the network (changes in variables on nodes and edges) with
dynamics of the network (where the topological structure
changes over time). When the timescales of these two
are well separated, we can take one of two limits. If the
dynamics on the network are much faster, we can use a
static limit where the network structure is essentially
constant. When the dynamics on the network are much
slower, referred to as the annealed limit, then the dynamical
variables effectively experience the average of the network

structure over time. Then we can aggregate many snapshots
regardless of their chronological order. In between these
two limits, neither type of dynamics can be neglected [19].
Then it is less clear how or if the history of the network’s
structure can be compressed while remaining faithful to the
dynamics on the network.
Here, we quantify the importance of chronology in a

sequence of network snapshots by considering its effects on
dynamics. Our goal is to compress unimportant structural
changes while preserving changes that significantly affect
the dynamical process. By compression, we mean a
reduction in the number of snapshots used to represent a
network’s history, rather than a minimization of the
description length or memory needed for these snapshots
[5]. This task has practical benefits, such as reducing the
computational cost of simulation, and we consider it a

FIG. 1. Schema of our hierarchical aggregation. Given network
snapshots, we compare the aggregate spreading dynamics of each
adjacent pair of snapshots and combine the pair with the lowest
induced error, continuing until we reach a desired number of
snapshots.
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fundamental scientific question: to what extent do we need
to keep track of the chronological changes to a network’s
structure in order to model dynamical processes on it?
We propose a method to do so by assessing the

sensitivity of the dynamics to aggregating pairs of network
snapshots. We take an epidemic spreading model as our
main example, but we abstract the dynamics in a way that
could represent other dynamical processes on networks
(e.g., synchronization of coupled oscillators or cascading
failures in power grids). Specifically, we formulate a
pairwise error measure using matrix commutators that
captures how aggregating snapshots affects the epidemic
process, and we aggregate network snapshots as long as
this error remains low. Using synthetic networks and real
data, we find that this approach is successful at producing a
compressed snapshot sequence that still mimics the
dynamic behavior of the original sequence.
Analytical framework.—We assume that we have some

temporal network data consisting of a large number of
snapshots of the network structure. (If we have a series of
brief contacts between pairs of nodes in continuous time,
this data would consist of a large series of mostly empty
graphs.) We consider the dynamical error we would
introduce by aggregating a given consecutive pair of
snapshots into one. In an epidemic model, this error
consists of creating paths that allow the contagion to
progress backwards in time, as depicted in Fig. 1. If
aggregating two snapshots would create many such
chronology-violating paths, we should keep these snap-
shots separate and respect their chronological order.
In our epidemic example, a contagion spreads along

edges connecting infectious nodes to their susceptible
neighbors. We measure the effect of pairwise aggregation
with a measure of error capturing the difference in the
number of infected individuals, with and without aggre-
gation over the duration of the snapshot pair. As we will
see, we can approximate this error in terms of the
commutator of two matrices, each of which linearizes
the dynamics over the time interval of the snapshots.
Linearizing the SI model.—Let AðtÞ be the time-varying

adjacency matrix of a network with N nodes. Let PðtÞ be a
vector of lengthN where PiðtÞ is the probability that a node
i is infected at time t. A susceptible-infected-susceptible
(SIS) model with infection rate β and recovery rate γ can be
modeled by the following system of differential equations:

dPi

dt
¼ β½1 − PiðtÞ�½AðtÞPðtÞ�i − γPi; ð1Þ

and the total number of infected individuals at time t is
IðtÞ ¼ jPðtÞj where jPj ¼ P

N
i¼1 Pi. In this paper we will

focus on the SI model where γ ¼ 0. We then consider the
early time linearization of Eq. (1) around P ¼ 0 (without
losing much accuracy [20]), and thus have

dP
dt

¼ βAðtÞPðtÞ: ð2Þ

The solution to this equation involves a time-ordered
exponential of AðtÞ. In the case of a series of snapshots
A1;…; Al, i.e., a sequence of static adjacency matrices
which hold over time intervals of duration δt1;…; δtl, we
have

