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We derive a widely applicable first-principles approach for determining two-body, static effective
interactions for low-energy Hamiltonians with quantitative accuracy. The algebraic construction rigorously
conserves all instantaneous two-point correlation functions in a chosen model space at the level of the
random phase approximation, improving upon the traditional uncontrolled static approximations. Applied
to screened interactions within a quantum embedding framework, we demonstrate these faithfully describe
the relaxation of local subspaces via downfolding high-energy physics in molecular systems, as well as
enabling a systematically improvable description of the long-range plasmonic contributions in extended
graphene.
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Building effective models that retain the physics of
interest but strip away extraneous complexity is central
to progress in understanding physical mechanisms and
emergent behavior in complex systems. Nowhere is this
more true than interacting electron systems, where effective
Hamiltonians occupy a central position in both condensed
matter and quantum chemistry, from the Hubbard model
to ligand field theory [1–4]. A push is now underway to
erode the boundary between phenomenological effective
models with empirical parameters, and ab initio modeling
with material specificity, where the act of constructing a
material-specific effective Hamiltonian is increasingly the
first step in a larger workflow involving its subsequent
solution within a multimethod approach. This is critical to
extend the scope of accurate yet computationally demand-
ing many-body methods, placing significant urgency on
approaches in which the relevant physics outside a low-
energy model space is rigorously downfolded or renormal-
ized into the effective Hamiltonian [5–7]. In this work
we propose a simple and efficient approach to effective
interactions, demonstrating quantitative accuracy and
specificity resulting from integrating out ab initio high-
energy and long-range physics, motivated by the exact
conservation of instantaneous expectation values.
A salient example in the need for accurate renormalized

interactions is quantum embedding, describing correlated
many-body phenomena within a local subspace [8–11].
The missing interactions with states outside the subspace

should renormalize the effective subspace interactions in
real materials, generally necessitating the use of effective
interactions that are often parametrized empirically via
Hubbard or Hund terms [12–14], or downfolded from other
theories [11,15–17]. In quantum chemistry, analogous
subspaces are often described by a “complete active space”
(CAS), whereby a small number of low-energy mean-field
orbitals are chosen for an accurate treatment of the strong
correlation in “multireference” approaches [18]. More
broadly, a wide range of both qualitative and quantitative
studies into correlated materials rely on first obtaining
appropriately screened effective interactions of a simplified
model from an ab initio starting point [5,19].
It is often argued that the random phase approximation

(RPA) contains much of the physics missing from low-
energy models, and is the appropriate theory in which to
construct effective interactions [11,13,20,21]. As an infinite
resummation of the bubble diagrams, it correctly describes
the long-range charge fluctuations, plasmons, high-energy
scattering, and many-body dispersion that predominates
in high-density metallic and semiconducting extended
systems [22–24]. While its traditional formulation lacks
exchange or ladder diagrams, their contributions generally
decay more rapidly and can often be captured within the
model space, with approaches to screen beyond RPA still
an active research area [15,16,25].
The constrained RPA (cRPA) method has therefore

become a widespread choice for deriving low-energy
effective interactions from first-principles, applied from
molecules to Mott insulators and routinely as a precursor to
quantum embedding methods [5,8,13,16,25–41]. Since the
RPA is a well-defined diagrammatic theory, the bubbles
corresponding to the polarizability within the model space
[ΠmðωÞ] can be removed from the total polarization
[ΠextðωÞ ¼ ΠðωÞ − ΠmðωÞ]. The screened interactions,
UðωÞ, are then found from the infinite RPA resummation
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coupling this space to the external degrees of freedom via
this scattering channel, as

