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Metasurfaces and photonic crystals have revolutionized classical and quantum manipulation of light and
opened the door to studying various optical singularities related to phases and polarization states. However,
traditional nanophotonic devices lack reconfigurability, hindering the dynamic switching and optimization
of optical singularities. This paper delves into the underexplored concept of tunable bilayer photonic
crystals (BPhCs), which offer rich interlayer coupling effects. Utilizing silicon nitride-based BPhCs, we
demonstrate tunable bidirectional and unidirectional polarization singularities, along with spatiotemporal
phase singularities. Leveraging these tunable singularities, we achieve dynamic modulation of bound-state-
in-continuum states, unidirectional guided resonances, and both longitudinal and transverse orbital angular
momentum. Our work paves the way for multidimensional control over polarization and phase, inspiring
new directions in ultrafast optics, optoelectronics, and quantum optics.
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Multidimensional optical singularities offer promising
solutions for the exponentially growing information capac-
ity in optical communication and quantum manipula-
tion [1–5]. These singularities manifest themselves as
undefined phases or polarizations in momentum or fre-
quency spaces, with unique topological properties and
optical characteristics [6–14]. Research in this area is
garnering considerable attention in recent years due to the
potential applications of these optical singularities. For
instance, vortexlike polarization singularities (V points)
eliminate far-field radiation, leading to bound states in the
continuum (BIC) [15–20] and unidirectional guided reso-
nances (UGR) [21–23]. Spiral-shaped phase singularities
in momentum and momentum-frequency space enable
beams to carry unbounded orbital angular momentum
(OAM) [24–30]. The manipulation of the directionality,
polarization state, and angular momentum of photons
introduces novel degrees of freedom for optical control.
This enables applications across classical and quantum
regimes, encompassing areas such as lasing [26,31–33],
spatiotemporal modulation [34], ultralow-loss communi-
cation [35], single-photon quantum sources [36], and
hybrid quantum states [2,5].
Although traditional benchtop optical systems can gen-

erate various optical singularities, photonic crystals, meta-
surfaces, and microspiral phase plates offer advantages
such as lower power consumption and ease of integration
for practical applications [27,34,37–43]. Metasurfaces and
spiral phase plates use complex designs in real space to
produce singularities; photonic crystals exploit resonant
modes in momentum space topologies to generate polari-
zation and phase singularities. In contrast to metasurfaces

and spiral phase plates, photonic crystals do not require a
geometric center and are easily manufactured. However,
like all single-layer devices, they cannot be reconfigured
once fabricated. Bilayer photonic crystals (BPhCs) [44–59],
on the other hand, possess additional degrees of freedom,
such as twist angle, in-plane displacement, and interlayer
spacing, which allow tuning of optical singularities and
manipulating optical properties. Electrically tuned bilayer
structures with kHz modulation speed were recently dem-
onstrated on a micro-electromechanical system-nanopho-
tonic platform [60,61].
In this Letter, we study the mechanisms for controlling

momentum and momentum-frequency singularities in tun-
able BPhCs. We focus on translated rather than twisted
bilayer structures because translation is easier to accom-
plish on chip than rotation. In particular, we show that
such translationally tunable BPhCs can be used to adjust
(i) bidirectional polarization singularities and BICs,
(ii) unidirectional polarization singularities and UGRs,
and (iii) spatiotemporal phase singularities and transverse
OAM. Our results offer new insights into manipulating
multidimensional optical singularities in microscale devices.
The individual photonic crystal slabs that comprise the

BPhCs are made of SiN (n ¼ 2.02) and have C4v symmetry
and circular airholes. The radius of the airholes is
r ¼ 0.33a, where a is the length of a unit cell, and the
thickness of each slab is 0.54a. Bilayer photonic crystal
slabs are separated by an interlayer gap h, and misaligned
by an in-plane vector d [Fig. 1(a)]. These two geometric
parameters, d and h, permit modulating the positions
of the polarization and phase singularities along con-
tinuous nodal lines in momentum space [Fig. 1(b)] and
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frequency-momentum space [Fig. 1(c)]. In the following
sections, we will elaborate on the mechanism for modu-
lating optical singularities using bilayer photonic crystals.
We begin by exploring the band structure of BPhCs and

