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The entanglement entropy is a unique probe to reveal universal features of strongly interacting many-body
systems. In two or more dimensions these features are subtle, and detecting them numerically requires
extreme precision, a notoriously difficult task. This is especially challenging in models of interacting
fermions, where many such universal features have yet to be observed. In this Letter we tackle this challenge
by introducing a new method to compute the Rényi entanglement entropy in auxiliary-field quantum
Monte Carlo simulations, where we treat the entangling region itself as a stochastic variable. We demonstrate
the efficiency of this method by extracting, for the first time, universal subleading logarithmic terms in a two-
dimensional model of interacting fermions, focusing on the half-filled honeycomb Hubbard model at T ¼ 0.
We detect the universal corner contribution due to gapless fermions throughout the Dirac semi-metal phase
and at the Gross-Neveu-Yukawa critical point, where the latter shows a pronounced enhancement depending
on the type of entangling cut. Finally, we observe the universal Goldstone mode contribution in the
antiferromagnetic Mott insulating phase.
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The entanglement entropy (EE) quantifies the informa-
tion shared between a subsystem and its environment in a
quantum many-body wave function. Remarkably, the EE
finite-size scaling form has contributions that depend
uniquely on universal physical quantities, making it a
powerful probe to characterize strongly correlated systems.
A famous example of this is found in one-dimensional
critical systems, where the EE grows logarithmically in
the subsystem size with a prefactor given by the central
charge [1–4]. In two dimensions the EE grows in proportion
to the boundary of the subsystem, the so-called “area law”
[5], but critical ground states display a subleading universal
logarithmic contribution when the subsystem contains sharp
corners [6,7]. Additionally, in the case of continuous
symmetry breaking, each Goldstone mode contributes a
logarithmic term with a coefficient equal to one half [8–10].
In the absence of symmetry breaking, topological states can
be detected by a universal negative constant term in the
EE [11,12] as well as other entanglement measures [13,14].
Despite a wide variety of numerical work investigating

spin and boson systems [15], the universal features of EE
of 2D interacting fermions have largely remained an
unexplored frontier. Important exceptions have focused
on the universal constant in gapped systems, as in the case
of the topological EE of fractional quantum hall ground
states [16,17] and angle dependent constant of the ν ¼ 1=2
Laughlin wave function [18]. Additionally, the flux
dependence of the constant term for gapless Dirac fer-
mions was investigated in [19].

Since the pioneering work of Grover [20], auxiliary-field
determinental quantum Monte Carlo (DQMC) simulations
have offered a promising route to large-scale calculations of
the Rényi EE of interacting fermions [20–28]. However, the
universal features of EE in 2D have remained out of reach
for these methods. In the Grover method, one samples from
uncorrelated replica configurations and the Rényi EE
estimator suffers from rare events that dominate the stat-
istical average. This problem becomes increasingly severe
for larger entangling regions and interaction strengths.
More elaborate DQMC methods of computing the Rényi
EE [22,24] offer better controlled statistical errors.
However, this comes at the price of increasing the effective
number of degrees of freedom, making simulations more
costly, and further requires special numerical stabilization
techniques. The lack of adequate techniques has even
sparked interest in alternative probes of fermion entangle-
ment that offer superior efficiency [29,30].
In this work, we develop an improved method to compute

the Rényi EE in DQMC that solves the above-mentioned
sampling problem and enables us to achieve unprecedented
precision. To do so, we leverage recent advancements in
computing the Rényi EE in quantum spin systems via
nonequilibrium work [31–34], originally inspired by [35],
to develop an improved equilibrium method for DQMC
simulations. Our approach harnesses the power of impor-
tance sampling by introducing an extended ensemble of
Monte Carlo configurations in which the entangling region
is allowed to fluctuate. Remarkably, the original formulation
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by Grover admits such an extended ensemble that can be
simulated efficiently using standard DQMC techniques.
In order to demonstrate the power of this technique, we

use it to perform a comprehensive study of the logarithmic
corrections to the area law in the half-filled honeycomb
Hubbard model at T ¼ 0. We first demonstrate the validity
of our method by comparing to quasi-exact results
obtained by density matrix renormalization group simu-
lations (DMRG) [36]. Next we study the finite size scaling
for two different triangular regions, see Fig. 1, in the
semimetal phase and at the Gross-Neveu-Yukawa (GNY)
critical point, where the latter shows an enhanced loga-
rithmic contribution that depends on the type of entangle-
ment cut. This is further demonstrated by tracking the
logarithmic contribution as a function of the interaction
strength throughout the semimetal phase and through the
GNY point. Finally, we compute the half-system Rényi EE
at large interaction strength deep in the Mott insulating
phase, revealing the distinct logarithmic contribution due
to Goldstone modes.
General method.—We consider the general framework