PðtÞ ¼
"Y1
i¼l

exp ðβδtiAiÞ
#
Pð0Þ: ð3Þ

[This product is in reverse order since we treat PðtÞ as a
column vector and multiply on the left.] If all the Ai
commute, this product reduces to exp ðβPi δtiAiÞ, a single
exponential of their weighted average. However, in general
their noncommutative nature must be taken into account.
Aggregating snapshots.—Say we have two consecutive

snapshots, A and B, which are valid for time intervals
½tA0 ; tA1 � and ½tB0 ; tB1 � of duration δtA ¼ tA1 − tA0 and δtB ¼
tB1 − tB0 respectively, where tB0 ¼ tA1 . In the linearized SI
dynamics of Eq. (2), aggregating A and B in a single step is
equivalent to replacing the time evolution operator
expðβδtBBÞ expðβδtAAÞ with

exp½βðδtA þ δtBÞðA;BÞ�;

where ðA; BÞ is the time-weighted average

ðA;BÞ ¼ δtAAþ δtBB
δtA þ δtB

: ð4Þ

The effect of this aggregation can be quantified through the
well-known Baker-Campbell-Hausdorff formula, which
expresses the product expX expY as a single exponential
expZ:

Z ¼ X þ Y þ 1

2
½X; Y� þ 1

12
ð½X; ½X; Y�� − ½Y; ½X; Y��Þ þ � � �

ð5Þ

where ½X; Y� ¼ XY − YX is the matrix commutator. Setting
X ¼ βδtBB and Y ¼ βδtAA, we have

expðβδBBÞ expðβδAAÞ ¼ expZ;

where

Z ¼ βðδtA þ δtBÞðA;BÞ þ
1

2
β2δtAδtB½B;A� þOðβ3Þ: ð6Þ

Up to this point, we have used a known matrix formulation
of dynamical processes on networks with or without
temporal aggregation. This formulation was previously
used to study the impact of temporal networks on the
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epidemic threshold [21,22] and to measure autocorrelations
in temporal networks [22].
Here, the correction term proportional to ½B;A� captures

to leading order how aggregation introduces error into the
dynamics. As illustrated in Fig. 1, aggregation creates
chronology-violating paths whenever A and B do not
commute. For example, if A includes the edge (1,2) and
B includes the edge (2,3), then a disease could spread from
node 1 to 3 in the chronology BA but not in AB. The
commutator ½B;A� counts paths allowed by BA and sub-
tracts paths allowed by AB, compensating for the fact that
the Taylor series of exp½ðA;BÞ� contains terms proportional
to both AB and BA.
Thus we use the correction term in Eq. (6) as a measure

of the error induced by aggregation, or equivalently a
measure of the sensitivity of the dynamics to the temporal
ordering of A and B. Specifically, we use the operator norm
of this term, i.e., its largest singular value, as an estimate of
the error induced from the start to the end of the combined
interval ½tA0 ; tB1 �:

ϵEND ¼ 1

2
β2δtAδtBk½B; A�kop ð7Þ

The operator norm bounds the effect of aggregation on any
state PðtA0 Þ at the beginning of the interval. Note that ϵEND is
small if β is small, i.e., if the epidemic dynamics is slow
compared to the dynamics of the network structure. It is
also small if either δtA or δtB is small, since in that case the
effect of A or B is close to the identity.
We are interested in the effect of aggregation on the

entire history of the system, not just the final state. We show
an explanation of the problem in Fig. 2. Thus we also
consider the error induced at the boundary tA1 ¼ tB0 between
the two intervals. To leading order we have

expðβδtAAÞ−exp
�
βδtAðA;BÞ

�
¼βδtA

�
A−ðA;BÞ

�
þOðβ2Þ:

This term is in fact symmetric in A and B, since

βδtA
�
A − ðA;BÞ

�
¼ β

δtAδtB
δtA þ δtB

ðA − BÞ:

As before we bound the possible error induced at the
midpoint as the operator norm of this term,