describe a class of polarization singularities, known as
bound states in the continuum. BICs exhibit infinite Q
factors, signifying complete energy localization within the
structure. In monolayer C4v photonic crystals, near the Γ
point, the lowest-frequency guided resonances consist of
four modes, corresponding to the four lowest-order in-
plane reciprocal wave vectors [62,63]. The bilayer band
structure comprises two sets of these fundamental modes:
symmetric and antisymmetric modes, exhibiting either in-
phase or out-of-phase electric fields within the two layers
(see Supplemental Material [64]) [68,69]. As shown in
Fig. 2(a), the frequency difference between the two sets of
modes, denoted as Δf, is determined by the coupling
strength between the two PhC layers. In BPhCs, two types
of BICs exist: accidental BICs (purple circles), which can
be achieved by tuning structural parameters, and symmetry-
protected BICs (yellow circles), limited to specific high-
symmetry points due to a symmetry mismatch between
photonic crystal modes and far-field plane waves. Altering
hmodulates Δf, as well as the positions of BICs. When the
distance between two layers of the photonic crystals is
relatively large (h > λ), the interlayer coupling is weak and
the two sets of modes approach degeneracy. Notably, with
changing h, symmetry-protected BICs move only in
frequency space and remain restricted to the Γ point, while
accidental BICs not only separate in frequency space but
also change in momentum space. Figure 2(b) illustrates the
movement of a set of accidental BIC-associated polariza-
tion singularities in frequency and momentum space with
varying h.
Next, we explore the effects of keeping h fixed and

varying d, which changes the in-plane coupling of the

photonic crystal slabs. In the following, we use the two
vectors m and x to describe the real space displacement d
as shown in Fig. 1(a). Specifically, Fig. 2(c) shows a set of
displacements parallel tom. The variation of d gives rise to
an additional phase term expðikdÞ in the in-plane coupling
term. In terms of the band structure, the change in intralayer
coupling manifests itself as a displacement Δk of the band
edge in momentum space, while barely affecting the mode
frequency splittingΔf [Fig. 2(c)]. Notably when displacing
alongm direction, the mirror symmetry along Γ-M persists.
However, d breaks both the C4v symmetry (except when
d ¼ 0.5m) and up-down mirror symmetry, leading to the
disappearance of BICs [17,70]. In this case, due to the
topological charge conservation of far-field polarizations,
the polarization singularities corresponding to BICs do not
vanish. Instead, they relocate in momentum space or merge
with other singularities. A consequence of breaking the up-
down mirror symmetry is that the upward and downward
radiation fields from the BPhC become different. As a
result, the bidirectional polarization singularities associated
with BICs evolve into unidirectional ones. In such scenar-
ios, the high Q factor no longer serves as an indicator of
polarization singularity. A detailed analysis of polarization
fields in momentum space, considering both upward and
downward radiations, becomes necessary to understand the
radiation pattern.

(c)

(b)(a)

FIG. 1. Concept of three-dimensional optical singularities in
bilayer photonic crystals. (a) Schematic of bilayer photonic
crystal and the coordinate system in this work. h and vector d
represent gap size and relative displacement between two
photonic crystal slabs. (b) Polarization ellipses in the far field
and corresponding radiation strengths in momentum space.
(c) Frequency-momentum space phase singularities. Slices are
taken at different d.

(a) (b)

(c)

FIG. 2. Evolution of band structures for bilayer photonic crystal
slabs. (a) Band structures for bilayer photonic crystal slabs when
the interlayer gap h varies. Δf represents the frequency variation
between the symmetric mode and the antisymmetric mode.
Yellow circles indicate the symmetry-protected BICs. Purple
circles indicate the accidental BICs. (b) Frequency and gap h
dependency of an accidental BIC in momentum space. (c) Band
structures for bilayer photonic crystal slabs when the in-plane
shift d varies along the m direction at fixed h ¼ 600 nm. Δk
represents the separation of the band edge. The color bar
represents the quality factors of modes. The modes in this figure
correspond to transverse magnetic (TM) modes.
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In Figs. 3(a)–3(c), we demonstrate the unidirectionality
of the singularities according to the polarization fields along
the out-of-plane þz and −z directions. These singularities,
arising from topological defects in momentum space [71],
can be described by their topological charges:

q ¼ 1

2π

I
C
dk ·∇kϕðkÞ ð1Þ

where ϕðkÞ is the azimuthal angle of polarization major
axis, and C is a closed loop in momentum space. When
there are no polarization singularities, all of the momentum
space has well-defined polarization states, resulting in a
trivial topological charge (q ¼ 0). Consequently, the
electric field of the BPhC radiates outward on both sides
[Fig. 3(a)]. When the displacement between BPhCs is
d ¼ 0, implying up-down mirror symmetry, bidirectional
polarization singularities emerge at Γ points or off-Γ points
by adjusting h, as illustrated in Fig. 2. Around these
singularities, far-field polarization states on both sides of
the BPhC possess nontrivial topological charges (q ¼ 1),
leading to high-Q resonances due to the absence of radia-
tive losses [Fig. 3(b)]. Furthermore, when the up-down
mirror symmetry is broken, the upward and downward
polarization singularities shift in opposite directions in
momentum space. As a result, the integration over a closed

