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Transition metal dichalcogenide superlattices provide an exciting new platform for exploring and
understanding a variety of phases of matter. The moiré continuum Hamiltonian, of two-dimensional jellium
in a modulating potential, provides a fundamental model for such systems. Accurate computations with this
model are essential for interpreting experimental observations and making predictions for future explorations.
In this work, we combine two complementary quantum Monte Carlo (QMC) methods, phaseless auxiliary
field quantum Monte Carlo and fixed-phase diffusion Monte Carlo, to study the ground state of this
Hamiltonian. We observe a metal-insulator transition between a paramagnet and a 120° Néel ordered state as
the moiré potential depth and the interaction strength are varied. We find significant differences from existing
results by Hartree-Fock and exact diagonalization studies. In addition, we benchmark density-functional
theory, and suggest an optimal hybrid functional which best approximates our QMC results.
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Introduction.—Correlated insulators [1–6] and other
interaction-driven electronic states [7–10] have been
realized in moiré superstructures created by the interfer-
ence between two slightly mismatched 2D crystals [11].
Multilayer transition metal dichalcogenide (TMDC)
systems have become one of the focal points of recent
experimental [10,12] and theoretical [13,14] pursuits. The
low-energy quasiparticles in these semiconductor inter-
faces traverse a smooth potential energy landscape with
moiré periodicity, because the band edge energy changes
with the local geometry and interlayer coupling [15,16].
The long moiré wavelength allows their physics to be
largely separated from atomistic details [17]. This creates
the opportunity to realize tunable systems whose char-
acteristic density variations are on the moiré scale. The
strong electron-electron interactions coupled with band
engineering and other effects have allowed a fascinating
array of quantum phases to be realized.
The moiré continuum Hamiltonian (MCH) [18,19],

of two-dimensional electron gas (2DEG) in a periodic
external moiré potential, is a fundamental model for such
systems. The MCH is directly connected to experiments.
The external moiré potential can be obtained by measur-
ing the band edge variation in a scanning tunneling
microscopy (STM) experiment [5,16], while the quasi-
particle dispersion can be measured in angle-resolved
photoemission spectroscopy (ARPES) experiments [20].
Further, it contains realistic long-range Coulomb inter-
action between the electrons. The MCH is also directly
connected to ab initio calculations. It can be derived from
a large-scale atomistic density functional theory (DFT)
calculation [18,21–24] by matching the band structure
near the Fermi level.

Computing the properties of the MCH can provide insight
into the physics in 2D materials—a rich collection has
already been observed in experiments and undoubtedly
much remains to be realized. In addition, the ability to
perform accurate computations for the MCHwill allow us to
make reliable predictions. Seemingly simple models, such as
the uniform electron gas and the Hubbard model, have
provided enormous value in improving our ability to under-
stand and compute much more realistic and complex
materials. The MCH shares this simplicity, and has strong
connections to both of these models. In the deep-moiré limit,
it downfolds to the Hubbard model on triangular and related
lattices [25–27], although nonlocal interactions are expected
to be important [28–30]. In the absence of moiré, the MCH
reduces to the 2DEG, which has long served as a valuable
model for semiconductor interfaces [31,32]. The inclusion of
the moiré potential allows a simple and yet rather realistic
modeling of the environment in 2D TMDC materials.
Much remains to be understood about the properties of

the MCH, and little is available in terms of accurate
quantitative information. In this Letter, we use two com-
plementary many-body QMC methods to explore interest-
ing regimes of the MCH, which involve strong interaction
and its delicate interplay with correlation. No existing
theoretical or computational results can capture these
intricacies with enough reliability to predict the correlated
phases in the model, which requires accurate treatment of
both exchange and correlation effects. We find a first-order
metal-insulator transition (MIT) between a paramagnetic
metal and a 120° Néel insulator.
Model.—The MCH, which can be thought of as an

effective model for holes in the valence band at the interface
of TMDC systems, takes the form
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where m� < 0 is the hole effective mass and ϵ is the
permittivity of the dielectric environment. The parameters
VM and ϕ define the depth and shape of the moiré potential.
We take ΛðrÞ ¼ P

