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The exotic physics associated with exceptional points (EPs) is always under the scrutiny of theoretical
and experimental science. Recently, considerable effort has been invested in the combination of
nonlinearity and non-Hermiticity. The concept of nonlinear EPs (NEPs) has been introduced, which
can avoid the loss of completeness of the eigenbasis in dynamics while retaining the key features of linear
EPs. Here, we present the first direct experimental demonstration of a NEP based on two non-Hermition
coupled circuit resonators combined with a nonlinear saturable gain. At the NEP, the response of the
eigenfrequency to perturbations demonstrates a third-order root law and the eigenbasis of the Hamiltonian
governing the system dynamics is still complete. Our results bring this counterintuitive aspect of the NEP to
light and possibly open new avenues for applications.
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Introduction.—Non-Hermiticity [1–3] is ubiquitous for a
wide variety of classical and quantum systems that exhibit
nonconservative phenomena, such as gain, loss, and non-
Hermitian couplings [4,5]. Recently, tons of novel phe-
nomena and fascinating potential applications related to
exceptional points (EPs) [3,6,7] have revealed that non-
conservative elements can drastically alter the behaviors of
systems and attract fast-growing efforts [8–32]. At an EP,
two or more eigenmodes coalesce and become identical. As
a result, the Hamiltonian is defective, and its eigenstates do
not span the entire Hilbert space, i.e., the completeness of
eigenstates is lost. A defective Hamiltonian leads to a
dramatic increase in ubiquitous noise [33–36] and hinders
the implementation of EP-related operations. Furthermore,
EPs, especially higher-order EPs, require tuning of a
considerable number of parameters as they correspond to
singularities in a hyperdimensional space [12,37–41],
indicating an ultracomplex experimental setup.
In the field of EP sensing, there have been a few

ingenious schemes to mitigate the diverging noise asso-
ciated with the collapse of the eigenmodes and so as to
improve the signal-to-noise ratio (SNR) [42–44]. However,
the completeness of eigenbasis is still lost. In addition,
whether these specific schemes can be extended to other
EP-related operations in the presence of noise remains
unclear. Clearly, it would be of great interest to pursue a
universal approach that can address the increased noise and
be extended to more scenarios. Nonlinear EPs (NEPs),
unique spectral singularities present in nonlinear non-
Hermitian systems, came into being [45,46]. The order
of a NEP is determined by the total number of (auxiliary)
steady eigenmodes that simultaneously coalesce at
that point. Intriguingly, the instantaneous Hamiltonian

governing the dynamical evolution of the system can
possess a complete eigenbasis. In addition, the key features
of conventional linear EPs, such as enhanced responsivity
[12,13] and chiral state transfer [16–19], have been
retained. The completeness of the eigenbasis is corrobo-
rated by a finite Petermann factor (PF) [33–35], instead of a
divergent one that typical appear at conventional linear EPs.
As a direct consequence, NEPs offer a way out of the
dramatically increased noise at linear EPs from its funda-
mental origin. Meanwhile, compared with a conventional
order M EP (EPM), the number of tuning parameters
required to reach an order M NEP (NEPM) is significantly
reduced [47]. It is clear that NEPs are perfectly suitable for
detection applications [12,13], metrology and sensing
[42,51–54], topological energy transfer [16], polarization
states conversion [17], and on-chip optical devices such
as optical isolators [20,21], directional lasing [55], etc.
Nonetheless, NEPs with a complete basis in dynamics have
not yet been demonstrated in any experiment.
Here, designing a minimal scheme combining a

