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Pockets of viscous fluid coalescing beneath an elastic sheet are encountered in a wide range of natural
phenomena and engineering processes, spanning across scales. As the pockets merge, a bridge is formed
with a height increasing as the sheet relaxes. We study the spatiotemporal dynamics of such an
elastohydrodynamic coalescence process by combining experiments, lubrication theory, and numerical
simulations. The bridge height exhibits an exponential growth with time, which corresponds to a self-
similar solution of the bending-driven thin-film equation. We address this unique self-similarity and the
self-similar shape of the bridge, both of which are corroborated in numerical simulations and experiments.
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Viscous flows beneath an elastic sheet hold significant
relevance in various natural phenomena and industrial
processes. Examples include flow-driven intrusions of
elastic fronts [1–8], viscous adhesion of elastic sheets
and cell membranes [9,10], soft viscous fingering insta-
bilities [11–13], as well as in geological processes such as
sill or laccolith formation [14–16].
When two fluid pockets are trapped between an elastic

sheet and a prewetted solid substrate, forming what we refer
to as blisters, theywill spread and eventuallymerge if they are
in close proximity. As they meet, the elastic bending of the
sheet will, at short times, relax the system into a single blister
that, at long times, flattens by spreading [2,17]. This situation
is analogous to the extensively studied phenomenon of
capillary-driven drop coalescence, where different flow
regimes [18–21] and the effect of liquid rheology [22,23]
have been characterized. Hernández-Sánchez et al. [21]
demonstrated that the bridge connecting two coalescing
viscous sessile droplets grows linearly with time, which
was described by a similarity solution of the governing
lubricationmodel. Recently, also the self-similar form for the
three-dimensional bridge shape has been derived [24].
Despite the prevalence of elastohydrodynamic coalescence,
a comprehensive understanding of the underlying physical
processes involved is currently lacking. This Letter addresses
this knowledge gap by employing a combination of experi-
ments, lubrication theory, and numerical simulations. We
reveal that the short-time asymptotic relaxationdynamics can
be described by a universal self-similar solution with an
anomalous exponential growth with time, contrasting the
power-law solutions usually describing the self-similar
behavior of lubrication flows, and we quantify the details
of the spatiotemporal dynamics.
We consider an elastic sheet that is separated from the

solid substrate by a thin liquid film of height h̃∞, as shown

in Fig. 1. Two identical pockets, forming the blisters, are
generated by the influx of viscous liquid through two inlets
(diameters 4 × 10−3 m) at the supporting substrate, sepa-
rated by a distance 2R0 ¼ 0.15 m. After a given volume is
injected, the pump is turned off allowing the blisters to
spread until they make contact. We define t̃ ¼ 0 as the time
the blisters make contact, with the height of the blister peak
h̃i. The system is designed to have h̃i=d < 1, where d is the
plate thickness, and h̃i=R0 ≪ 1. The cross-sectional height
profile h̃ðx̃; ỹ ¼ 0; t̃Þ of the fluid film is obtained by passing
a laser line along the x̃ coordinate through the blister peaks.
A Nikon camera captures images of the laser line every 2 s,
at an angle of 25° relative to the horizontal plane. The
measured laser line is fitted with a Gaussian intensity
distribution along each vertical column of pixels. This
imaging setup allows for the visualization and measure-
ment of the height profile with time.
The circular elastic sheet of diameter D ¼ 0.4 m and