ϵMID ¼ β
δtAδtB

δtA þ δtB
kA − Bkop: ð8Þ

We scale these terms by the cumulative duration of both
snapshots—capturing the total effect that ϵMID and ϵEND
have on the epidemic process (as visualized in the top right
panel of Fig. 2)—which culminates in our error measure
defined as

ξA;B ¼ ðϵEND þ ϵMIDÞðδtA þ δtBÞ: ð9Þ

This measure includes both the error incurred by the overall
difference between A and B, and the extent to which their
chronological order matters. If our main goal is to compute
the final state, we can place a smaller weight on ϵMID or
focus entirely on ϵEND. Note that while ϵEND is second order
in β and ϵMID is first order, either can dominate, e.g., if A
and B have average degree d then k½A;B�kop can grow as
d2. This new quantification of compression error captures
structure and dynamics, allowing us to introduce a
dynamic-preserving algorithm for the compression of
temporal networks.
Compression algorithm.—Given a temporal network

dataset as a sequence of M snapshots, we can use the
framework to compress the snapshots intoM − j snapshots
via a greedy algorithm. First, the number of desired
iterations j is set. For steps from 1 to j, (i) compute the
error ξA;B from Eq. (9) for each ordered pair A, B of
consecutive snapshots, (ii) identify the pair A�; B� ¼
argminA;BðξA;BÞ to compress, (iii) replace A and B with
their aggregate, ðA;BÞ over the union ½tA0 ; tB1 � of their time
intervals. Alternately, we can compress until minA;BξA;B
reaches some threshold.
This algorithm produces a hierarchical aggregation of

snapshots as portrayed in Fig. 1. Periods where the network
structure changes slowly or where snapshots commute
become single snapshots with a long duration, while the
periods with rapidly changing and noncommuting struc-
tures are preserved at a higher temporal resolution.

FIG. 2. Top left: degree distributions for two snapshots. Top
right: ordinary differential equation solutions of the SI dynamics
with β ¼ 0.12, δt ¼ 5 on the temporal and aggregate versions of
the snapshots with highlighted error terms. Bottom left: ODE
solution difference in number of infected nodes under the
temporal and aggregate regimes for varying values of βt by
varying t ¼ ½0; 5�. Bottom right: ranking of ξ1;2 for snapshots 1
and 2 for increasing values of βδt compared against the integrated
area between solutions.
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Results.—Our algorithm produces aggregated snapshots
that are able to better support the epidemic dynamics on the
temporal network than the standard approach of evenly
dividing time into windows of some fixed length and
aggregating snapshots in each window. We call xðtÞTEMP
the SI dynamics of Eq. (1) integrated using the full
temporal dataset and xðtÞALG the dynamics integrated over
the snapshots produced by our algorithm. As comparison
methods, we use the common approach of evenly dividing
the full time window into a certain number of snapshots of
equal length [producing xðtÞEVEN] and an information-
theoretic method that optimally compresses the full
sequence as a set of modes [producing xðtÞMDL] [23].
This last method is a parameter-free approach designed to
compress general multilayer networks using the minimum
description length (MDL) principle. In particular, its level

of compression and error cannot be tuned as our algo-
rithm’s or the even division approach can be.
We measure the multiplicative error dALG as

dALG ¼
Z jxðtÞALG − xðtÞTEMPj

xðtÞTEMP
dt ð10Þ

and similarly for dEVEN and dMDL. We apply the algorithm
to synthetic networks in Fig. 3, and to a dataset of four days
and nights of contacts in a hospital [24] in Fig. 4, along
with several other temporal contact network datasets [25].

FIG. 3. Compression of a series of 50 synthetic network
snapshots (detailed in appendix [20]), showing the SI dynamics
with β ¼ 0.0017. Top: we use our algorithm to compress the
network history to 6 snapshots of varying lengths, with bounda-
ries shown by the orange dashed lines. We compare with the SI
dynamics using even-width aggregation into 6 windows of fixed
length (blue dashed lines). The snapshots produced by our
algorithm give SI dynamics closer to that on the full temporal
network (gray). Middle: normalized distance from the temporal
curve over time for each solution, dALG for the algorithmic
solution, and dEVEN for the even-width solution. Bottom: the
vertical axis shows the shaded area from the middle panel as a
function of number of aggregated snapshots, normalized by the
error induced by aggregating the entire history into a single static
network, measuring the error induced by aggregation as a fraction
of the worst-case scenario. Generally, our algorithm results in
almost ten times less error than even temporal split.