non-Hermitian coupling and a nonlinear saturable gain,
we demonstrate a NEP3 whereat the instantaneous
Hamiltonian exhibits a complete basis. Our circuit consists
of two LC resonators coupled through one capacitor and
one resistor, and these two circuit elements together offer a
non-Hermitian coupling. One of the resonators is equipped
with a saturable gain which consists of a linear voltage
amplifier and two diodes. One stable and two auxiliary
steady eigenmodes of this circuit coalesce at the NEP3, and
the response of eigenfrequencies demonstrates a third-order
root law. Meanwhile, the temporal dynamics of the system
are governed entirely by an effective instantaneous
Hamiltonian that is anchored by the stable eigenmode.
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Intriguingly, we demonstrate that such an instantaneous
Hamiltonian is diagonalizable, thus guaranteeing a com-
plete eigenbasis. The Petermann factor (PF), which is
typically used to characterize the nonorthogonality of the
eigenbasis, is finite at the NEP3 and thus further verifies our
conclusion. Our observations bring the counterintuitive
aspect of the NEPs to light and possibly inspire more
NEP-related applications in noisy environments.
General theoretical analysis.—We first present a general

theoretical analysis to show that a NEP3 with a non-
defective instantaneous Hamiltonian is possible with the
help of a non-Hermitian coupling. Non-Hermitian cou-
plings have drawn intense interest recently in non-
Hermitian systems and led to novel phenomena such as
skin effects [5,56], morphing of edge states [57] and etc.
[51]. Furthermore, non-Hermitian couplings can also be
used to construct conventional linear EPs [58]. The scheme
shown in Fig. 1(a) is described by the Hamiltonian near a
linear EP is

Hl ¼
�
ω1 þ ig1 κþ

κ− ω2 − il2

�
: ð1Þ

Here κ� ¼ κ0 þ iκν, κv ≠ 0 and fκ0; κvg∈R. κþ ≠ ðκ−Þ�
and thus, the coupling is non-Hermitian [58]. In optics,
such a non-Hermitian coupling can be introduced with loss
or gain elements, and this approach has been demonstrated
on different platforms such as optical fibers [59], wave-
guides [20], and cavities [60]. For simplicity, all the
parameters are normalized by κ0 and an EP is achieved
at κ0 ¼ κν ¼ g1 ¼ l2 ¼ 1, ω2 ¼ 2, and ω1 ¼ 0. Let ε
represent the external perturbation of one of the system
parameters away from those at the EP. Figure 1(b) shows
the evolution of the two eigenstates jϕþi (pink solid line)
and jϕ−i (blue dashed line) as a function of the external
perturbation ε alongω1, i.e.,ω1 þ ε. Here we only show the
fields inside the left resonator, and the fields inside the right
resonator are set as 1 for convenience. It is clear that two
eigenstates coalesce at ε ¼ 0 where Hl has only one
eigenstate ði; 1ÞT with the superscript T shorts for trans-
pose. (see Supplemental Material Sec. 1 [61]).
We now turn to consider the nonlinear case as shown in

Fig. 1(c). The linear gain above is replaced by a saturable
gain gAðjψAjÞ, which depends on the wave amplitude in
resonator A. To distinguish it from the linear system, we use
alphabetic subscripts for the nonlinear system. The non-
linear Schrödinger equation is

HjψRijψRi ¼ ωjψRi; ð2Þ

where ω is the eigenfrequency. jψRi≡ ðψA;ψBÞT is the
right eigenstate, and ψA and ψB represent the field
amplitude of the red (A) and blue (B) resonators, respec-
tively. The nonlinear Hamiltonian is

HjψRi ¼
�
ωA þ igAðjψAjÞ κþ

κ− ωB − ilB

�
: ð3Þ

By letting gA be a free parameter, the eigenfrequency ω of a
(auxiliary) steady mode satisfies the cubic function

pðωÞ ¼ ðω − ωBÞ2ðω−ωAÞ þ l2Bðω − ωAÞ
− 2lκ0κν − ðκ20 − κ2νÞðω − ωBÞ

¼ 0: ð4Þ

Here the corresponding saturated gain value gs, where a
steady state is reached, satisfies

−2κ0κν − lBðωA − ωÞ þ gsðωB − ωÞ ¼ 0: ð5Þ

Note here the specific gain saturation model is irrelevant for
pðωÞ. To demonstrate the NEP3, we set ψB ¼ 1 as before,
and Figs. 1(d) and 1(e) represent ψA and the real part of the
eigenfrequency shiftΔω≡ ω − ω0 versus ε imposed on ωA

