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We study how isotropic and homogeneous far-from-equilibrium quantum systems relax to nonthermal
attractors, which are of interest for cold atoms and nuclear collisions. We demonstrate that a first-order
ordinary differential equation governs the self-similar approach to nonthermal attractors, i.e., the
prescaling. We also show that certain natural scaling-breaking terms induce logarithmically slow
corrections that prevent the scaling exponents from reaching the constant values during the system’s
lifetime. We propose that, analogously to hydrodynamic attractors, the appropriate mathematical structure
to describe such dynamics is the transseries. We verify our analytic predictions with state-of-the-art 2PI
simulations of the large-N vector model and QCD kinetic theory.
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Introduction.—Thermalization of isolated quantum
many-body systems is an important contemporary research
problem of a broad scope. Its relevance ranges from cold
atom systems, through QCD in ultrarelativistic nuclear
collisions, all the way to gravity and black hole physics [1].
Given the complexity of modeling quantum many-body
dynamics and the richness of nonequilibrium phenomena,
emergent regularities that form a basis for a quantitative
understanding are of particular interest.
In this work, we are concernedwith an important instance

of such an emergent regularity: far-from-equilibrium self-
similar time evolution of nonthermal attractors, also known
as nonthermal fixed points. These phenomena are transient
stages in the thermalization dynamics, whose defining
feature is self-similar scaling behavior in time. Consider a
momentum distribution function fðt;pÞ of a homogeneous
and isotropic system, where t is time and p spatial momen-
tum. The system reaches a nonthermal attractor, when f
scales with time in a characteristic momentum range

fðt;pÞ ¼ ðt=trefÞα∞fS½ðt=trefÞβ∞ jpj� ð1Þ

with constant scaling exponents α∞ and β∞. Indeed, such
behavior corresponds to a vast reduction in the complexity,
as the knowledge of the distribution function at some time
allows one to determine the distribution function at a
different time by a simple rescaling.

Nonthermal attractors appear in the studies of isolated
quantum systems across a wide range of energy scales:
ultracold quantum gases [2–11], ultrarelativistic nuclear
collisions [12–14], and early Universe cosmology [15,16].
Despite significant interest in nonthermal attractors, a
quantitative understanding of how a system approaches a
nonthermal fixed point remains elusive [17–21].
In [17], it was proposed that even prior to reaching the

nonthermal attractor (1) the system can exhibit prescaling,
where f has already assumed the fixed-point shape fS but
continues to evolve with time-dependent scaling exponents
αðtÞ and βðtÞ:

fðt;pÞ ¼ AðtÞfS½BðtÞjpj�: ð2Þ

The prescaling factor AðtÞ ¼ exp½R t
t0
dt0αðt0Þ=t0� reduces to

the fixed-point scaling of Eq. (1) when αðtÞ approaches α∞.
The same holds for BðtÞ in terms of βðtÞ.
Given that scaling (1) is an asymptotic late-time state-

ment known to be reached slowly, the systems of interest
might, in fact, spend a much greater fraction of their
lifetime prescaling (2) rather than scaling (1). Therefore, a
quantitative understanding of prescaling is as important as
understanding scaling itself.
In our work, we develop a simple theoretical description

of prescaling dynamics that uses the same assumptions as
the ones used to derive scaling. We test our predictions
using strongly correlated large-N vector model and weak
coupling QCD kinetic theory simulations.
Scaling implies prescaling.—Understanding prescaling

requires identifying laws governing time evolution of AðtÞ
and BðtÞ [or, alternatively, αðtÞ and βðtÞ]. As we show,
these laws have a surprisingly simple origin and form.
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The key role in deriving scaling (1) is played by conserved
quantities: particle number density n ¼ R

ddpf=ð2πÞd or
energy density E ¼ R

ddpωpf=ð2πÞd, whered is the number
of spatial dimensions and ωp is the dispersion relation of
particles. We focus on ωp ∼ jpjz. Applying conservation of
n or E in the momentum regime of interest imposes the
relation α∞ ¼ σβ∞ between the scaling exponents [22].
When n ¼ const, then σ ¼ d, while E ¼ const gives
σ ¼ ðdþ zÞ. The conserved quantities are local in time,
which means that they, in fact, constrain also prescaling
exponents in exactly the same way: αðtÞ ¼ σβðtÞ.
Equivalently, AðtÞ ¼ BðtÞσ. This implies that there is only
one independent degree of freedom in the isotropic and
homogeneous prescaling, which we will choose to be BðtÞ.
The time evolution for the independent prescaling factor