thickness d ¼ 5.7 × 10−3 m is made from a silicon-based
elastomer (Zhermack, Elite Double), with Young’s modulus
E¼ 0.25MPa and Poisson ratio ν¼ 0.5 [25], giving a ben-
ding stiffness B¼Ed3=½12ð1−ν2Þ�¼5×10−3 Nm. Diffe-
rent silicone oils, with viscosities μ∈ ½0.1;0.35;0.5� Pas,
and density ρ ¼ 970 kgm−3 are used as fluids. The support-
ing rigid plexiglass substrate and the bottom side of the flat
elastic sheet are both precoated with oil using a squeegee,
before gently put in contact. A fluid film of thickness h̃∞ ¼
ð40� 14Þ × 10−6 m hence separates the two flat solids
before any fluid injection through the inlets. h̃∞ is deter-
mined on a smaller plate (21 × 24 × 10−4 m2) byweighing it
with and without the prewetted film, with an error estimate
determined from 40 repetitions. Air bubbles trapped under-
neath the elastic sheet are visually identified through
the transparent substrate. These bubbles are removed by
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carefully squeezing the elastic sheet in the corresponding
regions, transporting the bubbles to the edge whereas the
sheet has time to relax before liquid is injected at the inlets.
After injecting a prescribed fluid volume with a Merck-

Millipore-Sigma syringe pump, the two blisters spread until
they make contact. The experimental determination of the
contact point is partly limited by our spatial resolution of
0.067 mm=pixel, leading to an uncertainty in defining the
contact time t̃ ¼ 0 [further discussed in Supplemental
Material (SM) [26] ]. It is also worth noting that the
experiments have amean asymmetry of6.3� 4.7% between
the two blisters peaks at the definedmoment of contact. This
grade of asymmetry is shown numerically to have negligible
impact on the results (see SM [26]). We define h̃i as the
average between the two blister heights at t̃ ¼ 0. Varying the
injected fluid volume, we obtain h̃i ∈ ½1.9–4.2� × 10−3 m
(for more information, see SM [26]).
We use the elastohydrodynamic lubrication theory

[1,27–29] to rationalize the experimental measurements.
Assuming no-slip at the two solid boundaries, conservation
of mass, and an incompressible Newtonian lubrication
flow, the fluid height profile h̃ðx̃; ỹ; t̃Þ satisfies the thin-
film equation. By nondimensionalizing the variables with
x ¼ x̃=R0, y¼ ỹ=R0, hðx;y;tÞ¼ h̃ðx̃; ỹ; t̃Þ=h̃i, h∞ ¼ h̃∞=h̃i,
and t ¼ t̃=T with T ¼ μR6

0=ðBh̃3i Þ, we obtain

∂hðx; y; tÞ
∂t

¼ 1

12
∇ · ½h3ðx; y; tÞ∇pðx; y; tÞ�; ð1Þ

pðx; y; tÞ ¼ ∇4hðx; y; tÞ þ Nhðx; y; tÞ; ð2Þ

where ∇ ¼ ½ð∂=∂xÞ; ð∂=∂yÞ� is the nabla operator. pðx; y; tÞ
is the excess hydrodynamic pressure generated by elastic
bending of the plate and gravity, neglecting any effect
from stretching the plate as the edge is free to move and
h̃i < d [5,8]. In Eq. (1) a single nondimensional number

N ¼ ρgR4
0=B ¼ ðR0=LeÞ4 appears, which is the ratio

between gravity and elastic bending, i.e., an elastic equiv-
alent of the Bond number. Here, g is the gravitational
acceleration and Le ¼ ½B=ðρgÞ�1=4 is the elastogravity
length. By inserting our material properties from the experi-
ments we obtainLe ¼ 28 × 10−3 m ¼ 0.36R0, andN ≈ 59.
Equations (1) and (2) are solved numerically by using

a finite-element method. We discretize the equations
using linear elements and use an implicit-time marching
scheme [5]. At t� ¼ 0, the simulations are initialized
with two identical bumps centered at ðx; yÞ ¼ ð�1; 0Þ, as
hðx; y; t� ¼ 0Þ ¼ h∞ þ 0.6[(1− f½ðx� 1Þ2 þ y2�=0.752g)2]
for