UðωÞ ¼ vþ vΠextðωÞvþ vΠextðωÞvΠextðωÞvþ…; ð1Þ

where v denotes the bare Coulomb interaction. In this
way, double counting of correlated effects are avoided
once the resulting effective model is solved, yet direct
scattering events to all orders between the two spaces are
included [26]. The cRPA approach is also internally
consistent: an RPA calculation on the resulting effective
Hamiltonian with interactions UðωÞ, will give exactly the
results of the RPA on the full system. More specifically, the
cRPA ensures that the RPA density-density (dd) response
function, χðωÞ, of the model space with effective inter-
actions UðωÞ, is identical to the projection of the RPA full
system dd response into the model space. In this way,
the effective interactions can also be seen to be “state
universal,” providing the correctly renormalized inter-
actions for the entire RPA spectrum of the model subspace.
While this puts the cRPA approach on a solid footing,

few methods are computationally tractable with the result-
ing dynamical interactions of Eq. (1). Practical necessity
therefore forces the widespread approximation of taking the
static, ω → 0 limit of the screened interaction of Eq. (1)
(static-cRPA). This uncontrolled approximation is qualita-
tively justified in capturing the relevant long-wavelength
behavior where the RPA is accurate [25], however forces
us to entirely give up on rigorous conservation of any
expectation values from the RPA. There is significant
skepticism of its accuracy, with the cRPA interactions
often overscreening the physics [15,16,25,28,42]. Far from
purely a small quantitative shift, this can result in wrong
energy ordering of states and phases in the resulting
model, or missing spectral weight transfer to plasmon
satellites [14,35,43].
A further serious technical limitation of the cRPA

approach is that the model space must be chosen from a
selection of low-energy bands, rather than directly as local
degrees of freedom. Specifically, it requires the irreducible
polarizability (defined by the reference mean field) to have
no coupling between excitations within the model space
and ones in the rest of the system, otherwise UðωÞ alone is
not sufficient to reproduce χðωÞ. Effective local interactions
are therefore found via localization after determining
the screening of these low-energy bands. However, this
is problematic, missing out on screening within the low-
energy bands themselves if the resulting local interactions
are subsequently truncated (e.g., to the Hubbard or Hund
form), and causing further difficulties when it is not
possible to fully represent the relevant subspace (e.g.,
atomic d shells) in the low energy bands due to significant
hybridization with other states [29,44]. In addition, the

resulting cRPA screened interactions modify the reference
mean-field state, resulting in unintended changes to the
subspace density and band structure [28,42,45].
To motivate our approach, we ask an alternative pertinent

question: What physical quantities can we rigorously
conserve at the RPA level in a chosen model space, under
the constraint that the resulting effective interactions must
remain static and two-body? This leads to the development
of the “moment-constrained” RPA (mRPA) approach,
which exactly conserves the instantaneous part of the
two-point dd response in the model subspace, as well as
the reference state. We argue that conserving physical
expectation values in the construction of effective static
interactions provides a more rigorous foundation than the
widespread static-cRPA approximations.
Moment-constrained RPA.—The RPA can be formulated

as a quasibosonic eigenvalue problem in the space of
particle-hole excitations and deexcitations of a reference
state [46],
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with all blocks being of dimension given by the product
of the number of hole and particle states. We define
A ¼ Δþ v, where Δ is a diagonal matrix of particle-hole
excitation energies (provided by a mean field), defining
the poles of ΠðωÞ, with B ¼ v providing the coupling
between the excitations and deexcitations via the bare
Coulomb interaction, v, in the particle-hole (ph) channel.
The diagonal matrix Ω provides the poles of the RPA
dd-response function, χðωÞ, with the residues defined by
the amplitudes of the excitations and deexcitations, X and
Y, respectively. These form a biorthogonal set of eigen-
vectors, providing the relations ðXþ YÞ−1 ¼ ðX − YÞT
and ðX − YÞ−1 ¼ ðXþ YÞT . We can expand χðωÞ as a
Laurent series, with its dynamics fully characterized by the
moments of its spectral distribution [40,47], as