BðtÞ is still subject to the equation of motion for f. In the
case of a kinetic theory, it is given by the Boltzmann
equation with collision kernel C½f�:

∂tfðt;pÞ ¼ C½f�ðt;pÞ: ð3Þ

In the present section, we assume the collision kernel to
be a homogeneous functional of particles momenta, i.e., to
simply scale under Eq. (2) by AðtÞμαBðtÞμβ ≡ BðtÞσμαþμβ for
some real numbers μα;β. This assumption applies to many
(but not all) collision kernels describing nonthermal attrac-
tors (see Supplemental Material [23] for explicit examples).
Typically, overoccupation singles out terms with the high-
est power of the distribution function, and associated matrix
elements often happen to scale homogeneously under
rescalings of momenta. For such collision kernels, we
can separate time-dependent and (rescaled) momentum-
dependent contributions by substituting the prescaling
ansatz (2) in the Boltzmann equation (3) and using
AðtÞ ¼ BðtÞσ:

BðtÞ1−1=β∞
∂tBðtÞ

¼ 1

D1

¼ ½σ þ p̄ · ∂p̄�fSðp̄Þ
C½fS�ðp̄Þ

; ð4Þ

where p̄ ¼ BðtÞp is the rescaled momentum, 1=β∞ ¼
ð1 − μαÞσ − μβ, and D1 is a separation of variables con-
stant. The intrinsic time dependence of our setup implies
nonzero D1, which can be fixed at any time in the
prescaling evolution, and we choose D1 ¼ βðt0Þ=t0.
The idea of separation of variables in the context of

nonthermal attractors appeared already in [24], but for
homogeneous C½f� only solutions with constant scaling
exponents were considered. Our key observation here is
that prescaling is encapsulated by the general solution

BðtÞ ¼
�
t − t�
tref

�
β∞

≈
�

t
tref

�
β∞�

1 − β∞
t�
t
þ � � �

�
; ð5aÞ

βðtÞ ¼ β∞
t

t − t�
≈ β∞ þ β∞

t�
t
þ � � � : ð5bÞ

From Eq. (5), it is clear that prescaling induces power-law
corrections to scaling. The prescaling originates from the
presence of nonzero t� ¼ t0ð1 − β∞=β0Þ, where t0 and
β0 ≡ βðt0Þ correspond to the initial data. Its appearance
comes as no surprise: The dynamics of the system in
question is time translationally invariant, and, therefore, t
appearing in formulas needs to be measured with respect to
some time t�. The reason why it does not appear in Eq. (1)
is because the exact scaling is an asymptotic late-time
statement and dependence on t� drops. Note that, while β∞
and α∞ are theory specific and independent of initial
conditions, t� will depend on a chosen initial state.
Before we move to testing Eq. (5) using ab initio

solutions of quantum dynamics, let us reiterate that this
result originates from the Boltzmann equation and pertinent
conservation laws. These are exactly the same constraints
as used in a conventional scaling analysis [22]. Prescaling
in the case of collision kernels being homogeneous func-
tionals of momenta can, therefore, be understood as a direct
consequence of the existence of scaling.
Prescaling in large-N vector model.—We begin by

testing Eq. (5) against the full quantum dynamics of a
next-to-leading order (NLO) large-N vector model at small
coupling λ. This model features a dual cascade [22,25]
consisting of an inverse particle cascade in the IR and a
direct energy cascade to the UV. We focus on the IR
scaling, which is characterized by effective particle number
conservation with ðα∞; β∞Þ ¼ ðd=2; 1=2Þ and was also
realized in cold quantum gases [2,4]. This fixed point
arises for large occupations f ∼ 1=λ ≫ 1 such that its
description requires going beyond a standard kinetic theory
analysis. Large-N kinetic theory addresses this regime due
to inclusion of relevant resummations [22,26]. The corre-
sponding collision kernel scales homogeneously with
μα ¼ 1 and μβ ¼ −2 [22].
We perform ab initio studies of this fixed point in 3þ 1