loop gives rise to different topological charges on each side
of the BPhC. The appearance of these single-sided polari-
zation singularities leads to unidirectional guided resonan-
ces, where the guided resonance radiates only toward
one side of the BPhC [Fig. 3(c)]. The directionality of
the radiation and the position of the unidirectional polari-
zation singularity in momentum space is determined by the
displacement d (see Supplemental Material [64]).
In addition to manipulating the directionality of polari-

zation singularities, BPhCs can also generate orbital
angular momentum. Through spin-orbit coupling, polari-
zation singularities can be transformed into phase singu-
larities [72–74]. For instance, by directing a circularly
polarized Gaussian pulse towards the BPhC, cross-
polarized output light with wave vectors near the singu-
larity carries a helical geometric phase 2ϕðkÞ, also known
as Pancharatnam-Berry phase. The helical phase results
in a spatial optical vortex and longitudinal orbital angular
momentum [Fig. 3(d)]. Furthermore, a nonlocal trans-
formation of longitudinal and transverse orbital angular
momentum can be achieved by changing the photonic
crystal symmetry. We numerically simulated the intensity
distribution of the optical field in the space-time (m-t)
domain after the incident pulse passes through the BPhC.
When the displacement between two layers is zero,
phase singularities only occur in momentum space, with

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 3. Three-dimensional control of optical radiation. (a–c) Upward (left) and downward (middle) far-field polarization states in
momentum space, and the corresponding cross-sectional electric field (right) for (a) radiative modes, (b) BICs, and (c) UGRs. Geometric
parameters for (a)–(c) are h ¼ ð450 nm; 550 nm; 630 nmÞ, d ¼ ð0; 0; 0.15Þm. Different regions are shaded according to the signs of Em
and Em0 . (d)–(f) Phase (left) and intensity (right) of electromagnetic field excited by a Gaussian pulse for (d) spatial vortex beam with
longitudinal OAM, (e) in the absence of transverse OAM, and (f) spatiotemporal vortex beam with transverse OAM. Geometric
parameters for (d)–(f) are h ¼ ð600 nm; 600 nm; 600 nmÞ, d ¼ ð0; 0; 0.225Þm. The results shown in (d)–(f) correspond to the lowest
antisymmetric TE band.
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a characteristic parabolic phase distribution in the frequency-
momentum (f-k) space. The absence of isolated singularities
in the f-k space prevents the formation of spatiotemporal
optical vortices [Fig. 3(e)].
When d ≠ 0, a topologically protected isolated singu-

larity emerges in the f-k space as a result of breaking
the up-down mirror symmetry. The f-k singularity also
represents a helical phase distribution that modulates the
transmitted pulse, as depicted in the left column of Fig. 3(f).
In contrast to the momentum space singularities, the f-k
singularity and the corresponding helical phase yield a
distinctive doughnut-shaped pattern in spatiotemporal
space, with zero amplitude at the center of the doughnut.
The spatiotemporal doughnut-shaped field means the
BPhC carries transverse orbital angular momentum [34].
The degrees of freedom, h and d, in translational tunable

BPhCs enable versatile adjustments and reconfigurations
of unidirectional polarization singularities in momentum
space. We can use the ratio jEup − Edownj=jEup þ Edownj,
where EupðdownÞ is the energy flux in upward (downward)
direction, as the UGR ratio, to quantify the unidirectionality
of the far-field radiation. When this UGR ratio is 1, we
obtain perfect single-sided emission. Figure 4(a) reveals
optimized UGR ratios for varied h and k at fixed d.
Notably, when d remains constant, only a specific h ¼ h2
yields a UGR ratio of 1. The relatively low UGR ratio for
other values of h is due to C2 symmetry breaking, which
causes the original vortex polarization singularity with
charge q ¼ 1 to split into two circularly polarized points
(C points) with opposite handedness. Left- and right-
handed circularly polarized light couple to different wave
vectors when h ¼ h1;3, resulting in chiral dichroism in the
optical response. Only when h ¼ h2 do the C points merge
and form a unidirectional polarization vortex center, as
depicted in the middle column in Fig. 4(c). The merging
behavior shows that the appearance of unidirectional polari-
zation singularities is accidental. The origin of the accidental
singularities can be phenomenologically explained by phase
cancellation between the in-plane and out-of-plane electro-
magnetic fields. Specifically, the upward and downward
radiation intensities can be represented using a differential
equation:

d
dt

�
A1

A2

�
¼ i

�
ω J

J† ω

��
A1

A2

�
þ D†D

�
A1

A2

�
ð2Þ

where ω represents the resonance frequency of the mode in
each layer, J is the interlayer coupling between the modes
in the two layers, A1ð2Þ is the mode amplitude of the first
(second) layer, and D is the coupling matrix between the
modes and far-field radiations, taking the form