ηðnÞ ¼ ðXþ YÞΩnðXþ YÞT ; n∈Z: ð3Þ
The zeroth moment of the distribution ηð0Þ characterizes

the instantaneous part of the correlated dd response, as
hðĉ†i ĉaþ ĉ†aĉiÞðĉ†j ĉbþ ĉ†bĉjÞi− hĉ†i ĉaþ ĉ†aĉiihĉ†j ĉbþ ĉ†bĉji,
summed over the same-spin particle-hole (de)excitations,
denoted by indices ða; iÞ and ðb; jÞ. This describes the
correlated contribution to the two-body reduced density
matrix, and all resulting static expectation values at the RPA
level [48–50]. It is this quantity (through to first order)
which we aim to rigorously conserve within a chosen
model space with our effective interactions. Crucially, this
can be achieved while maintaining static renormalized
effective interactions in the model space, preserving sym-
metries, and without changing the reference mean field in
the model space.
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The structure of the RPA equations imposes a relation
between the first two dd-moments [47],

ηð1Þ ¼ ðA −BÞ ¼ ηð0Þðx − YÞΩðX − YÞTηð0Þ
¼ ηð0ÞðAþBÞηð0Þ ð4Þ

Inserting the definitions of A and B, we find an equation
linear in the interaction. This can be analytically inverted to
find an interaction kernel that under the RPA gives rise to a
desired ηð0Þ and ηð1Þ,

v ¼ 1

2

�
ðηð0ÞÞ−1ηð1Þðηð0ÞÞ−1 − Δ

�
: ð5Þ

Therefore, by substituting all quantities on the RHS of
Eq. (5) for their projection of the full RPA into the chosen
model space, an effective static model space interaction can
be found, UmRPA. This ensures that the model space RPA
with v → UmRPA rigorously conserves all full system RPA
expectation values derived from ηð0Þ and ηð1Þ by construction,
which includes all instantaneous correlators in the model
space. A similar approach to conserve higher-order moments
results in equations non-linear in the resulting interaction,
and subsequently necessitates a dynamical component to the
resulting interaction, as expected to recover the dynamical
cRPA limit of the full dd-response [40]. Focusing on
conservation of just the first two dd-moments enables a
fully static model space screened interaction.
The model space with UmRPA can also reproduce the

subspace contribution to the RPA correlation energy due to
its dependence on ηð0Þ, as ERPA

corr ¼ 1
2
Tr½ηð0ÞðAþBÞ −A�,

exploited in the SI (Sec. IV) to demonstrate non-local
energetic corrections to the model space. Beyond this, the
first two spectral moments of the GW self-energy in the
subspace are also exactly described with mRPA inter-
actions, indicating a formal conservation of certain corre-
lated one-body properties [47]. Symmetries, including
spin-independence of the resulting effective interactions
are also exactly preserved, derived in the SI (Sec. II). These
rigorous properties provide a robust footing for use of
UmRPA in subsequent correlated treatments.
Building UmRPA via Eq. (5) required the component of

ηð0Þ and Δ in the subspace. Construction directly from
Eqs. (2)–(3) entails a prohibitive OðN6Þ scaling, but this is
reduced to an efficient OðN4Þ following the approach
detailed in the Supplemental Material [51] (Sec. I). The
only constraint on the choice of subspace is that the cluster
excitation space is an orthogonal projection of the full
system excitation space, i.e., that particle- and holelike
character of the subspace orbitals as defined by the
reference state is preserved. While this is trivially true
where cRPA is valid via a subspace selected from mean-
field bands, this is a far looser requirement allowing
for a subspace where a nondiagonal ΠðωÞ couples the

subspace to its environment to be considered. This admits
direct mRPA screening of arbitrary (e.g., local atomiclike)
subspaces by at most doubling their size by conserving
the reference mean-field density matrix over the sub-
space [58,59], or local spaces formed by localizing hole
and virtual bands separately before screening. This direct
screening of local subspaces therefore includes screening
via long-range low-energy band transitions precluded in
traditional cRPA, enabling direct application to ab initio
quantum embedding clusters.
Interestingly, the resulting UmRPA only screens inter-