dimensions using the 2PI formalism following [21] to
validate Eq. (5) and the underlying assumptions. Below the
mass gap, the equal-time statistical function Fðt; t; jpjÞ
reduces to fðt; jpjÞ [22], where the system is initialized
with fðt0; jpjÞ ¼ f0θðQ − jpjÞ with f0 ¼ 100=λ, λ ¼ 0.01,
and Q is the characteristic hard scale far from equilibrium.
Following [17], we extract the prescaling factors AðtÞ and
BðtÞ from the time evolution of integral moments of
Fðt; t; jpjÞ [23], e.g., BðtÞ ¼ nðtÞEðt0Þ=½EðtÞnðt0Þ� [27].
In the upper right panel in Fig. 1, we show how rescaling
with AðtÞ and BðtÞ leads to an early collapse of distribu-
tions at different times, while a considerable spread remains
when rescaling with the fixed-point exponents (left panel).
The evolution of the extracted BðtÞ is shown in the lower
panel to be well described by Eq. (5a) already at early times
(dashed black line) and asymptotes only to the correspond-
ing fixed-point scaling behavior (1) (solid green line). The
full NLO quantum dynamics are shown to be captured
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remarkably well by our effective kinetic description of
Eq. (5) already from times close to initialization.
Prescaling in isotropic QCD kinetic theory.—We move

now to studying prescaling dynamics in QCD, whose
nonthermal fixed point plays an important role in our
understanding of thermalization dynamics in weakly
coupled models of ultrarelativistic nuclear collisions [1].
We use QCD kinetic theory, where the evolution of the
color and polarization averaged gluon distribution function
fðt;pÞ is described by 2 ↔ 2 and 1 ↔ 2 processes [28]:
∂tfðt;pÞ ¼ C2↔2½f�ðt;pÞ þ C1↔2½f�ðt;pÞ; see [23,28–30].
Nonthermal fixed points can be reached from a wide
range of initial conditions including large occupation
numbers [31–37], which we implement via fðti;pÞ ¼
n0=g2 exp ½−p2=Q2�. Here, g2 is the square of the coupling
and n0 is the initial occupation. We consider n0 ¼ 1 and
g2 ¼ 10−8. To obtain the precise late-time behavior, we
initialize at tiQ ¼ 0 and evolve for very long times until
tfQ ¼ 108. Results will be given in units of the character-
istic energy scale Q as given by the maximum of
jpj2fðti;pÞ. We discuss explicitly only the pure gluon
simulations where the scaling phenomenon is encountered
after checking that our results do not change under the
inclusion of quark or antiquark dynamics.
A scaling analysis for the vacuum QCD collision

kernel together with energy conservation σ ¼ dþ z ¼ 4
reveals the direct energy cascade fixed point ðα∞; β∞Þ ¼
ð−4=7;−1=7Þ; see [38–40]. However, the overall scaling of
the elastic collision kernel is broken by the presence of the
Debye mass mDðtÞ2∼

R
d3pfðt;pÞ=p∼AðtÞBðtÞ−2m̄2

D that
regulates soft elastic scatterings where m̄2

D ≡mDðt0Þ2 [23].
With α∞; β∞ < 0, the Debye mass decreases over time such
that the violation of scaling leads only to a delay in the
approach to the fixed point. This (diminishing) breaking of

scaling for QCD kinetic theory is demonstrated in Fig. 2,
where we extract βðtÞ (solid color lines) from different
moments of the distribution function [23]. We do not
display αðtÞ explicitly, as we find the scaling relation
αðtÞ=βðtÞ ¼ 4 realized to a very good accuracy. βðtÞ is
observed to approach the fixed-point value β∞ ¼ −1=7
(dashed gray line), but a finite deviation remains due to
mDðtÞ even after 8 orders of magnitude in simulation time.
The decreasing but finite spread between different moments
further demonstrates that different momenta of the distri-
bution function approach the fixed point on different
timescales. A fast convergence of the moments and
collapse to β∞ is, in contrast, found for simulations without
the elastic collision kernel C2↔2 [23]. In the following, we
will study these deviations analytically in a small-angle
scattering approximation of C2↔2.
Effect of scaling-breaking terms in the Fokker-Planck

approximation.—The breaking of scaling inhibits prescal-
ing exponents extracted from different moments to share the
same universal prescaling dynamics. Nevertheless, at quali-
tative level the scaling dynamics can be reasonably modeled
via the Fokker-Planck (FP) approximation [41–43]. This
approach assumes the dominance of small angle scatterings
and has previously been used in the context of nonthermal
attractors [44] and prescaling [19,20]. We will compare our
analytical results from the FP approximation to simulations
using the full QCD collision kernel. The corresponding FP
collision kernel allows us to factorize the scaling-breaking
Coulomb logarithm, which involves the ratio of the UV
scale, the characteristic gluon energy hpi, and the IR scale,
the Debye mass mD:

CFP½f�ðt;pÞ ¼ AðtÞ3
BðtÞ log

� hp̄i
AðtÞ1=2m̄D

�
C̃FP½fS�ðp̄Þ; ð6Þ

where we display only terms relevant for the scaling
analysis [23]. We note that the time dependence due to
the Coulomb log can be identified with the background
term in the formalism of [24]. The FP kernel does not scale
homogeneously, and the solution (5) does not apply.

