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We consider theories of N-component fields with exotic spacetime symmetries, including a conserved
dipole moment. Microscopic charges are immobile by symmetry, and so resemble fractons. Using
collective fields we solve these models to leading order in large N. The large N solution reveals that these
models are strongly correlated, and that interactions dress the microscopic charges so that they become
mobile, long-lived quasiparticles. Dipole symmetry is spontaneously broken throughout the phase diagram
of these models, leading to a low-energy Goldstone description.
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Introduction.—Consider quantum mechanical models of
fracton order (see, e.g., [1–6]). Thesemodels describe new, at
this time purely hypothetical phases of quantum matter.
Perhaps the two most visceral signatures of these phases are
finite-energy quasiparticles of restricted mobility, collo-
quially called “fractons,” and in some cases, a large ground
state degeneracy sensitive to the details of an underlying
lattice. While these phases have yet to be realized in experi-
ment (Although perhaps they have [7].) there is reason to
believe that they will be found. Besides the prospect of
engineering such a phase with ultracold atoms [8] or anti-
ferromagnets [9], there are proposals that defects in elastic
media in 2þ 1 dimensions [10,11], vortices in superfluid
helium [12,13], and the lowest Landau level of fractional
quantum Hall states [14] all have fractonlike physics.
Fractons pose a number of challenges to condensed

matter and high energy theorists. From a purely theoretical
point of view, one ought to be able to obtain a continuum
field theory description of fracton phases upon coarse-
graining, but then the features mentioned above seem to
defy the standard Wilsonian effective field theory para-
digm. Informally, this challenge can be phrased as a
question: how can field theory describe restricted-mobility
excitations or a UV-sensitive spectrum of low-energy
states? (See [15,16].) There is another practical problem
for theorists to solve. Apart from completely integrable
Hamiltonians like the X-Cube model [17] or extreme limits
of condensed phases, generic models of fractons are
strongly correlated, and as such we have few tools to
study them and little knowledge of their macroscopic

features, which if they were known could be used to find
them in nature. Can we find soluble models of interacting
fractons, and thereby study their physics?
The goal of this Letter is to address these theoretical and

practical challenges.An important clue is that, in understood
examples, the existence of restricted-mobility excitations
and a lattice-sensitive ground state degeneracy are ultimately
consequences of exotic spacetime symmetries. In the exper-
imental proposals for fractons above, like vortices in super-
fluid helium, the symmetry generators include both a Uð1Þ
charge and, crucially, the corresponding dipole moment.
(This example also includes a conserved quadrupole trace.)
Isolated charges are then immobile by symmetry; these are
the sought-after fractons. Charges can bind into completely
mobile dipoles. Meanwhile, if a ground state is not invariant
under the dipole symmetry, there is a ground state manifold
generated by action of the dipole symmetry, with a ground
state degeneracy parametrically equal to the volume of the
dipole symmetry group. This volume is infinite in the
continuum, but it is compact in a lattice regularization.
This clue is important because it suggests a way forward,

which we take in this Letter. Namely, we find and solve
simple theories with these exotic spacetime symmetries,
paying careful attention to subtleties that arise in the
functional integral.
Inspired by models of Pretko [18], we study interacting

continuum field theories with N charged scalar fields,
imposing a UðNÞ symmetry that rotates the fields, and a
conserved dipole moment associated with the diagonal
Uð1Þ ⊂ UðNÞ charge. The Lagrangians of these theories
are nonstandard. Instead of the usual quadratic termswith two
spatial derivatives, the simplest terms with spatial derivatives
include at last four powers of the fundamental fields and these
may lead to strong interactions. However, these theories are
generalized vector models, which we proceed to solve in the
largeN limit usingmethods familiar from the largeN Chern-
Simons matter and SYK literature (e.g., [19,20]).
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We establish many results for these theories, including
their phase diagram at finite temperature and chemical
potential. Crucially the dipole symmetry is spontaneously
broken everywhere in the phase diagram, and we find a new
high temperature phase in which the dipole symmetry is
spontaneously broken, but the Uð1Þ symmetry is not. The
interactions mentioned above with spatial derivatives gen-
erate a momentum-dependent self-energy, which tames
loop integrals and allows quasiparticles to propagate.
When there is an underlying lattice the large N solution
has a continuum limit, but the spectrum of fluctuations
retains some sensitivity to the details of the lattice. For
example, the zero modes associated with the symmetry
breaking have a UV-sensitive volume, the number of lattice
sites in a lattice regularization, which allows the near-
continuum theory to describe a UV-sensitive spectrum of
low-energy states.
The remainder of this Letter is organized as follows. We