3
j¼1 2 cosðr · gj þ ϕÞ, where gj are three

of the smallest nonzero reciprocal lattice vectors of the
moiré unit cell.
Given a filling factor ν, the moiré lattice constant aM

defines the Wigner-Seitz radius a, which sets the kinetic
and interaction energy scales, W ≡ ðℏ2=jm�ja2Þ and
U≡ ðe2=4πϵaÞ. Defining an effective a�B ≡ ðℏ2=jm�jÞ=
ðe2=4πϵÞ as length unit, we can express a in reduced
units: rs ≡ a=a�B ¼ U=W. Using W as energy unit, the
MCH in Eq. (1) reduces to
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where all lengths are scaled by a: r̃≡ r=a, g̃≡ ga
(Λ̃ contains g̃). The two parameters, λ≡ VM=W and rs,
fully specify the system. To connect with experiments, m�
and ϵ are needed.
We consider m� ¼ −0.35, ϵ=ϵ0 ¼ 4.5, ϕ ¼ 26°, and half

filling ν ¼ 1 as inspired by studies of hexagonal boron
nitride (hBN)-encapsulated WSe2=MoSe2 [5,22,25,27,33].
Given these choices, aM ¼ 10 nm corresponds to rs ¼ 7.7.
The actual experimental setup is more complicated

than the MCH [34–36] of Eq. (1). Atomic reconstruction
[37–39], gate screening [40,41], and disorder [42–44] all
have the potential to make the physics of the device
qualitatively different. However, the MCH Hamiltonian
captures essential features which drive much of the interest-
ing physics in 2D TMDC materials. The interaction terms
in the MCH can be modified to bring the model closer to
experiment. Further, the addition of a spin-orbit term can
facilitate the modeling of Janus TMDC bilayers [45].
Methods.—We apply two QMC methods, diffusion

Monte Carlo (DMC) [46] and auxiliary field quantum
Monte Carlo (AFQMC) [47–49] to study the ground
state of the MCH in Eq. (2). They are among the most
accurate many-body methods for strongly correlated sys-
tems [50–53]. One of the major challenges in reliably
characterizing the properties of a system such as the
MCH is to maintain accuracy in realistic hamiltonians,
which contain long-range Coulomb interactions, and still
approach the thermodynamic limit. The QMC methods we
employ allow us to achieve these objectives.
We use the noncollinear spin implementation [54–57]

of fixed-phase DMC (FP-DMC) [58], and the GPU-
accelerated phaseless-AFQMC (ph-AFQMC) [47,59,60].
FP-DMC is variational and works directly in the complete-
basis-set limit. We use it to locate the MIT boundary by

comparing the total energies of metallic and insulating
states. Properties including the spin and charge densities
and momentum distributions are computed by AFQMC
using the mixed estimator [61]. They are cross-checked
with DMC calculations where possible, with consistent
results between the two methods. See Supplemental
Material for details, which include Ref. [62].
Effective single-particle theories such as Hartree-Fock

(HF) and DFT replace the many-body interaction term with
an effective single-particle potential. In this work, we also
benchmark their reliability against our QMC results.
One goal of this effort is to identify the best indepen-
dent-particle approach for 2D TMDC systems, which will
greatly help initial screening of basic properties using
relatively inexpensive and quick computations to support
the fast-growing experimental effort. It is important to
emphasize that these benchmarks are only a first step,
however, since the performance will vary as we vary the
system parameters (including, among others, ν and ϕ). We
perform DFT calculations via the local density approxi-
mation (LDA) [63] as well as hybrid functionals [64].
Our QMC calculations are typically performed in 36-

and 144-electron systems with 4 × 4 and 2 × 2 twist-
averaged boundary condition, respectively. Structure factor
based finite-size correction [65–67] is applied to the total
energy and grand-canonical twists [68] are used to obtain
the momentum distribution in the metallic phase. All DMC
calculations use a fictitious spin mass of 500 a.u. to sample
spins. In FP-DMC, we use a Slater-Jastrow wave function
ansatz, which is optimized with variational Monte Carlo.
The Jastrow contains short-range two-body correlations,
represented by B-splines. Our ph-AFQMC calculations are
performed using a Kohn-Sham orbital basis. We use single
Slater determinant trial wave functions generated using
either HF or LDA. The lowest-energy trial is used to
calculate QMC properties. In the paramagnetic metal
phase, the LDA trial is chosen, otherwise the insulating
HF trial has lower energy. The QMC calculations are
carried out using QMCPACK 3.15.9 [69,70] with appro-
priate 2D modifications. We perform HF and DFT calcu-
lations using quantum espresso (QE) 7.1 [71,72], modified
to perform 2D calculations. We use the 2D LDA functional
from libxc 5.1.7 [73,74], which is based on DMC data
obtained by Attacalite et al. [75].
Results and discussions.—Figure 1 shows the results of