FIG. 1. Top: statistical function jpj2Fðt; t; jpjÞ from 2PI sim-
ulations of large-N vector model rescaled with (left) fixed-point
exponents ðα∞; β∞Þ ¼ ð3=2; 1=2Þ and (right) with prescaling
factors AðtÞ and BðtÞ, where trefQ ∼ 93. The unrescaled distri-
bution is shown in the inset. Bottom: extracted BðtÞ compared
with Eq. (5a) and asymptotic form.

FIG. 2. Comparison between prescaling exponents extracted
from QCD kinetic theory simulations with scaling-breaking
elastic processes and the analytical prescaling expectation of
Eq. (8) (dashed black line). Displayed are βm¼0;1;2;3ðtÞ computed
from different moments of the distribution function [23].
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However, separation of variables can still be performed, as
the necessary property is factorization in t and p̄ depend-
encies. Upon separating variables with associated constant
D2 [see Eq. (4)] and relating αðtÞ ¼ σβðtÞ as before, we now
obtain

∂tBðtÞ ¼
β0
t0
BðtÞ1−1=β∞

�
1 −

σ

2

log½BðtÞ�
log½hp̄i=m̄D�

�
: ð7Þ

Equation (7) can be directly integrated, but then BðtÞ
appears as an argument of a nontrivial transcendental
function. A more useful approach is to derive from
Eq. (7) a second-order differential equation for βðtÞ:

β̈ðtÞ
βðtÞ ¼

β̇ðtÞ2
βðtÞ2 þ

14β̇

t
−
½7βðtÞ þ 1�2

t2
; ð8Þ

which is directly solved by βðtÞ ¼ β∞ ¼ −1=7. The sol-
ution to Eq. (8) (dashed black line) is shown in Fig. 2 to
capture well the evolution of βðtÞ obtained from solving the
full QCD kinetic theory collision kernel from times shortly
after initialization of the system over more than 8 orders of
magnitude. We obtain this result by solving Eq. (8) with
initial conditions for β̇0 determined consistently from the
full QCD kinetic theory data at t0 [23]. In the inset, we show
that solving Eq. (8) shortly after initialization describes
qualitatively well the late-time dynamics.
With the applicability of Eq. (8) demonstrated in Fig. 2,

we now use it to study the prescaling dynamics in
the vicinity of the fixed point. We can linearize Eq. (8)
in perturbations δβðtÞ around the fixed-point value
β∞ ¼ −1=7, which yields a power-law decay from below
δβðtÞ ∼ −1=t. The full solution to Eq. (8) at late times,
however, turns out to be governed by logarithmic correc-
tions not captured by this linearization procedure. We find
that a consistent late-time solution to Eq. (8) is given by

βðtÞ ≈ β∞ þ
X∞
m¼1

Xm−1

n¼0

βm;n
log½logðtQÞ�n
logðtQÞm þO

�
1

t

�
ð9aÞ

≈β∞
�
1þ 1

logðtQÞ
�
; ð9bÞ

where we used Q as the reference scale but emphasize that
the choice of a constant does not matter at late enough
times. Similar late-time power-law [20] corrections from
linearization and late-time logarithmic [19] corrections
induced by the temporal evolution of the Coulomb
logarithm were found in the FP approximation for the
Baier-Mueller-Schiff-Son [12] fixed point in longitudinal
expanding plasma.
The simple power-law approach to the fixed point found in

the absence of scaling-breaking terms in Eq. (5b) is, there-
fore, enriched to involve both fast (power-law) and slow
(inverse powers of logarithms and slower) behavior. This