write down the large N models of interest in the next
section, and rewrite them in terms of collective fields that
are weakly coupled at large N. We then find the solution to
the collective field description and the ensuing phase
diagram, and conclude with a discussion. Many further
results are relegated to the Supplemental Material [21]
which includes Refs. [22–32].
Models with conserved dipole moment.—We work at

finite temperature through the imaginary time formalism.
We consider models with N complex scalars ϕa (with
a ¼ 1; 2;…; N) enjoying a number of symmetries. To
wit, we impose invariance under spacetime translation
symmetry, spatial rotations, parity, and UðNÞ symmetry.
Crucially, we also demand that the dipole moment
associated with the diagonal Uð1Þ ⊂ UðNÞ is conserved.
The latter amounts to an invariance under ϕaðt; x⃗Þ →
eid⃗·x⃗ϕaðτ; x⃗Þ, which we term a dipole transformation.
Pretko [18] has found a useful way to write down effective
actions invariant under dipole transformations. While
spatial derivatives of ϕa are not covariant under dipole
transformations, the basic covariant object with spatial
derivatives is

Dijðϕa;ϕbÞ ¼ 1

2

�
ϕa

∂i∂jϕ
b − ∂iϕ

a
∂jϕ

b þ ða ↔ bÞ�; ð1Þ

which transforms as Dijðϕa;ϕbÞ → e2id⃗·x⃗Dijðϕa;ϕbÞ.
In this work we study simple field theories with a single

time derivative, at most quartic interactions, and at most
four spatial derivatives. There is a model with only two
spatial derivatives, which we call model 1, given by

S¼
Z
dτddx

�
ϕ̄a

∂τϕ
aþ2Re

�
λ

N
δijDijðϕ̄a;ϕ̄bÞϕaϕb

�
þV

�
;

ð2Þ

where V ¼ −μϕ̄aϕa þ ðλ4=NÞðϕ̄aϕaÞ2, and sums over a, b
are implied. The model is specified by a chemical potential
μ, an inverse temperature β (introduced by analytic con-
tinuation to imaginary time), a quartic interaction λ4, and a
complex coupling λ. We have introduced factors of 1=N so
that there is a nice large N limit.
We also introduce model 2, which has four spatial

derivatives, described by

S ¼
Z

dτddx

�
ϕ̄a

∂τϕ
a þ λT

N
Dfijgðϕa;ϕbÞDfijgðϕ̄a; ϕ̄bÞ

þ λS
N
jδijDijðϕa;ϕbÞ þ γϕaϕbj2 þ V

�
; ð3Þ

where Dfijgðϕa;ϕbÞ¼Dijðϕa;ϕbÞ− ðδij=dÞδklDklðϕa;ϕbÞ
is the traceless part of Dijðϕa;ϕbÞ. In addition to the
chemical potential and temperature, this model is charac-
terized by real couplings λT (T is for tensor) and λS (S is for
scalar), and a complex parameter γ. Note that one can reach
model 1 by a scaling limit of model 2, by taking λT; λS → 0
while holding λSγ ¼ λ fixed.
Both model 1 and model 2 are effectively vector models,

and so are soluble at large N. To solve them, we integrate in
bilocal collective degrees of freedom Gðx1; x2Þ and
Σðx1; x2Þ, whose expectation values are the large N
propagator of ϕa and self-energy, respectively. These fields
decouple the quartic interactions, allowing us to integrate
out the ϕa. We then integrate all but one of the scalars,
ϕ1 ¼ σ, which will allow us to diagnose the spontaneous
breaking of UðNÞ → UðN − 1Þ. The fields ðG;Σ; σÞ are
weakly coupled at large N, and solving the large N model
amounts to solving their classical equations of motion.
Making a translationally invariant ansatz, with σðxÞ ¼ σ
and