our QMC phase diagram of the MCH. As the electron-
electron interaction U and the external moiré potential VM

are increased from zero, the system undergoes a first-order
transition fromaparamagneticmetal to a120°Néel insulator.
The strength of the moiré potential λ required to induce
the transition decreases monotonically with increasing rs.
The limiting behaviors of the MCH phase diagram are

independent of model details. At constant VM and in the
high-density limit (rs → 0), we expect a paramagnetic
metal because the kinetic energy dominates. At VM ¼ 0,
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the MCH reduces to the 2DEG, thus we expect a transition
from the paramagnetic metal to a Wigner crystal (WC) at
rs ¼ 31� 1 [76]. While not explored in this work, we
anticipate important changes in the charge and spin proper-
ties in the vicinity of the transition as rs increases towards
the WC limit. For example, magnetic interactions become
nearly degenerate in the low-density limit, opening the
possibilities for exotic spin states [77]. While the WC is
translationally invariant, any finite VM pins the WC,
allowing its pair correlations to be visualized in single-
particle densities.
In Fig. 2, we quantify the spin and charge densities of the

metallic and insulating phases. Density is normalized such
that

R
Ω ρðrÞd2r ¼ N. Both phases show charge accumu-

lation at the moiré minima (A sites) and depletion at the
maxima (B sites), whereas only the insulating phase shows
significant charge depletion at the saddle points (C sites).
The paramagnetic metal has nearly uniform charge density,
with moderate charge accumulation and depletion, peak-to-
trough ratio ∼2, which mirror the moiré potential. In
contrast, this ratio is > 15 in the 120° Néel phase, where
there is little charge at the maxima of the moiré potential
(B sites). Site-integrated spin densities, shown as red
arrows in the top right panel of Fig. 2, realize the 120°
Néel magnetic order. The charge densities have C3z
symmetry due to the internal structure of the moiré
potential at ϕ ¼ 26°, which makes the B and C sites

different. They become equivalent when ϕ ¼ 60°, which
could be realized in honeycomb moiré materials [19].
We also compute the electronic momentum distributions,

which are shown in Fig. 3. The paramagnetic metal phase
has nearly identical momentum distribution to the 2DEG
dispite the significant amount of external moiré potential
(VM=W ¼ 0.2) imposed upon it. The Fermi surface
remains nearly isotropic at kF ¼ ffiffiffi

2
p

=rs while the moiré
potential and electron interaction scatter a small amount of
momentum density from inside the Fermi surface to the
high-momentum tail. The secondary Fermi surfaces, too
faint to be visible in the main contour plot, are noticeable in
the linecut around 1.75kF and in the difference contour in
the inset. The 120° Néel insulator has a smooth momentum
distribution with no sign of discontinuity.
Accurate treatment of interaction and correlation is

crucial in determining the phase diagram of the MCH.
Our QMC phase diagram (Fig. 1) is a major revision of that
from HF [Fig. 4(a)], where correlation effects are ignored.
A previous exact diagonalization (ED) study [33] found a
continuous or weakly first-order MIT, which lies between
the HF and QMC predictions. The small system and
basis sizes used in the ED study led to an underestimation
of the gap. The 120° phase has an indirect band gap,
so a continuous metal-insulator transition is possible in
principle. However, we find a first-order transition in our
most accurate calculations within the finite resolution of

FIG. 1. Phase diagram of the moiré continuum model at half
filling. VM=W gives the strength of the moiré potential, while
rs, the Wigner-Seitz density parameter, is a measure of the
interaction strength. The ground state is a paramagnetic metal at
high density or in a shallow moiré potential, and transitions into
a 120° Néel magnetic insulator with decreasing density or
increasing potential. The solid black line identifies a MIT
boundary. Error bars indicate the estimated systematic uncer-
tainty of the MIT. The top label maps rs to hole density in hBN-
encapsulated WSe2=MoSe2.