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 1Þ2 þ y2

p
≤ 0.75, hðx; y; t� ¼ 0Þ ¼ h∞ other-

wise. After a few time steps, the height profile becomes
smooth and the two blisters spread a short distance before
they make contact. We set the moment of contact as the new
temporal origin t ¼ 0, defined as the first time step in the
simulations where the bridge height h0ðtÞ ≥ h∞, followed
by a monotonic growth of h0ðtÞ. Thereafter, we rescale the
profile so that hð�1; 0; 0Þ ¼ 1. To reduce the computa-
tional time, we only simulate a quarter of each blister due to
symmetry, and therefore apply the symmetry conditions at
all the boundaries: ∇hðx; y; tÞ · n ¼ ∇3hðx; y; tÞ · n ¼
∇5hðx; y; tÞ · n ¼ 0 with n the normal vector to the
boundary. We use a nonuniform grid, which is refined
around the bridge with minimum mesh size Δx ¼
1.25 × 10−4, and an adaptive time stepping routine with
maximum time step Δt ¼ 1.6 × 10−4.
We now turn our attention to the coalescence dynamics,

after the blisters have made contact. An example of the
temporal evolution of the height profiles is illustrated in
Fig. 2(a). The numerical solutions and the experiments
are in close agreement. The thickness h̃∞ ¼ 40 × 10−6 m
of the prewetted layer together with the peak height
h̃i ¼ 2.55 × 10−3 m, obtained from the experiments give

FIG. 1. (a) Schematic (ỹ ¼ 0) of the studied system. Two identical pockets filled with a viscous fluid of viscosity μ and density ρ are
created by injecting prescribed fluid volumes beneath an elastic sheet. The elastic sheet has a Young’s modulus E, a Poisson ratio ν, and
a thickness d. After the fluid injection is stopped, each blister spreads until reaching a radius R0 when they meet, which is defined as time
t̃ ¼ 0. The fluid height profile is h̃ðx̃; ỹ; t̃Þ, while h̃0ðt̃Þ ¼ h̃ð0; 0; t̃Þ is the bridge height, h̃i ¼ h̃ð�R0; 0; 0Þ is the initial blister height, and
r̃ðt̃Þ is the half-width of the bridge along the ỹ axis (into the plane). (b) Contour plot of the nondimensional height profile h̃ðx̃; ỹ; t̃Þ=h̃i
from the three-dimensional simulation when the two blisters make contact (t̃ ¼ 0).
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h∞ ¼ 0.016, which is the same as the value used in the
numerical simulation. From the numerical height profiles,
we extract the bridge half-width rðtÞ and height
h0ðtÞ ¼ hð0; 0; tÞ, as shown in Fig. 2(b). The inset shows
the two-dimensional bridge profile along the y axis,
hðx ¼ 0; y; tÞ, at the same nondimensional time instants
as in Fig. 2(a). The half-width is defined as the first point
along y where hðx ¼ 0; y > 0; tÞ ≤ h∞. It is striking to
observe that these two quantities ½rðtÞ; h0ðtÞ� have very
different behavior with time: the half-width follows a
power law rðtÞ ∼ t1=2, which is reminiscent to the capillary
case [20], while the bridge height h0ðtÞ clearly deviates
from a power law behavior.
To understand the bridge height dynamics, we take

inspiration from the self-similar analysis of the elastohy-
drodynamic blister growth [2], and from the capillary
coalescence case [20,21]. We assume that the flow is
predominantly oriented along the x direction, so that we
can consider a two-dimensional problem. At the small

scales associated with the initial stages of coalescence, the
dynamics are driven by elastic bending and gravity can be
neglected. Therefore, Eq. (1) simplifies to