of auxiliary-field DQMC simulations, which map interact-
ing fermionic systems to free fermions coupled to a
fluctuating Hubbard-Stratonovich (HS) field [37,38]. For
a given HS field configuration s, one has access to the
equal-time Green’s function Gs

ij ¼ hcic†jis. In Grover’s
method [20], the second Rényi EE, SA2 ¼ − ln Trðρ2AÞ,
can be computed considering two independent replica
DQMC simulations with Green’s functions Gs1

ij ; G
s2
ij and

taking the average,

e−S
A
2 ¼

X

fs1g;fs2g
Ps1Ps2 det ðGs1

A G
s2
A þ ð1 − Gs1

A Þð1 −Gs2
A ÞÞ:

ð1Þ

Here Gs
A refers to the Green’s function matrix that is

restricted to the spatial region A, and Ps is the probability of
configuration s. As previously mentioned, rare pairs of
configurations ðs1; s2Þ give large contributions to Eq. (1).
To avoid this, we now show how to build correlations
between the replica configurations such that the relevant
phase space is better sampled, and in the process identify an
improved Monte Carlo estimator for SA2 .

Consider the distribution

ZA ¼
X

fs1g;fs2g
Ws1Ws2 det g

s1;s2
A ; ð2Þ

where we define the Grover matrix gs1;s2A ¼ Gs1
A G

s2
A þ ð1 −

Gs1
A Þð1 −Gs2

A Þ and Ws is the standard DQMC weight
(unnormalized) of configuration s. Equation (1) can now
be written as e−S

A
2 ¼ ZA=Z∅, where ∅ refers to the empty

set, containing a zero-dimensional Grover matrix with unit
determinant. A highly efficient prescription for computing
such partition function ratios was put forward in Ref. [31].
Following this, we now consider a generalized ensemble
made up of entangling regions C, which are proper subsets
of the regionA [39]. Furthermore, we control the distribution
with an external field λ that couples to the number of sites in
the region C, denoted by NC:

ZðλÞ ¼
X

C⊆A
λNCð1 − λÞNA−NCZC; ð3Þ

where ZC is given by Eq. (2) with A replaced by C. The
ensemble in Eq. (3) is designed such that Zð0Þ ¼ Z∅
and Zð1Þ ¼ ZA.
Given this, the ratio at two different values of λ can be

computed via a simple reweighting

ZðλjÞ
ZðλiÞ

¼
��

λj
λi

�
NC
�
1 − λj
1 − λi

�
NA−NC

�

λi

; ð4Þ

where the only stochastic variable here is NC and the
average is taken in the distribution according to λi. In this
way we may introduce many intermediate values of λ in
order to break up the overall exponentially small factor
ðZA=Z∅Þ ¼ ½Zðλ1Þ=Zð0Þ�½Zðλ2Þ=Zðλ1Þ�…½Zð1Þ=ZðλNλ

Þ�
into computationally manageable pieces [39].
A fundamental ingredient of our algorithm involves

imbedding the Grover factor detðgs1;s2C Þ directly into the
DQMC configurational weight, as required to sample from
the distribution in Eq. (3). The inclusion of this factor is
what effectively allows for importance sampling of the
otherwise exponentially rare configurations appearing in
Eq. (1). However, to include this factor in a manner that is
both computationally efficient and numerically stable
requires the resolution of a serious technical challenge,
as we now describe.
Standard implementations of DQMC maintain an effi-

cient computational complexity of OðNτN3
siteÞ by avoiding

the explicit computation of fermionic determinants [37,38].
This technique relies on access to the equal-time Green’s
function Gs

ijðτÞ located at the imaginary time slice that is
being updated. However, the Grover factor is always
expressed in terms of Green’s functions at a fixed imaginary
time slice Gs

ijðθÞ, where observables are computed. Naïvely
it would appear that the dependence of the configurational

(a) (b)

FIG. 1. (a) A triangular region on a 6 × 6 lattice with a zigzag
edge. (b) A triangular region with a bearded edge.
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weight (including the Grover factor) on two different sets of
Green’s functions would render the standard fast update
formulas inapplicable, making simulations prohibitively
costly. In the Supplemental Material [39] we show how
this crucial technical hurdle is overcome by making use of
imaginary time displaced Green’s functions [40], a standard
object in most DQMC simulations.
Model.—As a benchmark system for our new method we

select a classic model of interacting fermions in two
dimensions: the Hubbard model on the honeycomb lattice
at half filling. The Hamiltonian is given by