(a)

(c)

(d)

(e)

(b)

FIG. 2. Spin and charge densities of representative (a) metal
and (b) insulator phases (at rs ¼ 3 and with VM=W ¼ 0.2 and
0.6, respectively). The linecuts are drawn for the path shown as a
black line in (a). Panel (c) shows the moiré potential, while (d)
and (e) show the charge and spin (in 120 Néel phase only)
densities, respectively.
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our scan of the two parameters λ and rs. See Supplemental
Material [78]. As shown in Fig. 4(b), LDA predicts an early
gap closure in the magnetic state, leading to a spin density
wave (SDW) phase between the metal and the 120° Néel
insulator. However, by introducing exact exchange inter-
action from HF into LDA via a hybrid functional, the
charge gap increases to eliminate the SDW phase, making
the hybrid LDA phase diagram in qualitative agreement
with QMC as shown in Fig. 4(c). The magnetization
disappears abruptly across the transition boundary, driving
the charge gap to zero discontinuously. Thus, this hybrid
functional can potentially serve as an inexpensive tool for
quick first theoretical explorations in these systems,
although it is important to keep in mind its empirical
nature, especially in predicting properties.
All our calculations are at T ¼ 0 K. To better connect

with experiments, we estimate the exchange energy scale
by computing the energy cost ΔE to flip a spin in the AFM
“stripe” phase, which contains alternating stripes of up
and down spins. In a nearest-neighbor Heisenberg model
H ¼ P

hi;ji JSiSj, ΔE ¼ 4J. At rs ¼ 8 and λ ¼ 1, we
obtain J ≈ 40 mK, which is seen to decrease rapidly
with increasing λ. See Supplemental Material for details
[78]. This is consistent with our total energy comparisons
which indicate that the stripe phase is nearly degenerate
with the 120° phase. The near-degeneracy of magnetic

(a) (b)

(c)

(d)

FIG. 3. Momentum distribution of the same representative
systems as in Fig. 2. Panels (a) and (b) show nðkÞ for the
metallic and insulating phases, respectively. Panel (c) plots nðjkjÞ
for both systems, along with that of the 2DEG for reference. The
metallic system is barely discernible from the 2DEG, both with a
discontinuity at k ¼ kF. Panel (d) shows the difference between
them with a magnified view. Secondary Fermi surfaces are
present in the metallic phase, as seen in the inset.

FIG. 4. Qualitatively different phase diagrams created by various approximations of correlation effects. Predictions from three
independent-particle theories and exact diagonalization of small systems are benchmarked by the result in Fig. 1, with the black solid
line marking the MIT phase boundary from QMC. The dashed line marks the MIT from each independent-particle theory. (a) HF
predicts an early MIT, which occurs at high density (rs < 2.5), and predicts a large region of ferromagnetic state as interaction increases.
A small region of collinear stripe phase sits between the noncollinear and ferromagnetic phases. HF results for the MIT from the present
study and from Ref. [27] (light green dots) are in good agreement. Exact diagonalization predictions for the MIT from Ref. [33] are also
shown (dark green dots), which exhibits growing error at larger rs. (b) LDA favors the metallic state, thus a late MIT in deep moiré
potential. It predicts a band gap closure within the magnetic phase, resulting in a metallic spin density wave phase that retains the long-
range magnetic order (red dot-hatched region). The shaded areas around the DFT transition lines are uncertainty estimates due to
convergence errors. (c) Hybrid LDAwith 50% exact exchange yields a phase diagram in this system which is in qualitative agreement
with QMC.
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states can lead to exotic spin physics, which we hope to
explore in future work.
Conclusion and outlook.—We have characterized the

ground-state properties of the triangular MCH at half-filling
in the intermediate to high density regime. This model
captures key ingredients in TMDC systems; namely, the
presence of the moiré potential and strong correlation
physics of the two-dimensional electron gas, and can serve
as a fundamental model for providing quantitative under-
standing of these fascinating systems. Combining two
different QMC methods, we obtain benchmark-quality
data on the energetics, momentum distributions, and the
strengths of the magnetic and charge ordering. The system
transitions from a paramagnetic metal to a 120° Néel
insulator phase as the moiré is deepened or as the density
is lowered. Existing approximate treatments, either via
independent-electron approaches or by simplified lattice
models, were seen to result in significant discrepancies in
the predicted properties. We tested 2D LDA and hybrid
functionals and found that a hybrid mix of 50% yields a
reasonable ground-state phase diagram in this systemwhen
compared to our QMC predictions.
We hope that this study paves the way for QMC and

other many-body studies of the MCH and related systems.
Many questions remain to be explored, including the
physics—and potentially more interesting or exotic
phases—at lower density, with other filling fractions, other
structures (moiré patterns), the effect of spin-orbit coupling,
and valley degrees of freedom.