D† ¼
�
C1dsðkÞ C1dpðkÞ C1usðkÞ C1upðkÞ
C2dsðkÞ C2dpðkÞ C2usðkÞ C2upðkÞ

�
: ð3Þ

C1ð2ÞuðdÞsðpÞ represents the radiative strength related to the
sðpÞ-polarized component in the upward (downward) space
induced by the first (second) layer. Simultaneously tuning d
and h leads to a change in coupling strength C2dsðkÞ ¼
C1dsðkÞeiðd·kþΔhkzÞ. Eliminating far-field radiation, i.e.,
DA ¼ 0, requires d · kþ Δhkz ¼ ð2n − 1Þπ, n∈Z.
A validation of the phase-cancelling condition is pre-

sented in the Supplemental Material. In Fig. 4(b), we
depict the trajectory of perfect UGRs (unidirectional V
points). Δkz and Δkjj are compared to the up-down mirror
symmetry configuration. For d ¼ 0 and d ¼ x, we obtain
the same up-down mirror symmetric configuration.
Therefore, in momentum space, these singularities trace
a closed loop. In this example, the singularities move

(a)

(d)

(b)

(c)

FIG. 4. Reconfigurability of polarization and phase singular-
ities. (a) Maximum UGR ratios for fixed displacement d ¼ 0.95x
and varying h across the lowest antisymmetric TE band; (b) 3D
trace of UGRs when h and d vary simultaneously. Colors
represent UGR ratios. The red dashed circle labels the displace-
ment corresponding to (a) with h ¼ h2. (c) Polarization fields
taken at h1, h2, and h3. (d) Spatiotemporal modulation of light in
BPhCs when varying d in m direction, showing calculated OAM
purities (upper row), phase diagram in frequency-momentum
space (middle row), and the corresponding transmitted electro-
magnetic field intensity (bottom row) for ðd1; d2; d3; d4Þ ¼
ð0; 0.125; 0.225; 0.375Þm. The center of the transmitted dough-
nut pattern slightly deviates from t ¼ 0 due to imperfections of
phase distributions.
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along the x direction in addition to a shift of kz, and we
only show downward UGRs. Other directions are dis-
cussed in the Supplemental Material. The displayed UGR
ratios exceed 0.99.
In addition to the tunability of unidirectional polarization

singularities, tunable BPhCs facilitate dynamic modu-
lation of f-k singularities and their corresponding spatio-
temporal optical vortices. To demonstrate this modulation,
we simulated the intensity distribution by impinging a
Gaussian pulse upon the BPhC. The frequency of the
Gaussian pulse centers near the band edge of the lowest
symmetric transverse electric (TE) band (0.67c=a) with a
spatial width (FWHM) of 53a and a temporal width of
2845a=c at the beam waist plane [Fig. 4(d)]. We calculated
the fields and OAM purities from d ¼ 0 to d ¼ 0.5m. The
method for calculating OAM purity is discussed in the
Supplemental Material [75]. As the helical phase becomes
more uniformly distributed around the singularity within
the range of −π to π, the purity approaches 1, resulting in
the generation of higher-quality spatiotemporal optical
vortices. In the middle and bottom rows in Fig. 4(d), we
show the phase and intensity distribution of the transmitted
field for four characteristic displacements labeled d1−4. At
displacement d3, we obtain a purity of 0.8, resulting in a
doughnut pattern in spatiotemporal space. At d ¼ d2;4, the
phase distributions deviate from the standard helical phase,
causing the optical vortex to split along the time axis. Upon
the disappearance of the isolated singularity (d ¼ d1), the
total topological charge approaches zero, leading to the
absence of orbital angular momentum in the outgoing
pulse. The ability of tunable BPhCs to adjust the optical
singularities in frequency-momentum space opens the
door to optimizing spatiotemporal optical vortices at the
microscale.
In conclusion, by adjusting the interlayer gap h and

misalignment vector d, BPhCs allow adjusting various
optical singularities in momentum and frequency space.
This work not only sheds light on traditional singular optics
but also paves the way for complex systems in optics.
Multidimensional optical singularities in BPhCs enable
sensitive motion detection, superresolution imaging, effi-
cient optical communication, and so on. Future research
could extend to more complex structures, such as multi-
layers to achieve an even wider range of reconfigurability.
Our results apply to different wave systems where tuning
multiple degrees of freedom is of interest, including optical
waves, acoustic waves, water waves, and more.
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