H¼−t
X

hi;ji;σ
ðc†i;σcj;σ þH:c:ÞþU

X

i

�
ni;↑−

1

2

��
ni;↓−

1

2

�
:

ð5Þ

The restriction to half filling ensures the absence a sign
problem, which equally applies to our generalized ensem-
ble in Eq. (3). This model is known to host a semimetal
phase with a gapless Dirac spectrum up to Uc ≈ 3.8
[41,42], beyond which the system enters a Mott insulating
antiferromagnetically ordered phase with Goldstone modes
from the spontaneous breaking of spin rotation symmetry.
The critical point at Uc ¼ 3.8 is in the GNY chiral
Heisenberg universality class [43].
In the gapless semimetal (SM) phase it is known that the

Rényi EE of a triangular region with three sharp corners,
depicted in Figs. 1(a) and 1(b), scales according to [6,7]

S2 ¼ AL − 3aSM2 ðπ=3Þ lnðLÞ þ const: ð6Þ

Here aSM2 ðπ=3Þ ≈ 0.1324 [44] is the universal coefficient
from one π=3 corner with four free Dirac fermions (two
spin and two valley). A similar scaling form is also
expected to hold at the GNY critical point, albeit with
an unknown value for the corner coefficient. We point out
that unbiased numerical simulations are the only means of

estimating universal corner contributions at interacting
fixed points, as was previously done for the 2þ 1d
Ising, XY, and Heisenberg universality classes [45–50].
These studies support the notion of the corner coefficient as
a measure of the number of effective low-energy degrees of
freedom [51,52]. We are therefore interested in comparing
the value at the GNY point to that of free Dirac fermions.
In the Mott insulating phase, the contribution from

Goldstone modes to the Rényi EE for a smooth entangling
cut, as depicted in Fig. 5, has a similar form [10]:

S2 ¼ ALþ Ng

2
lnðLÞ þ const: ð7Þ

Here the logarithmic piece counts the number of Goldstone
modes Ng, and comes with the opposite sign. Since the
honeycomb Hubbard model exhibits a known corner term
in the semi-metal phase, an unknown corner term at the
critical point, and an expected contribution from Ng ¼ 2

Goldstone modes in the Mott insulating phase, it serves as
the perfect test bed to extract universal logs for the first time
with our technique.
DQMC results.—We implemented the T ¼ 0 projector

DQMC algorithm (though our method can also be extended
to finite temperature) with a symmetric Trotter decompo-
sition and an SU(2) invariant HS transformation [37,38,53].
The calculations presented here used a Trotter step of
Δτ ¼ 0.1 unless otherwise noted [39].
We begin by comparing our method to quasi-exact

results obtained by the DMRG method [36] on an L ¼ 3
open cylinder as a function of U, shown in Fig. 2. Here we
use a small Trotter step of Δτ ¼ 0.01 and a ground state
projection of θ ¼ 10 (2000 total Trotter slices). We find
perfect agreement with the DQMC results, and already at
this system size we can see the qualitative feature of the
semimetal to Mott insulator transition near Uc ¼ 3.8. We
note that on larger system sizes more values of λ are needed
such that adjacent distributions of NC have good overlap.
Details of the λ values used in this work are given in the
Supplemental Material [39].
We now move on to confirm the expected behavior at

U ¼ 1. In the left panel of Fig. (3) we show DQMC results
using the two different triangular regions depicted in
Figs. 1(a) and 1(b). We have found that the ground state
convergence of S2 in the semimetal phase is heavily affected
by the proximity to the Dirac point. We therefore use twisted
boundary conditions in the x direction, where hoppings that
wrap the x-boundary get multiplied by the phase ei2πϕ with
ϕ ¼ 0.1 in order to shift the Dirac point [39]. We use
projection times up to θ ¼ 2L on our largest system sizes to
ensure convergence. We find that both triangles give
subleading logarithmic contributions that are consistent
with the field theoretic value aSM2 ðπ=3Þ ≈ 0.1324 [44],
namely, we find aSM2 ðπ=3Þ ¼ 0.126ð4Þ; 0.136ð2Þ for the
zigzag and bearded triangles, respectively. This is shown in

FIG. 2. The new DQMC computation of S2 as compared to
DMRG [36] for the system pictured. Here we use open bounda-
ries in the x direction. The inset shows a closer look at the precise
agreement at U ¼ 8 using only a single value of λ ¼ 0.5 and
Nseed independent simulations.