We thank the Flatiron Institute Scientific Computing
Center for computational resources and technical support.
The Flatiron Institute is a division of the Simons
Foundation. We thank Andrew Millis, Cody Melton,
David Ceperley, Daniele Guerci, Jiawei Zang, Liang Fu,
and Scott Jensen for useful discussions.

*Corresponding author: yubo.paul.yang@gmail.com
[1] Y. Tang, L. Li, T. Li, Y. Xu, S. Liu, K. Barmak, K.

Watanabe, T. Taniguchi, A. H. MacDonald, J. Shan, and
K. F. Mak, Nature 579, 353 (2020).

[2] Y. Xu, S. Liu, D. A. Rhodes, K. Watanabe, T. Taniguchi,
J. Hone, V. Elser, K. F. Mak, and J. Shan, Nature (London)
587, 214 (2020).

[3] E. C. Regan, D. Wang, C. Jin, M. I. Bakti Utama, B. Gao,
X. Wei, S. Zhao, W. Zhao, Z. Zhang, K. Yumigeta, M. Blei,
J. D. Carlström, K. Watanabe, T. Taniguchi, S. Tongay,
M. Crommie, A. Zettl, and F. Wang, Nature (London) 579,
359 (2020).

[4] L. Wang, E.-M. Shih, A. Ghiotto, L. Xian, D. A. Rhodes,
C. Tan, M. Claassen, D. M. Kennes, Y. Bai, B. Kim,
K. Watanabe, T. Taniguchi, X. Zhu, J. Hone, A. Rubio,
A. N. Pasupathy, and C. R. Dean, Nat. Mater. 19, 861
(2020).

[5] S. Shabani, D. Halbertal, W. Wu, M. Chen, S. Liu, J. Hone,
W. Yao, D. N. Basov, X. Zhu, and A. N. Pasupathy,
Nat. Phys. 17, 720 (2021).

[6] X. Huang, T. Wang, S. Miao, C. Wang, Z. Li, Z. Lian, T.
Taniguchi, K. Watanabe, S. Okamoto, D. Xiao, S.-F. Shi,
and Y.-T. Cui, Nat. Phys. 17, 715 (2021).

[7] C. Jin, Z. Tao, T. Li, Y. Xu, Y. Tang, J. Zhu, S. Liu,
K. Watanabe, T. Taniguchi, J. C. Hone, L. Fu, J. Shan, and
K. F. Mak, Nat. Mater. 20, 940 (2021).

[8] X. Wang, C. Xiao, H. Park, J. Zhu, C. Wang, T. Taniguchi,
K. Watanabe, J. Yan, D. Xiao, D. R. Gamelin, W. Yao, and
X. Xu, Nature (London) 604, 468 (2022).

[9] Z. Tao, B. Shen, S. Jiang, T. Li, L. Li, L. Ma, W. Zhao, J. Hu,
K. Pistunova, K. Watanabe, T. Taniguchi, T. F. Heinz, K. F.
Mak, and J. Shan, arXiv:2208.07452.

[10] W. Zhao, B. Shen, Z. Tao, Z. Han, K. Kang, K. Watanabe, T.
Taniguchi, K. F. Mak, and J. Shan, Nature (London) 616, 61
(2023).

[11] K. F. Mak and J. Shan, Nat. Nanotechnol. 17, 686 (2022).
[12] B. A. Foutty, J. Yu, T. Devakul, C. R. Kometter, Y. Zhang,

K. Watanabe, T. Taniguchi, L. Fu, and B. E. Feldman, Nat.
Mater. 22, 731 (2023).

[13] M. Davydova, Y. Zhang, and L. Fu, Phys. Rev. B 107,
224420 (2023).

[14] D. Guerci, J. Wang, J. Zang, J. Cano, J. H. Pixley, and
A. Millis, Sci. Adv. 9, eade7701 (2023).

[15] H. Li, S. Li, M. H. Naik, J. Xie, X. Li, J. Wang, E. Regan,
D. Wang, W. Zhao, S. Zhao, S. Kahn, K. Yumigeta, M. Blei,
T. Taniguchi, K. Watanabe, S. Tongay, A. Zettl, S. G. Louie,
F. Wang, and M. F. Crommie, Nat. Mater. 20, 945
(2021).