FIG. 1. (a) Schematic of a linear model. It consists of two
resonators with resonance frequency ω1;2 and linear gain g1 and
loss l2. The coupling between them is non-Hermitian. (b) shows
the variation of the two eigenstates jϕþi and jϕ−i versus ε.
(c) Schematic of our nonlinear model. ψA of the three steady
states (d) and the real part of corresponding frequency (e) versus
ε. (f) shows ψA of the two eigenstates of the instantaneous
Hamiltonian Hs, which is anchored by the stable eigenmode. The
EP and NEP are located at ε ¼ 0. The parameters used are:
ω1 ¼ ωA ¼ 0, κ0 ¼ κν ¼ g1 ¼ l2 ¼ 1, ω2 ¼ 2, lB ¼ 1.14, and
ωB ¼ 1.97. The specific form of the saturable gain gAðjψAjÞ in
(c) is irrelevant for the results in (d)–(f) as long as Eq. (5) is
satisfied.
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(i.e.,ωA þ ε), respectively. Here, ω0 is the eigenfrequency
of the NEP3 (ε ¼ 0). It is clear that the stable eigenmode
(the solid red line) and two auxiliary eigenmodes (green
and blue lines) coalesce at the NEP3 [marked by the cyan
dot in Figs. 1(d) and 1(e)]. The coalescence of three
eigenmodes is the same as that of a PT-symmetrical linear
Hamiltonian at an EP3. We emphasize that only the stable
mode is physical with a purely real ω, and the other two
auxiliary eigenmodes are unphysical as they correspond to
complex gain values.
Because of the feedback mechanism of the saturable

gain, the nonlinear system will reach a stable state in a short
time. Thereafter, the nonlinear gain coefficient gAðjψAjÞ is
anchored by this stable mode and stays near the corre-
sponding gs given in Eq. (5). The temporal dynamics are
then governed by a 2 × 2 instantaneous Hamiltonian Hs
with gAðjψAjÞ in Eq. (3) replaced by gs. Figure 1(f) shows
the evolution of the two eigenstates [jψ si (red line) and jψni
(gray line)] of Hs as a function of ε. Note here, the mode
jψni is not a self-consistent eigenmode of the nonlinear
Hamiltonian in Eq. (3). Intriguingly, these two eigenstates
do not coalesce at the NEP3 (ε ¼ 0), indicating that the
eigenbasis of Hs is complete. Note that a non-Hermitian
coupling is necessary for a NEP3 to possess a complete
basis in dynamics (see Supplemental Material Sec. 2 [61]).
The non-Hermitian coupling in Eq. (3) can be realized with
only lossy elements [70,71], and thus the experimental
complexity is magnificently reduced. As a consequence,
such a minimal tight-binding scheme can be easily im-
plemented in diverse classical and quantum systems
[11–13,22–27].
Experimental verification in an electronic circuit.—To

observe the aforementioned NEP3, Fig. 2(a) shows a simple
and effective circuit with two non-Hermitian-coupled LC
resonators we designed [72]. The LC resonator on the right-
hand side is lossy with a normal resistor RB, while the other
one possesses an effective negative resistor−RA that exhibits
a saturable gain [42,45,73]. Here, the nonlinear saturation
arises fromthediodes [42]. (Details provided inSupplemental
Material Sec. 4 [61]). Complex voltagesVA andVB represent
the fields inside the corresponding resonators. Assume that
the circuit is working with a time-harmonic field e−iωt,Cc ≪
C0 and jωA;B − ωj ≪ ω, and use ωA;B ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LA;BC0

p
to

represent the resonant frequency of the uncoupled resonator,
the Kirchoff’s equations are