actions in the ph channel (which is expected to be the
dominant long-range contribution to screening), rather than
the full four-point interaction. Other approximations (e.g.,
T matrix for pp diagrams [60–63]) would screen other
interaction channels in an analogous formulation, and
future work can consider the effect on mRPA interactions
from these other channels. It is justified that only the ph
channel interaction is screened in mRPA unlike cRPA,
since RPA itself is fully determined by this component of
the interaction, and mRPA is constructed to describe this
RPA physics as opposed to the use of the screening
equation [Eq. (1)] in cRPA. This feature of only screening
the ph interactions, along with the conservation of the
reference density, ensures that the occupied reference band
structure (Hartree-Fock or Kohn-Sham) is unchanged with
mRPA screened interactions.
Result.—We begin by benchmarking the screening of the

low-energy Hartree-Fock orbitals of Benzene (an active
space of five hole and five particle states). Benzene has
previously been considered a paradigmatic example in this
context [25], while also small enough to enable comparison
to high-level reference results. In Fig. 1 we show the bare
Coulomb, dynamical and static-cRPA, and mRPA subspace
interactions traced over all channels. The UmRPA is gen-
erally less screened than static-cRPA, noting the recent evi-
dence that static-cRPA overscreens interactions [15,28,42].
We can consider the accuracy of resulting subspace observ-
ables by comparing to coupled-cluster (CCSD) [64–66].
CCSD encodes the wave function in T amplitudes, and we
can consider the projection of the full-system T amplitudes
into the active space as an accurate subspace description.
This is used to benchmark subspace-only CCSD calcu-
lations with the different static interactions [67]. We find
the mean squared error of the subspace CCSD T2 ampli-
tudes to be 1.10 for bare subspace interactions, reduced to
0.25 for static-cRPA and only 0.20 for mRPA, indicating
that all ground-state expectation values within the subspace
can expected to be more faithfully reproduced with mRPA
interactions than the alternatives.
While we expect ground states to be particularly faithful

given the mRPA conservation of instantaneous correlators,
we can also compare the ability of these effective inter-
actions to reproduce the full subspace excitation spectrum.
Figure 1 quantifies this via the errors in the subspace RPA
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moment expansion of Eq. (3) which fully characterizes
the dd response. While the first two moments are exact for
mRPA by construction (and ηð1Þ for static-cRPA), the errors
in higher moments are also marginally reduced in their
relative error compared to static-cRPA, indicating that the
fidelity of the subspace dd response over all frequencies is
at least as accurate as static-cRPA.
We now consider the diverse W4-11 test set of 150 mol-

ecules, exhibiting a wide range of bonding, radical, and
correlated physics [68]. Moving towards direct application
of mRPA to quantum embedding methodologies, we
consider fragmenting each molecule into individual atoms
comprising a minimal set of their intrinsic valence atomic
orbitals (IAOs) [69]. These IAO fragments are augmented
with an interacting bath of at most the same dimension as
the IAO fragment, following the static density matrix
embedding (DMET) approach [58,59,70–73]. This defines
multiple small atomic subspaces for each molecule, which
can be individually solved via CCSD with either bare or
mRPA interactions. The resulting subspace CCSD states
are recombined to provide a total energy estimator over the
subspaces for each molecule (see Refs. [73,74] for more
details). These are compared to the energy of the exact full-
system CCSD projected into these subspaces. This dis-
crepancy quantifies the ability of the mRPA to account for
relaxation of these embedded atomic descriptions due to the
neglected interactions with the rest of the molecule.
Figure 2 shows this error aggregated over the test set

in increasingly large basis sets, where screening of these

low-energy subspaces by higher-energy scattering domi-
nates. The mRPA interactions screen the fragments defined
by the embedding, resulting in a substantial ∼66% reduc-
tion in both the mean absolute error and standard deviation
of the energy error across the dataset. This consistent
reduction in error across larger basis sets points for these
diverse systems attests to the broad applicability of the
mRPA interactions for correlated systems. We note that
cRPA cannot be easily compared in this context, due to the
difficulties in directly screening subspaces that are not
mean-field orbitals, as discussed previously.
Finally, we consider the application of mRPA to