[16] R. Nieken, A. Roche, F. Mahdikhanysarvejahany, T.
Taniguchi, K. Watanabe, M. R. Koehler, D. G. Mandrus,
J. Schaibley, and B. J. LeRoy, APL Mater. 10, 031107
(2022).

[17] B. Padhi, R. Chitra, and P. W. Phillips, Phys. Rev. B 103,
125146 (2021).

[18] F. Wu, T. Lovorn, and A. H. MacDonald, Phys. Rev. B 97,
035306 (2018).

[19] M. Angeli and A. H. MacDonald, Proc. Natl. Acad. Sci.
U.S.A. 118, e2021826118 (2021).

[20] N. R. Wilson, P. V. Nguyen, K. Seyler, P. Rivera, A. J.
Marsden, Z. P. L. Laker, G. C. Constantinescu, V. Kandyba,
A. Barinov, N. D. M. Hine, X. Xu, and D. H. Cobden,
Sci. Adv. 3, e1601832 (2017).

[21] J. Jung, A. Raoux, Z. Qiao, and A. H. MacDonald, Phys.
Rev. B 89, 205414 (2014).

[22] Y. Zhang, N. F. Q. Yuan, and L. Fu, Phys. Rev. B 102,
201115(R) (2020).

[23] S. Carr, S. Fang, and E. Kaxiras, Nat. Rev. Mater. 5, 748
(2020).

[24] L. Xian, M. Claassen, D. Kiese, M.M. Scherer, S. Trebst,
D. M. Kennes, and A. Rubio, Nat. Commun. 12, 5644
(2021).

[25] F. Wu, T. Lovorn, E. Tutuc, and A. H. MacDonald, Phys.
Rev. Lett. 121, 026402 (2018).

[26] H. Pan, F. Wu, and S. Das Sarma, Phys. Rev. Res. 2, 033087
(2020).

[27] N. C. Hu and A. H. MacDonald, Phys. Rev. B 104, 214403
(2021).

PHYSICAL REVIEW LETTERS 132, 076503 (2024)

076503-5

https://doi.org/10.1038/s41586-020-2085-3
https://doi.org/10.1038/s41586-020-2868-6
https://doi.org/10.1038/s41586-020-2868-6
https://doi.org/10.1038/s41586-020-2092-4
https://doi.org/10.1038/s41586-020-2092-4
https://doi.org/10.1038/s41563-020-0708-6
https://doi.org/10.1038/s41563-020-0708-6
https://doi.org/10.1038/s41567-021-01174-7
https://doi.org/10.1038/s41567-021-01171-w
https://doi.org/10.1038/s41563-021-00959-8
https://doi.org/10.1038/s41586-022-04472-z
https://arXiv.org/abs/2208.07452
https://doi.org/10.1038/s41586-023-05800-7
https://doi.org/10.1038/s41586-023-05800-7
https://doi.org/10.1038/s41565-022-01165-6
https://doi.org/10.1038/s41563-023-01534-z
https://doi.org/10.1038/s41563-023-01534-z
https://doi.org/10.1103/PhysRevB.107.224420
https://doi.org/10.1103/PhysRevB.107.224420
https://doi.org/10.1126/sciadv.ade7701
https://doi.org/10.1038/s41563-021-00923-6
https://doi.org/10.1038/s41563-021-00923-6
https://doi.org/10.1063/5.0084358
https://doi.org/10.1063/5.0084358
https://doi.org/10.1103/PhysRevB.103.125146
https://doi.org/10.1103/PhysRevB.103.125146
https://doi.org/10.1103/PhysRevB.97.035306
https://doi.org/10.1103/PhysRevB.97.035306
https://doi.org/10.1073/pnas.2021826118
https://doi.org/10.1073/pnas.2021826118
https://doi.org/10.1126/sciadv.1601832
https://doi.org/10.1103/PhysRevB.89.205414
https://doi.org/10.1103/PhysRevB.89.205414
https://doi.org/10.1103/PhysRevB.102.201115
https://doi.org/10.1103/PhysRevB.102.201115
https://doi.org/10.1038/s41578-020-0214-0
https://doi.org/10.1038/s41578-020-0214-0
https://doi.org/10.1038/s41467-021-25922-8
https://doi.org/10.1038/s41467-021-25922-8
https://doi.org/10.1103/PhysRevLett.121.026402
https://doi.org/10.1103/PhysRevLett.121.026402
https://doi.org/10.1103/PhysRevResearch.2.033087
https://doi.org/10.1103/PhysRevResearch.2.033087
https://doi.org/10.1103/PhysRevB.104.214403
https://doi.org/10.1103/PhysRevB.104.214403


[28] N. Morales-Durán, N. C. Hu, P. Potasz, and A. H.
MacDonald, Phys. Rev. Lett. 128, 217202 (2022).