∂hðx; tÞ
∂t

¼ 1

12

∂

∂x

�
h3ðx; tÞ ∂

5hðx; tÞ
∂x5

�
; ð3Þ

where hðx; tÞ is the two-dimensional height profile of the
bridge. Let us look for a similarity solution HðξÞ ¼
hðx; tÞ=fðtÞ of Eq. (3), with ξ ¼ x=gðtÞ, where fðtÞ and
gðtÞ are two unknown functions [30]. At short times, we
consider the quasistatic shape of the blister [2] as a
constant outer solution for the coalescence dynamics,
instead of the interface slope (or contact angle) used for
the capillary case [21]. The quasistatic blister shape has a
nonzero nondimensional “contact curvature” κ [2]. We set
½∂2hðx; tÞ=∂x2�jx→∞ ¼ κ, which, by inserting the postu-
lated self-similar formulation for the bridge profile, can be
written

fðtÞ
g2ðtÞH

00ð∞Þ ¼ κ: ð4Þ

For the case without gravity (N ¼ 0), the contact curva-
ture follows from the blister shape at constant bending
pressure [2], which in the present units gives κ0 ¼ 8. For
the case with gravity (N ¼ 59), the contact curvature
κ ¼ 8.8 is found to be slightly larger (see SM [26] for
more information). For convenience, and without loss of
generality, we normalize the similarity solution such that
H00ð∞Þ ¼ 1, from which it follows that fðtÞ ¼ κg2ðtÞ.
Inserting the similarity variable transform into Eq. (3),
we obtain

1

κ3
ġðtÞ
gðtÞ ¼ α ¼ 1

12

h
HðξÞ3H00000ðξÞ

i0
2HðξÞ − ξH0ðξÞ ; ð5Þ

where the dot and prime indicate derivatives with respect
to t and ξ, respectively. Owing to the separation of
variables, the parameter α must be a constant that needs
to be determined. We thus obtain two ordinary differential
equations (ODEs). The solution of the ODE for gðtÞ reads

gðtÞ ¼ gð0Þ exp ðβtÞ; with β ¼ ακ3: ð6Þ

As a consequence, one gets fðtÞ ¼ κgð0Þ2 exp ð2βtÞ. To
the best of our knowledge, this is the first time that an
anomalous exponential self-similar solution is derived for
the thin-film equation, in contrast to conventional power
laws typically describing the self-similar behavior of
lubrication flows. Exponential self-similar solutions have,
however, been found in other physical phenomena, e.g.,
in diffusion dynamics [30,31].

FIG. 2. (a) Nondimensional cross-sectional height profiles
hðx; y ¼ 0; tÞ, at different nondimensional times t, from an
experiment with μ ¼ 0.5 Pa s and h̃i ¼ 2.55 mm, and from the
numerical solutions (solid lines) of Eq. (1) with N ¼ 59 and
h∞ ¼ 0.016. (b) Nondimensional height h0ðtÞ, and half-width
rðtÞ of the bridge, extracted from the numerical solutions of
Eq. (1). Inset: The two-dimensional bridge profile along the y
axis, hðx ¼ 0; y; tÞ at the same nondimensional times as in (a).
rðtÞ is extracted numerically as the first point along y where
hðx ¼ 0; y > 0; tÞ ≤ h∞, indicated with a star marker.
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We proceed to test the prediction from Eq. (6) by using
the experimental and numerical data. The experimental data
of the temporal evolution of the bridge height h̃0ðt̃Þ, for
h̃i ∈ ½1.9 − 4.2� × 10−3 m and μ∈ ½0.1; 0.35; 0.5� Pa s, is
shown in Fig. 3(a). It is clear that both μ and h̃i affect
the relaxation dynamics. As expected, increasing the
viscosity slows down the dynamics. The effect of h̃i is
more subtle, but consistent with the prediction for a
dimensional growth rate β̃ ¼ α̃κ̃3, where κ̃ is the dimen-
sional contact curvature and α̃ is a constant. A larger h̃i
increases the contact curvature of the blisters (κ̃ ∼ h̃i=R2