Gðk1; k2Þ ¼ NGðk2ÞΔ; Σðk1; k2Þ ¼ Σðk2ÞΔ; ð4Þ

where we have Fourier transformed and Δ ¼ βδn1n2 ×

ð2πÞdδðk⃗1 þ k⃗2Þ with ωn ¼ ð2πn=βÞ the frequency of the
nth Matsubara mode, these equations (the large N Dyson
equations for the propagator and self-energy) read

GðkÞ ¼ 1

iωnþΣðkÞþ
jσj2
N

βδn0ð2πÞdδdðk⃗Þ;

ΣðkÞ ¼−μþ 2

Z
Dk0Gðk0ÞNV4ð−k;−k0; k;k0Þ; ð5Þ

along with σΣðk¼ 0Þ¼ 0. Here Dk¼ð1=βÞPn½ddk=
ð2πÞd� and NV4 is the quartic vertex in momentum space.
Model 1 has NV4 ¼ 1

2
ðλjk⃗12j2 þ λ̄jk⃗34j2Þ þ λ4 with k⃗mn ¼

k⃗m − k⃗n, which gives a local version of an M-particle
Hamiltonian considered in [33]. In model 2 the quartic
vertex is
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NV4ðkiÞ ¼
λT
4

�ðk⃗12 · k⃗34Þ2 − jk⃗12j2jk⃗34j2
�

þ λS
4

�jk⃗12j2 þ 2γ̄
��jk⃗34j2 þ 2γ

�þ λ4: ð6Þ

Diagrammatically, the Dyson equations resum bubbles as
shown in Fig. 1. A more detailed algebraic derivation is
given in the Supplemental Material [21].
These models are many-body quantum mechanics in d

dimensions, where a conserved number of particles M
(conjugate to μ) interact via 2 → 2 interactions character-
ized by V4ðkiÞ, where ðk1; k2Þ label the incoming momenta
and ðk3; k4Þ the outgoing momenta. The part of the
potential that appears in the Dyson equation (5),
V4ð−k;−k0; k; k0Þ, is the forward limit of V4. In model 1
it is ReðλÞjk⃗ − k⃗0j2 þ λ4, and in model 2 it is ðλS=4Þ��jk⃗ − k⃗0j2 þ 2γ

��2 þ λ4. We anticipate our models to be
consistent only when the forward limit is positive. For
model 1 this implies ReðλÞ; λ4 ≥ 0, with more complicated
constraints for model 2.
Let us return to the dipole symmetry. It acts on the

momentum space field by ϕ̃aðω; k⃗Þ → ϕ̃aðω; k⃗þ d⃗Þ, i.e.,
by a shift of momentum, and on the conjugate field by the
opposite shift. In a lattice regularization d⃗ is then valued in
the space of momenta, the Brillouin zone. Dipole trans-
formations then act on GðkÞ and ΣðkÞ by Gðω; k⃗Þ →
Gðω; k⃗þ d⃗Þ, and similarly for Σ. It follows that the
Green’s function is an order parameter for dipole breaking:
if Gðω; k⃗Þ depends on the spatial momentum, i.e., if the
position space Green’s function hϕ̄aðxÞϕbð0Þi is not ultra-
local in space, then the dipole symmetry acts on it. This
makes physical sense: G is the one-point function of an
operator that creates a dipole, with a charge at 0 and an
anticharge at x, which if nonzero is a dipole condensate in
analogy with the usual charge condensate associated with
ordinary symmetry breaking.
Insofar as it takes fine-tuning to make the Green’s