[29] Y. Zhou, D. N. Sheng, and E.-A. Kim, Phys. Rev. Lett. 128,
157602 (2022).

[30] N. Gneist, L. Classen, and M.M. Scherer, Phys. Rev. B 106,
125141 (2022).

[31] T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54,
437 (1982).

[32] A. V. Chaplik, JETP 35, 395 (1972), http://jetp.ras.ru/cgi-
bin/e/index/e/35/2/p395?a=list.

[33] N. Morales-Durán, A. H. MacDonald, and P. Potasz,
Phys. Rev. B 103, L241110 (2021).

[34] T. Li, S. Jiang, L. Li, Y. Zhang, K. Kang, J. Zhu, K.
Watanabe, T. Taniguchi, D. Chowdhury, L. Fu, J. Shan, and
K. F. Mak, Nature 597, 350 (2021).

[35] A. Ghiotto, E.-M. Shih, G. S. S. G. Pereira, D. A. Rhodes,
B. Kim, J. Zang, A. J. Millis, K. Watanabe, T. Taniguchi,
J. C. Hone, L. Wang, C. R. Dean, and A. N. Pasupathy,
Nature (London) 597, 345 (2021).

[36] Y. Tang, J. Gu, S. Liu, K.Watanabe, T. Taniguchi, J. C. Hone,
K. F. Mak, and J. Shan, Nat. Commun. 13, 4271 (2022).

[37] H. Yoo, R. Engelke, S. Carr, S. Fang, K. Zhang, P. Cazeaux,
S. H. Sung, R. Hovden, A. W. Tsen, T. Taniguchi, K.
Watanabe, G.-C. Yi, M. Kim, M. Luskin, E. B. Tadmor,
E. Kaxiras, and P. Kim, Nat. Mater. 18, 448 (2019).

[38] D. Halbertal et al., Nat. Commun. 12, 242 (2021).
[39] Z. Li, F. Tabataba-Vakili, S. Zhao, A. Rupp, I. Bilgin,

Z. Herdegen, B. März, K. Watanabe, T. Taniguchi, G. R.
Schleder, A. S. Baimuratov, E. Kaxiras, K. Müller-Caspary,
and A. Högele, Nano Lett. 23, 4160 (2023).

[40] B.SpivakandS. A.Kivelson,Phys.Rev.B70,155114(2004).
[41] Y. Tang, K. Su, L. Li, Y. Xu, S. Liu, K. Watanabe, T.

Taniguchi, J. Hone, C. M. Jian, C. Xu, K. F. Mak, and J.
Shan, Nat. Nanotechnol. 18, 233 (2023).

[42] Y. Tan, P. K. H. Tsang, and V. Dobrosavljević, Nat. Commun.
13, 7469 (2022).

[43] S. Ahn and S. Das Sarma, Phys. Rev. B 105, 115114 (2022).
[44] S. Kim, T. Senthil, and D. Chowdhury, Phys. Rev. Lett. 130,

066301 (2023).
[45] M. Angeli, G. R. Schleder, and E. Kaxiras, Phys. Rev. B

106, 235159 (2022).
[46] W.M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal,

Rev. Mod. Phys. 73, 33 (2001).
[47] S.ZhangandH.Krakauer,Phys.Rev.Lett.90,136401(2003).
[48] S. Zhang, in Emergent Phenomena in Correlated Matter

(Forschungszentrum Jülich GmbH, 2013), Vol. 3, Chap. 15.
[49] H. Shi and S. Zhang, J. Chem. Phys. 154, 024107 (2021).
[50] J. P. F. LeBlanc et al., Phys. Rev. X 5, 041041 (2015).
[51] M. Motta, D. M. Ceperley, G. K.-L. Chan, J. A. Gomez, E.
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