0
B@ωA þ i

2C0

�
1
RA

− 1
RC

�
i

2C0Rc
þ ωB

Cc
2C0

i
2C0Rc

þ ωB
Cc
2C0

ωB − i
2C0

�
1
RB

þ 1
RC

�
1
CA
�
VA

VB

�

¼ ω

�
VA

VB

�
: ð6Þ

Compared with Eq. (3), the coupling, loss, and saturated
gain are given by κþ ¼ κ− ¼ ωBCc=2C0 þ i=2RcC0,

lB ¼ 1=2RcC0þ1=2RBC0, and gA ¼ 1=2RAC0−1=2RcC0,
respectively. Figure 2(b) shows our experimental setup. As
there is an amplifier in the circuit, the system automatically
reaches and stays at a stable mode as we tune the dc power
supply to provide the operating voltage (�5 V) of the
amplifier. To demonstrate the dynamics from an initial state
to the stable state,we applied an external sine driving signal of
1 Vand 70 kHz on VA and waited till the circuit’s operating
frequency was the same as the driving signal. After that, we
remove the external driving signal and start to record the re-
lative waveform as shown in Fig. 2(c). VA and VB start osci-
llation and reach the stable state at around 0.4 ms. Figure 2(d)
zooms in this waveform after the stable state is reached, and
from this, we can obtain the amplitude, relative phase, and
eigenfrequency of the stable mode.
To demonstrate the behavior of the NEP3 in the circuit,

we let RA be a free parameter to solve Eq. (6) and then
find the (auxiliary) steady modes. Figures 3(a)–3(c) show
the amplitude ratio, relative phase, and the real part of

FIG. 2. (a) The circuit used in the experiment, showing the
inductors (L), capacitors (C), resistors (R), diodes (D), and an
amplifier (A). The black dashed rectangular marks the negative
resistor −RAðjVAjÞ. (b) A photo of the experimental setup. The
oscilloscope records the waveforms of VA and VB, which then
gives us the corresponding frequencies, voltages, and relative
phase. The dc power supplies power for the amplifier, and the
arbitrary waveform generator is used to generate the required
external driving signal. We add a homemade variable inductor to
fine-tune LA to control the resonance frequency of resonator A
[42]. Details of the circuit elements on the printed circuit board
(PCB) can be found in Supplemental Material Sec. 5 [61].
(c) Removing the external driving signal of 1 V and 70 kHz,
the red and blue lines show the temporal dynamics of VA and VB,
respectively. At around 0.4ms,VA andVB reach a stable state. The
bold red and blue lines highlight the envelope ofVA andVB, which
remain nearly constant after reaching the stable state. (d) Starting at
0.66ms, zoom in on the dynamics of the stable state. Parameters in
the experiments areLA ¼ 245.4 μH,C0 ¼ 18.5 nF,Cc ¼ 3.9 nF,
Rc ¼ 760 Ω, RB ¼ 1314 Ω, and LB ¼ 197.7 μH.
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eigenfrequencies, respectively. We can see one stable
steady eigenmode (red solid lines) and two auxiliary
eigenmodes (blue and green dashed lines) coalesce at
the NEP3. In the experiments, only the stable steady
eigenstates are reachable, and the measured results (open
disks) match perfectly with the simulations. Figure 3(d)
shows the frequency shiftΔω versus the perturbation ε on a
logarithmic scale. The slope fits well with 1=3 near the
NEP3 and derivates from 1=3 when away from the NEP3.
The deviation originates from the parameter dependence of
the circuit elements and higher-order corrections. The
detailed analysis of experimental error is presented in
Supplemental Material Sec. 6 [61].
To clearly see the noisy dynamics after the stable mode is

reached, we add an artificial Gaussian noise signal on
resonator A with an amplitude of 1 V and a bandwidth of
100 kHz using the arbitrary waveform generator. (Details
provided in SupplementalMaterial Sec. 7 [61])Compared to
Fig. 2(d), the waveform on the oscilloscope exhibits an in-
creased width but only tiny changes in period, voltage ratio,
and relative phase [see Fig. 4(a)]. (See the Supplemental
Material Sec. 7 [61]) To quantify these changes, Fig. 4(b)