function ultralocal, we expect the dipole symmetry to be
broken throughout the phase diagram. There is also the
possibility of UðNÞ → UðN − 1Þ symmetry breaking, para-
metrized by the condensate σ ¼ hϕa¼1i, and in such a phase
dipole symmetry is necessarily broken as well. That is, on
general grounds we expect to find two phases of our models:
(i) a “normal” phase where dipole symmetry is broken but
UðNÞ is preserved, and (ii) a “condensed” phase in which
UðNÞ is broken to UðN − 1Þ and the dipole symmetry is

also broken. In both phases the dipole symmetry is broken,
and so both phases are a superfluid of condensed dipoles.
The normal phase has a vector order parameter, ∂iG in the
coincident limit, so we call it a p-wave dipole superfluid,
while the condensed phase has a scalar order parameter
hϕai, so we call it a s-wave dipole superfluid.
In the absence of a condensate σ the largeN equations (5)

are invariant under dipole shifts on account of the fact they
only depend on the difference of momenta k⃗ − k⃗0. As such,
a solution Gðω; k⃗Þ implies the existence of a family of
solutions Gðω; k⃗þ d⃗Þ. With a condensate, we get a family
of solutions provided that we also shift the condensate
as δdðk⃗Þ → δdðk⃗þ d⃗Þ.
Large N solutions.—We now endeavor to solve the

Dyson equations (5). Because the vertex V4 does not
depend on the frequency ωn, it follows that the self-energy
Σ only depends on spatial momentum. This allows us to
perform the sum over Matsubara modes in (5), so that

Σðk⃗Þ ¼
Z

ddk0

ð2πÞd NV4ð−k;−k0; k; k0Þ coth
 
βΣðk⃗0Þ

2

!

− μþ 2
jσj2
N

NV4ð−k; 0; k; 0Þ; ð7Þ

along with σΣðk ¼ 0Þ ¼ 0.
The vertex V4ð−k;−k0; k; k0Þ is a polynomial in k of

degree 2 in model 1, and degree 4 in model 2, and so Σðk⃗Þ is
too. We then make a rotationally invariant ansatz Σðk⃗Þ ¼
a0 þ a1jk⃗j2 þ a2jk⃗j4 (with a2 ¼ 0 for model 1). The Dyson
equation (7) becomes a finite system of coupled equations
for the unknown quantities a0, a1, a2, and σ. The condition
σΣðk ¼ 0Þ ¼ σa0 ¼ 0 leads to two classes of solutions, a
normal phase with σ ¼ 0 and a0 ≠ 0, and a condensed
phase with σ ≠ 0.
Plugging our ansatz back into (7) and suitably regu-

larizing, the momentum integral can be evaluated ana-
lytically in model 1 and numerically in model 2. Here we
focus on model 1, leaving model 2 to the Supplemental
Material [21]. In the normal phase where σ ¼ 0, (7)
becomes

a0 ¼ −μþ d
2β

Lidþ2
2
ðe−βa0Þ

Lid
2
ðe−βa0Þ þ λ4

ReðλÞ a1;

a1 ¼
2ReðλÞ
ð4πβa1Þd2

Lid
2
ðe−βa0Þ; ð8Þ

while in the condensed phase where a0 ¼ 0 we have

μ ¼ λ4
ReðλÞ a1 þ

dReðλÞ
ð4πβa1Þd2

1

βa1
ζ

�
dþ 2

2

�
;

jσj2
N

¼ a1
2ReðλÞ −

1

ð4πβa1Þd2
ζ

�
d
2

�
: ð9Þ

FIG. 1. The Dyson equations in diagrammatic form. The
internal line is the exact large N propagator G.
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In both models we solve the Dyson equations numeri-
cally using standard solvers of systems of nonlinear
equations (e.g., the function fsolve in MATLAB or
NSolve in Mathematica.) We present some numerical
solutions for model 1 in Fig. 2 and for model 2 in the
Supplemental Material [21].
We can also solve the Dyson equations analytically

in various limits of temperature and chemical potential.
For example, in model 1 at low temperature we find a1 ≈
ReðλÞμ=λ4, jσj2=N ≈ μ=ð2λ4Þ when μ > 0 and d > 2;
a1 ≈ ReðλÞμ=λ4, a0 ≈ 0, and σ ¼ 0 when μ > 0 and