0),
thereby enhancing the growth rate. In Fig. 3(b), the same
data are recast into nondimensional form that collapses it
onto a nearly single curve. The numerical solution of
Eq. (1) with N ¼ 59 reproduces the dynamics measured in
the experiments, which at short times corresponds to an
exponential growth with β ¼ 13.00. For comparison, the
numerical solution of Eq. (1) with N ¼ 0 is also shown,
which at short times has a β0 ¼ 8.95. Assuming that α is
independent of N, one gets that β=β0 is given by ðκ=κ0Þ3, as
observed within a ∼9% margin of error. The error is likely
stemming from uncertainties in the exponential fits and in
the extracted values for κ and κ0. However, α does depend
on the nondimensional prewetted layer thickness h∞, where
a smaller h∞ leads to a smaller exponential growth rate (see
SM [26]). Therefore, α is not a universal constant, and
equals α ¼ β0=κ30 ≈ 0.0175 in our case.
Finally, we investigate the self-similarity of the bridge

profile HðξÞ through Eq. (5). The latter is a sixth-order
nonlinear ODE, which is solved for α ¼ 0.0175, using the
numerical solver bvp5c in MATLAB with boundary con-
ditions: H0ð0Þ ¼ H000ð0Þ ¼ H00000ð0Þ ¼ 0, H00ð∞Þ ¼ 1, and

H000ð∞Þ ¼ H0000ð∞Þ ¼ 0. Since the bridge is symmetric
around ξ ¼ 0 and has a constant far-field curvature it
provides the required six boundary conditions, so we do
not impose Hð0Þ ¼ 1 in contrast to the capillary case [21].
Nevertheless, by introducing the rescaled variables ξ� ¼
ξ=Hð0Þ1=2 and H�ðξ�Þ ¼ HðξÞ=Hð0Þ, one can always
enforce H�ð0Þ ¼ 1, without having it explicitly stated in
the boundary conditions. The results for the self-similar
profile are shown in Fig. 3(c). The close agreement between
the numerical solution of Eq. (5) and the numerical solution
of Eq. (1) for N ¼ 0 manifests that the shape of the bridge
is described by the self-similar profile found from Eq. (5),
and corroborate the validity of the similarity solution.
In this Letter, we have demonstrated that, as two pockets

of viscous fluids merge under an elastic sheet, the con-
necting bridge has a height that grows exponentially with
time. The spatiotemporal dynamics agree between the
experiments and the numerical solutions of the thin-film
equation. Moreover, a self-similar exponential solution is
found, which rationalizes the short-time dynamics found in
the experiments and numerical simulations. To the best of
our knowledge, this represents the first exponential self-
similar solution for lubrication flows, standing in sharp
contrast to the conventional power-law solutions. Our
finding highlights the significant and nontrivial role played
by the interaction between elastic deformations and viscous
lubrication flows.
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FIG. 3. (a) Experimental bridge height h̃0ðt̃Þ for different viscosities μ∈ ½0.1; 0.35; 0.5� Pa s and blister peak heights
h̃i ∈ ½1.9 − 4.2� × 10−3 m. (b) Experimental nondimensional bridge height h0ðtÞ ¼ h̃0ðtÞ=h̃i as a function of nondimensional time
t ¼ t̃=T. The solid and dashed lines represent the numerical solutions of Eq. (1) for N ¼ 59 and N ¼ 0, respectively, and with
h∞ ¼ 0.016. The short-time behavior for N ¼ 59 is well described by h0ðtÞ ¼ h0ð0Þ exp ð26tÞ; while for N ¼ 0 it follows
h0ðtÞ ¼ h0ð0Þ exp ð17.9tÞ. (c) Inset: the bridge height profiles hðx; y ¼ 0; tÞ [denoted as hðx; tÞ] from the short-time numerical
solution of Eq. (1) for N ¼ 0 and h∞ ¼ 0.016. Main: self-similar representation of the height profiles (y ¼ 0) from Eq. (1) (N ¼ 0)
shown in the inset. Here, we used fðtÞ ¼ 0.016 exp ð17.9tÞ and κ ¼ 8. The black solid line is the numerical solution of Eq. (5) with
κ ¼ 8 and α ¼ 0.0175.
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