shows the correspondingFourier spectrawithin the period of
0 < t < 5 s. Even under such a largely exaggerated ampli-
tude of noise, the change of the frequency and eigenstates,
i.e., the amplitude and the relative phase betweenVA andVB
are still negligibly small (see Table S1 [61] for more details).
Thus, we can conclude that the system is anchored by the
stable mode. And, the system’s dynamics under noise are
governed by the effective instantaneous Hamiltonian Hs
with RA of Eq. (6) replaced by the saturated negative
resistance RA;s. Figures 4(c) and 4(d) show the real part
of the eigenvalues (c) and eigenstates (d) of Hs, where the
red line is the same as that in Fig. 3(c), i.e., Hs shares one
same eigenmode as the nonlinear system. It is clear that the
two eigenmodes ofHs do not coalesce at theNEP3. Here, the
red markers in Figs. 4(c) and 4(d) represent the mea-
sured results, and the gray markers are obtained from the

FIG. 3. The voltage amplitude ratio jVA=VBj (a), the relative
phase θA − θB with θA;B ¼ argðVA;BÞ (b) and the resonance
frequency (c) versus the perturbation ε by varying LA. Here,
the perturbation ε is defined as ε≡ ðωA − ωA0Þ=2π, where ωA0
represents the resonance frequency of resonator Awhen the NEP3
is reached. (d) The double-log plot of the frequency shift Δω ¼
ðω − ωNEP3Þ=2π versus the perturbation jεj, where ωNEP3 repre-
sents the eigenfrequency at the NEP3. The measured values are
averaged over 16 independent measurements. The experimental
errors (standard deviation) are smaller than the marker size. For de-
monstration purposes, we exaggerate the error bars in (a)–(d) by
factors of 20, 10, 10, and 10, respectively. L0 ¼ 253.5 μH and the
other parameters are the same as the Fig. 2.

FIG. 4. The dynamics of the stable modes (a) and the
corresponding Fourier spectra (b) under an artificial Gaussian
noise. The circuit model used is plotted in Fig. S11 [61]. The real
part of eigenvalues (c) and VA=VB of the eigenstates (d) ofHs, the
PF (e), and the SNR (f) versus the external perturbation ε. In (c)
and (d), the solid red lines and the dashed gray lines represent the
stable and the accompanied eigenmode of Hs. For demonstration
purposes, we exaggerate the error bars by a factor of 10, 10, and
15 in (c)–(e), respectively. The cyan area in (f) is for eye guiding.
The definition of ε and the parameters used are the same as those
in Fig. 3.
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eigensystem of Hs through Eq. (6) with the values of RA;s

retrieved from the measurements of the stable mode. And
these two eigenvalues ωs (red markers) and ωn (gray
markers) of Hs in Fig. 4(c) do not intersect because they
have different imaginary parts [see Fig. S4(b) [61] ]. The PF
is a measure of eigenstates’ nonorthogonality [33–35]. A
finite PF verifies again that the system exhibits a complete
basis in dynamics [see Fig. 4(e)]. And SNR, as expected, has
been significantly enhanced near the NEP3 [see Fig. 4(f)].
Moreover, we provide an approach to further reduce the PF
at NEP3 in Supplemental Material Sec. 8 [61].
Conclusions.—In summary, we design a minimal

scheme and observe a NEP3 exhibiting a complete basis
in dynamics within an electronic circuit. Compared with
traditional circuits to construct a linear EP3, the number of
components used in our circuit is reduced noteworthily.
Fewer components indicate a substantial decrease in the
experimental complexity; hence, the corresponding system
is much more robust. At the NEP3, the response of the
eigenfrequency to perturbations exhibits a third-order root
law. Our experiments unambiguously demonstrate the
complete basis of an NEP3 and reveal a significantly
enhanced SNR. Illuminating this counterintuitive aspect
of NEPs, our findings inspire potential applications in noisy
environments and pave the way for introducing NEPs into
condensed matter physics and open quantum regimes.
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