d ¼ 2; and a0 ≈ −μ, a½ðdþ2Þ=2�
1 ≈ ½2ReðλÞ=ð4πβÞðd=2Þ�eβμ,

and σ ¼ 0 when μ < 0. We present more asymptotic
solutions in the Supplemental Material [21]. In fact, at
zero temperature we find that the large N solution is one-
loop exact in λ, λS, and γ to leading order in large N,
although in general the solution is a nonanalytic function of
couplings.
Phase diagrams.—Our models have, in general, a non-

trivial phase diagram. To determine it we evaluate the
thermal free energy density from our large N solutions. We
have in finite but large volume

βF ¼ − lnZ ¼ NSð0Þ þ Sð1Þ þ Sð2Þ

N
þOðN−2Þ; ð10Þ

where the 1=N expansion is the weak coupling expansion
of the collective field theory of ðG;Σ; σÞ. Here NSð0Þ is the
on-shell action of the large N solution, while Sð1Þ ¼
− lnZ1−loop ¼ − lnV1−loop − ln Z̃1−loop is the one-loop cor-
rection which we separate into a zero mode volume
V1−loop ¼ VVBZ ¼ Nsites the dimensionless volume of
the Brillouin zone, i.e., the number of lattice sites, and a
contribution − ln Z̃1−loop from nonzero modes, Sð2Þ the
two-loop correction, and so on. The dipole breaking
implies a UV-sensitive normalization Z ∝ Nsites. In the
Supplemental Material [21] we show that this prefactor can
be simply understood from the symmetry algebra.
Irreducible representations of the dipole symmetry with
nonzero charge have a dimension Nsites, implying that the
density of states has that prefactor, and so also Z.

In most regions of the phase diagram we only find a
single solution. In those where both phases exist, the
dominant one is that with the lower large N free energy,
i.e., smaller on-shell action.
In model 1 we find both phases in d > 2 with a first-

order transition between a high-temperature p-wave dipole
superfluid and a low-temperature s-wave phase. In d ¼ 2
we only find the p-wave phase. See Fig. 2 for the thermal
free energy at fixed chemical potential, and the phase
diagram in Fig. 3, both in d ¼ 3.
Though the same two phases exist in model 2, the phase

diagram for this model is more elaborate due to the
additional parameters. When ReðγÞ > 0 the phase structure
is similar to model 1, with a first order transition from a
high temperature p-wave phase to the s-wave phase at low
temperature in d > 2, and only the p-wave phase in d ¼ 2.
However when ReðγÞ < 0 the low temperature phase is p
wave with a1 < 0. This results in two possibilities, depend-
ing on the value of the chemical potential [assuming ReðγÞ

FIG. 2. The solutions to the Dyson equations for model 1 are presented in panels (a) and (b), along with the condensate in (c), the
on-shell action in (d), and free energy densities in (e) as a function of inverse temperature β in d ¼ 3, with μ ¼ 1 and ReðλÞ ¼ λ4 ¼ 1.

FIG. 3. The phase diagram of model 1 in d ¼ 3 as a function of
inverse temperature β and chemical potential μ measured in
natural units where ReðλÞ ¼ λ4 ¼ 1. The black line indicates a
first order phase transition, and the shaded gray area is the region
where both phases coexist.
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is fixed.] If the chemical potential μ is small enough then
there is no s-wave phase at all, and the system stays in the
dipole superfluid phase at all temperatures. However, if the
chemical potential μ is increased beyond some critical
threshold then there is an intermediate temperature range
where the system is in the s-wave phase. Starting at high
temperatures, the transition to this phase is first order, but
the transition back to the dipole superfluid phase at low
temperatures is continuous. Two sample phase diagrams for
model 2 are presented in Fig. 4, one for ReðγÞ > 0 and
another for ReðγÞ < 0.
Discussion.—In this Letter we have solved continuum