extended systems where long-range collective plasmons
strongly renormalize local properties, which are difficult
to describe in a local subspace [25,75]. Furthermore, we
demonstrate systematic improvability of this screened local
subspace. This is achieved in a consistent framework via
extending the bath space, formally including additional
states which exactly minimize the error of the subspace
RPA ηð0Þwith bare interactions, thereby spanning physics at
longer length scales in the model subspaces. The algebraic
construction of these additional bath states relies on
evaluation of the same quantities as the mRPA interactions,
and systematically enlarges the local correlated subspaces
in an optimal way to completeness, with details in the
Supplemental Material [51] (Sec. III). This approach is
inspired by the unscreened perturbative bath expansion of
Ref. [73], but here adapted for a screened embedding.
We converge semimetallic graphene sheets with a fully

ab initio CCSD description, embedding atomic fragments
and systematically enlarging the bath space for each frag-
ment. On enlarging, the bath interactions provide increased
screening of the fragments explicitly, and the mRPA static
screening is correspondingly reduced in a fashion that
precludes double counting of the fragment screening and
naturally converges to an in-method (CCSD) exact limit.
Figure 3 shows fully ab initio two-body instantaneous
charge and spin fluctuations in the local atomic 2pz
space, on top of a symmetry-preserving Hartree-Fock
reference [74,76]. The correlated treatment quantitatively
changes these two-body correlators, but bare subspace
interactions overestimate the magnitude of the changes

FIG. 1. Trace of the screened and bare interaction, Upq;pq in a
(10,10) CAS space of benzene in a cc-pVDZ basis. Shown are the
dynamical cRPA interactions, as well as the widely used static
limit, and the static-by-construction mRPA interactions. Inset:
Error in the RPA moments as an expansion of the dynamical
subspace dd response. The first two mRPA dd moments are exact
by construction, yet also exhibit marginally smaller errors for
higher moments compared to the static cRPA interaction.
Moment error is computed as the mean squared error of ηðnÞ

over the subspace, normalized by the exact kηðnÞk2 at each order.

FIG. 2. Distribution of energy errors in atomically fragmented
DMET-CCSD with bare or mRPA interactions across the W4-11
test set of 150 molecules, in increasingly large basis sets. Errors
are computed comparing to the full-system CCSD of each
molecule projected into each subspace.
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from mean field. Importantly, the bias in these correlators
with the bare interactions appears unable to be compen-
sated for with increasing bath, indicating the importance of
coupling to truly long-range q → 0 plasmonic modes for an
appropriate relaxation of these local properties, impractical
in a local embedding with bare interactions.
In contrast, the mRPA screened interactions fold in this

coupling, resulting in a rapid and stable convergence with
increasing bath size, corroborated with smaller 4 × 4
k-point meshes where comparison to the full system
CCSD result is possible and the same qualitative behavior
is observed. While UmRPA is static, it nevertheless integrates
over all RPA diagrams, including plasmonic contributions
required to appropriately relax the subspace. This even
impacts on the convergence of magnetic correlators in the
subspace, despite not being described in the ηð0Þ description
of RPA density fluctuations. The results indicate that
the plasmonic coupling therefore suppresses the tendency
towards formation of atomic magnetic moments in gra-
phene. In the Supplemental Material [51] (Sec. IV) we also
demonstrate improvements in nonlocal magnetic fluctua-
tions as well as energetics in this system, and the insensi-
tivity of these results to choice of underlying reference
mean-field theory.
In summary, the developed “mRPA” efficiently integra-

tes over all external RPA diagrams to provide a manifestly
static effective interaction for low energy or local models,
conserving all instantaneous RPA correlators in a chosen
subspace by construction. For multimethod work flows, we
show this provides a systematic and principled route for the
inclusion of long-range and high-energy screening in a
local correlation framework. This also opens opportunities
in the push for fully improvable and nonempirical quantum
embedding, with reliable convergence in extended systems
coupled to long-range coherent quasiparticles.

All calculations were performed and can be reproduced
with the VAYESTA quantum embedding code [77].
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