FIG. 4. Application to empirical temporal network data. Top:
error measure ξSðtÞ;Sðtþ1Þ computed for consecutive snapshot pairs
at three different levels of preaggregation on a hospital contact
network [24]. The hospital contact data contains contacts for
approximately 9000 unique timestamps. We preaggregate by
evenly coarse-graining the data to 4000, 1000, and 200 snapshots.
Preaggregation of the data into small static snapshots does not
affect the overall quality of our compression [20]. Middle: error
of the SI process solutions, relative to the error induced by
aggregating the entire history as a single static network (full
error), as a function of resulting number of aggregated snapshots.
The red star shows the error induced by the MDL optimal
compression, which consists of 23 snapshots for this data. The
vertical axis of the inset shows the ratio of compression achieved
at a given error level by our algorithm versus even-width
aggregation in orange markers, and versus MDL in a red star.
For example, our algorithm can compress the data to 18 snapshots
while maintaining lower error than 30 even snapshots, leading to
a 30=18 (∼1.7) compression ratio. Bottom: summary of the inset
of the middle panel across other datasets [26–28] showing the
distribution of compression ratios. Our algorithm can be expected
to further compress the number of snapshots by 50% to 100%.
Importantly, it always outperforms MDL compression, although
the two approaches can reach very similar outputs, for example
on the conference dataset.
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We show in the top panel of Fig. 4 how the sensitivity of
certain temporal ranges is maintained over a large range of
resolution, which allows for preaggregation of data to
improve the speed of the algorithm. The error metric also
allows us to identify the daily patterns of the contact data at a
glance. Once integrated in the compression algorithm, the
middle panel shows howwe can aggregate over nights at the
hospital, and capture the daily activity in one or two
snapshots. As seen in Figs. 3 (bottom) and 4 (middle),
our algorithm compresses more effectively than even-width
time windows and the MDL method. In fact, for a given
number of even-width aggregation steps, the algorithm
can attain the same level of error after significantly more
aggregation steps (∼50%–200%). We call this additional
aggregation the compression ratio and use it to summa-
rize the results on other temporal data sets in Fig. 4 (bottom).
Discussion.—The measure ξA;B of the error induced by

aggregating adjacent snapshots, and our hierarchical com-
pression algorithm based on it, offer at least four interesting
applications.
First, the approach can directly provide bounds of

accuracy when studying dynamics on temporal networks
with tools developed for spreading on static networks.
Second, our algorithm can help compress large sequences
of temporal networks by aggregating consecutive pairs of
networks to reach a desired level of simplification. Our
algorithm could also be modified to aggregate snapshots
until the expected error caused by this aggregation is
smaller than some threshold. As shown in Fig. 4 using
real temporal interaction data, this approach allowed us to
consistently meet a certain level of error while decreasing
the number of required network snapshots almost by half
compared to aggregating into even-width windows.
Third, the error can be used to estimate the accuracy of

data collection in the first place by testing how compress-
ible the data might be. This could help focus data collection
efforts by identifying places and times with fast temporal
variations, as in the top panel of Fig. 4. Fourth, the error can
be used on nontemporal data to compare the structure of
any two networks that share some of the same nodes and
support the same dynamics. At its core, our approach is a
network comparison tool: How different are dynamics on
two networks compared to dynamics on their average?
One important limitation is the greediness of our

algorithm, as it can get stuck in suboptimal compression
sequences. Future work should also explore how to predict
the optimal stopping point of temporal compression. We
hope that our work will inspire more tools to compress
temporal network data while preserving the dynamical
processes they support, which is an area rich in possible
applications.

Code to support the preparation of this letter is available
at [29]. The compression algorithm was implemented in
Python and is available at [30].
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