PHYSICAL REVIEW LETTERS 132, 076502 (2024)

076502-3



the inset, where the fit to the area law term is subtracted
away and the result is plotted versus lnðLÞ.
Next in the right panel of Fig. 3 we perform the same

analysis but with U ¼ 3.8, at the GNY point. Here we find
that ground state convergence is easier than in the semimetal
phase and sowe set ϕ ¼ 0 but still use θ ¼ 2L on the largest
system sizes. We interestingly find a difference in the
logarithmic contributions between the zigzag and bearded
triangles. The zigzag triangle gives a similar value to free
Dirac fermions: aGNY2 ðπ=3Þ ¼ 0.124ð5Þ, while the bearded
triangle shows an enhanced logarithmic contribution with
aGNY2 ðπ=3Þ ¼ 0.187ð12Þ. It is appropriate to compare this
with what is expected from free Dirac fermions plus a three
component gapless boson (f þ b) representing the Néel
order parameter. The field theoretic value in this case gives
afþb
2 ðπ=3Þ ≈ 0.1764 [44], in the same range as the bearded

triangle. While it is difficult to estimate the true value at the
GNY point, which we expect to be less than the previously
quoted field theory value [54], the fact that our finite size
data produces a comparable value is encouraging and
motivates us to investigate this logarithmic term in more
detail.
We wish to now study the bearded triangle corner

coefficient in detail as a function of U. In order to do this
we use a much larger Trotter time step Δτ ¼ 0.5, since we
have found the logarithmic terms to be independent of the
Trotter step [39]. We further fix θ ¼ L (except L ¼ 3 where

we use θ ¼ 2L) and ϕ ¼ 0.15. The left panel of Fig. 4
shows the resulting S2 data as a function of U. For each
value of U we perform a fit as a function of L, then in the
middle panel we reveal the logarithmic contribution by
subtracting off the fitted area law piece. The resulting slopes
are plotted in the rightmost panel, where we see clear
agreement with the free fermion result throughout the semi-
metal phase with a pronounced enhancement at the GNY
point followed by a sharp drop into the Mott insulating
phase. The values at the GNY point are consistent with
Fig. 3 even though here we have used twisted boundary
conditions and a much larger Trotter step.
Finally, we further increase U into the antiferromagnetic

Mott insulator phase where we expect to see a positive
subleading logarithmic contribution coming from Goldstone
modes, given by Eq. (7). Figure 5 shows the half-system

FIG. 3. Left panel: S2 computed for both kinds of triangular
regions depicted in Figs. 1(a) and 1(b) at U ¼ 1 and twisted
boundary conditions with ϕ ¼ 0.1. The inset shows the result of a
three parameter fit to a linear plus log scaling and subtracting
away the area law piece (a shift of c̃ ¼ 1 is given to the bearded
triangle for clarity of comparison). The blue dashed line shows
the field theory prediction for the semimetal phase. Right panel:
the same analysis but for with U ¼ 3.8 at the GNY point with
ϕ ¼ 0. The bearded triangle shows an enhanced logarithmic
contribution in this case. This is compared to the field theory
value for free fermions plus a three-component boson shown by
the gray dotted-dashed line in the inset.

FIG. 4. Left panel: S2 for bearded triangles depicted in Fig. 1(b)
using Δτ ¼ 0.5 and ϕ ¼ 0.15 as a function of U. Middle panel:
The fit as a function of L performed for each value of U with the
area law piece subtracted away, with a constant shift of U added
for clarity. Right panel: The extracted corner coefficient as a
function of U, showing an enhanced value at the GNY point.

FIG. 5. Half-system entropy S2 on rectangular systems as
depicted, with U ¼ 8. This plot is similar to Fig. 3, but now
the subleading log term has the opposite sign, as can be seen by
the slope in the inset. The thin line in the main panel helps to
visualize the bend in the data coming from the logarithmic term.
The coefficient of the log term counts the Goldstone modes with
the coefficient Ng=2, here giving 0.95(5).

PHYSICAL REVIEW LETTERS 132, 076502 (2024)

076502-4



entropy on rectangular systems as shown in the figure with
U ¼ 8. We see a clear positive log with a coefficient in
agreement with the contribution from two Goldstone modes.
Conclusions.—We introduced an equilibrium Monte

Carlo estimator for the Rényi EE in interacting fermion
systems that allows for importance sampling of the original
estimator by Grover. We used this method to detect, for the
first time, logarithmic corrections to the area law in a 2D
model of interacting fermions. Importantly, we find that
such logarithmic terms can be sensitive to the type of
entanglement cut that is used.

Note added.—Since our method first appeared, it has been
independently implemented and applied to several different
fermionic models [55–57]. Additionally, building on our
methodology, an even more efficient protocol was devel-
oped in [58] that obviates the need to sample over subset
entangling regions.
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