models whose microscopic degrees of freedom are immo-
bile charges with N ≫ 1 degrees of freedom and a UðNÞ
global symmetry. These models have an exotic spacetime
symmetry with a conserved dipole moment. We find two
phases, a high-temperature phase in which dipole sym-
metry is spontaneously broken but the UðNÞ is preserved,
and a low-temperature phase in which UðNÞ → UðN − 1Þ
and dipole symmetry is also broken. The high-temperature
phase has a vector order parameter, the gradient of the
single-particle Green’s function in the coincident limit, and
the low-temperature phase has a scalar order parameter. So
we dubbed the high-temperature phase a p-wave dipole
superfluid, and the low-temperature phase a s-wave dipole
superfluid.
We study many more features of these models in the

Supplemental Material [21], including the low-energy
effective Goldstone descriptions in each phase and low-
momentum response functions; soluble lattice versions of
our models; the consequences of the dipole symmetry for
the Hilbert space; subtleties associated with UV/IR
mixing, and the quantization of dipole charges on a
lattice; and solutions to the large N Dyson equations in
asymptotic limits. We refer the interested and intrepid
reader there.

There are three lessons from our analysis that we
highlight here, which we expect will be relevant for models
with conserved dipole moment more generally. (1) The
quartic interactions involving spatial derivatives in these
models are crucial and in general cannot be treated
perturbatively. They generate a momentum-dependent
self-energy, which tames loop integrals. (2) The dipole
symmetry is spontaneously broken. At high temperature, so
that the ordinary global symmetry is unbroken, we find the
low-energy Goldstone description of the continuum theory
in the Supplemental Material [21]. This effective theory
was proposed in [34], and is Gaussian in the deep IR. The
low-temperature phase also has a Gaussian Goldstone
description in the infrared, as proposed in [18]. These
effective theories are perhaps best suited to describe
systems with approximate dipole symmetry upon adding
small breaking terms. (3) The coarse-grained model is
weakly sensitive to the details of an underlying lattice. We
already encountered one such sensitivity. In finite volume,
the dipole symmetry breaking implies the existence of a
UV-sensitive ground state degeneracy. It arises through the
volume of the zero modes associated with dipole breaking.
That volume diverges in the continuum theory, but with a
lattice regulator goes as the number of lattice sites. As we
discuss in the Supplemental Material [21], the lack of
decoupling of the lattice can be studied in the Goldstone
effective descriptions. We emphasize that we were able to
study the large N solution without difficulty in the
continuum limit, and near the continuum limit.
We conclude with a brief list of future prospects.
In this work we have identified the large N solution of

these models, including the large N Green’s function. It
should be possible to compute the large N four-point
function, whose connected part comes from a sum over
bubbles. From this one would be able to directly identify
the low-energy Goldstone description, compute hydrody-
namic response functions, find the free energy to OðN0Þ,
and more.
It has been argued in [14] that the lowest Landau level

may be thought of as a theory of fracton order with
conserved dipole number, and conserved quadrupole trace.
There are largeN models with this symmetry. A simple, but
trivial example, is to consider a model with conserved
dipole moment but vanishing trace of the dipole current,
Jii ¼ 0. In model 1 this can be achieved by setting
ImðλÞ ¼ 0, and in model 2 by a scaling limit with
λS → 0, ImðγÞ ¼ 0, and λSReðγÞ fixed. So there are non-
trivial large N models with this symmetry pattern.
Relatedly, we may consider large N models with

subsystem symmetry. We will report on that topic in the
future [35]. See the Supplemental Material [21] for further
discussion on a variety of topics.

We would like to thank P. Glorioso, A. Gromov, A.
Karch, E. Lake, and S. H. Shao for enlightening

FIG. 4. Sample phase diagrams of model 2 in d ¼ 3 as a
function of inverse temperature β and chemical potential μ
measured in natural units where λS ¼ 1 and λSjγj2 þ λ4 ¼ 1.
In (a) ReðγÞ ¼ 0.25, while in (b) ReðγÞ ¼ −0.25. The black line
indicates a first order phase transition, the shaded gray area the
region where both phases coexist, and the dotted black line a
continuous phase transition.
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