discussion is reminiscent of the transseries form [45,46]
for late-time dynamics of the energy-momentum tensor
of matter undergoing longitudinal boost-invariant expan-
sion [47–50]. There slow modes came from relativistic
hydrodynamics and exponentially faster modes from tran-
sient excitations. Here, slow modes come from the Debye
mass breaking the homogeneity of the collision kernel with
respect to rescalings of momenta, and fast modes are the
original prescaling excitations encountered already in (5b).
Similarly to [47–50], it is not difficult to gather finite-order
indications that the series containing slow modes (9a) has a
vanishing radius of convergence with βmþ1;0=βm;0 ∼m [23].
Curiously, the leading (at each m) doubly logarithmic term
behaves geometrically: βmþ1;m=βm;m−1 ¼ −1. It would be
interesting to develop systematic understanding of this
behavior, including resummations of the resulting transs-
eries. A good starting point might be analysis of the Painlevé
I equation in [51,52], which is also second order and exhibits
expansion in three building blocks analogous to our t,
logðtQÞ, and log ½log ðtQÞ�.
In Fig. 3, we visualize the attractive nature of the

prescaling dynamics by extracting prescaling exponents
from different initial conditions. All simulations are initial-
ized with variations in parameters of the class of initial
condition used in this work apart from the data represented
by light blue, which use box initial conditions fðti;pÞ ¼
n0=g2θðQ − jpjÞ. The prescaling exponents extracted from
different simulations are all found to converge to a universal
late-time behavior, which we additionally show is well
described by Eq. (9b) (solid black line). Furthermore, we
want to emphasize the similarity between the behavior
shown in Fig. 3 and hydrodynamic attractors, where differ-
ent solutions converge to a single universal curve which at
sufficiently late times is described by relativistic hydro-
dynamics [47,53,54].
The above analysis has an important bearing on the

appearance of scaling. The regime when the highest-order

FIG. 3. Comparison of prescaling trajectories in QCD kinetic
theory simulations. Solid lines correspond to prescaling expo-
nents extracted from simulations with different initial conditions,
where for visibility only results from the first moment are
displayed.
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terms in the collision kernel dominate parametrically ends
when the typical occupancy becomes of Oð1Þ. This is
realized if tfQ ≥ α−7=4S [13].At that time,wehave a deviation

of δβðtÞ=β∼1= logðα−7=4S Þ≲0.03 with g2¼10−8. As a
consequence of this, QCD kinetic theory will, therefore,
still show percent deviations from the fixed-point values
when the direct energy cascade ceases and ultraviolet modes
jpj=Q ≥ 1 start to thermalize.
Conclusions.—We studied the approach of isotropic and

spatially homogeneous quantum many-body systems to
nonthermal attractors. Our results demonstrate that the
prescaling is governed by a simple first-order ordinary
differential equation obtained from the underlying dynam-
ics via emergent conservation laws.
Our analytical prediction implies that prescaling entails

infinitely many power-law corrections to constant scaling
exponents. They conspire to a simple time offset in the
fixed-point scaling. We have successfully tested our simple
formula for prescaling against ab initio simulations of a
relativistic vector model quantum field theory using 2PI
formalism and QCD kinetic theory simulations. Our QCD
kinetic theory simulations span 8 orders of magnitude in
time and provide the most accurate extraction of scaling
exponents to date.
The exact scaling associated with nonthermal attractors

requires the collision term to be a homogeneous functional
of particle momenta at large occupations. For QCD kinetic
theory, this property is violated by the Debye mass term
that regulates the Coulomb divergence in the elastic
scattering matrix element. We demonstrate that exact
scaling exponents are not reached during the lifetime of
the system. Using the Fokker-Planck approximation to
QCD kinetic theory, we show that the scaling-breaking
Coulomb logarithm significantly enriches the prescaling
dynamics. The late-time behavior is given by a factorial
divergent series that includes inverse powers of logarithms
and positive powers of double logarithms of time. This
constitutes a striking structural similarity with theoretical
descriptions of hydrodynamic attractors in the boost-
invariant models of nuclear collisions.
Our work shows that prescaling is an unavoidable

consequence of nonthermal attractors. Therefore, our ana-
lytical predictions for prescaling can be verified experi-
mentally in cold atom systems. Furthermore, we uncovered
that scaling-breaking terms generate rich prescaling
dynamics that bears similarities to transseries in the context
of hydrodynamic attractors. It would be fascinating to
utilize the enormous degree of control in cold atom systems
to induce scaling-breaking terms and experimentally dis-
cover the phenomenology of transseries.

Note added.—Recently, Ref. [55] appeared and reported
the observation of the prescaling solutions that we derived
in Eq. (5) in an ultracold atom experiment.
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