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We provide a systematic method for nonlinear entanglement detection based on trace polynomial
inequalities. In particular, this allows us to employ multipartite witnesses for the detection of bipartite
states, and vice versa. We identify pairs of entangled states and witnesses for which linear detection fails,
but for which nonlinear detection succeeds. With the trace polynomial formulation a great variety of
witnesses arise from immanant inequalities, which can be implemented in the laboratory through the
randomized measurements toolbox.
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The experimental detection of entanglement is an
ongoing challenge [1–3], for which a key tool are entan-
glement witnesses [4]. These detect some entangled states
by virtue of having a negative expectation value, separating
them from the set of fully separable states, i.e., from convex
combinations of product states. While every entangled state
can be detected by some witness, the construction of
witnesses is not a straightforward task [4] and frequently
relies on making use of specific structure in the state to be
detected [5–12].
Nonlinear entanglement detection has become a recent

focus of attention due to the development of the random-
ized measurement toolbox [13], making local unitary
invariants like partial transpose moments experimentally
accessible through single-copy measurements [14,15].
However, the currently available techniques are limited
and a systematic development of nonlinear witnesses is
desirable. The aim of this Letter is to provide such a
systematic method that is not only suitable for the ran-
domized measurement framework, but also makes a
broader use of known constructions. The basic task we
study is the following: given an entanglement witness W,
can it be employed also in a nonlinear fashion as to detect
entanglement in multiple copies ϱ⊗k?
Here we answer this question in the affirmative. In

particular we show that (i) having access to multiple copies
of the state, it is possible to detect entanglement locally,
where the size of states and witnesses can be different
(Observation 1 and Figs. 2 and 3); (ii) that there exist pairs
of states and witnesses for which linear entanglement
detection fails, but for which nonlinear detection succeeds
(Observation 2); and (iii) that there is a large class of
nonlinear witnesses arising from trace polynomial inequal-
ities (Fig. 4). These can analytically be treated in the group
ring CSn and are experimentally accessible through ran-
domized measurements [13].

Nonlinear entanglement witnesses.—A quantum state is
called separable if it can be written as a convex combination
of product states,

ϱ ¼
X
i

piϱ
ð1Þ
i ⊗ ϱð2Þi ⊗ … ⊗ ϱðnÞi ; ð1Þ

and entangled otherwise. Entanglement detection with
a witness works in the following way: to detect an
entangled state ϱent, a witness is an observable W such
that trðWϱentÞ < 0 holds, while trðWϱSEPÞ ≥ 0 for all
separable states ϱSEP ∈SEP. In this way, W acts as a
hyperplane, separating a subset of entangled states from the
rest. We call this linear detection, in contrast to nonlinear
detection introduced below. This is illustrated in Fig. 1.

FIG. 1. Linear versus nonlinear entanglement detection. A lin-
ear witness W defines a hyperplane in the state space, separating
some entangled states (green area) from the rest; a nonlinear
witness W cuts the state space analogously in a nonlinear
hypersurface, thus detecting a different set of entangled states
(blue area).
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How can one find nonlinear witnesses W? A range of
methods are based on spin-squeezing inequalities and
purity inequalities [16–19], nonlinear corrections to linear
witnesses [20], and multicopy scenarios which show
surprising entanglement activation properties [21]. In a
multicopy scenario, one asks that a witness satisfies
trðWϱ⊗k

ent Þ < 0, while trðWϱ⊗k
SEPÞ ≥ 0 for all separable

states ϱSEP ∈SEP. Setting k ¼ 1 then recovers the standard
use of witnesses.
Our approach here is to take a tensor product of linear

witnesses,

W ¼ W1 ⊗ … ⊗ Wn: ð2Þ

Naturally, the expectation values need to be computed in a
manner such that the dimensions of W and ϱ⊗k match (see
Fig. 2 for a detailed explanation). For example, for a
tripartite state ϱABC, take the tensor product of three
bipartite witnesses,

W ¼ UAA0 ⊗ VBB0 ⊗ WCC0 : ð3Þ

Then, the expression

hWiϱ⊗2 ¼ trðWðϱABC ⊗ ϱA0B0C0 ÞÞ ð4Þ

is non-negative if ϱ is separable. At first sight, it may not be
clear why Eq. (4) can detect entanglement, since the
witnesses act along the cuts AjA0, BjB0, and CjC0 and
ϱ⊗2
ABC is separable in the cut ABCjA0B0C0. This apparent

contradiction is resolved by realizing that the tensor
product of witnesses for AjA0, BjB0, CjC0 is not necessarily
a witness for ABCjA0B0C0. The following shows that this
method can indeed work:
Observation 1.—Bipartite witnesses can be used to

detect multipartite entangled states nonlinearly.

To see this take the two-qubit witnesses [22]

W ¼ 1 − X ⊗ X − Z ⊗ Z; V ¼ jϕþihϕþjΓ; ð5Þ

where Γ is the partial transpose and jϕþi ¼
ðj00i þ j11iÞ= ffiffiffi

2
p

; and the Greenberger-Horne-Zeilinger
state φ¼jGHZihGHZj with jGHZi¼ðj000iþj111iÞ= ffiffiffi

2
p

.
Then

trððWAA0 ⊗ WBB0 ⊗ VCC0 ÞðφABC
⊗2ÞÞ ¼ −1=2: ð6Þ

An example with k ¼ n is the detection of the Bell state
jψþi ¼ ðj01i þ j10iÞ= ffiffiffi

2
p

, where the witnesses of Eq. (5)
give hW ⊗ Viψþ⊗2 ¼ −1=2.
Entanglement concentration.—If in Eq. (2) we replace

some witnesses Wi by positive semidefinite operators Pi,
the expectation value with respect to k copies of an n-qudit

FIG. 2. Sketch of the entanglement concentration scheme.
Expressions of the type hW ⊗ Piϱ⊗2 can be obtained by first
measuring two copies of Bob’s subsystems (in red), and then two
copies of Alice’s subsystems (in blue). When ϱ ¼ jψihψ j is a
pure state such that jψi ¼ 1 ⊗ Sjϕþi with S invertible, Bob can
teleport his part of ϱ to Alice by using P ¼ jφihφj with
jφi ¼ 1 ⊗ S†−1jϕþi. Then standard linear witness evaluation
trðWjψihψ jÞ is obtained as a particular case of the nonlinear
method proposed in this Letter.

FIG. 3. Nonlinear detection of noisy four- (top) and ten-partite
(bottom) GHZ states. Shown are the detection curves with k ¼
2; 3;…; 10 copies of noisy n-partite GHZ states shared among an
even number of parties n with local dimension d (top n ¼ 4;
bottom n ¼ 10). We assume d ≥ k as otherwise the antisymmetr-
izer vanishes. All states with positive partial transpositions (PPT)
are in the orange region, and hence states outside are entangled;
the green-blue regions are states that are detected by Eq. (10) with
W ¼ 1 − k!P1k and W ¼ W ⊗ P⊗n−1

1k
, even though trðWϱÞ ≥ 0.

Entangled states that are not detected by W are in the white
region, suggesting that detection gains robustness with the
number of copies. The dashed line denotes the detection thresh-
old by the P3-PPT criterion proposed in [15].
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separable state remains non-negative. The following obser-
vation shows that this way, a witness with non-negative
expectation value with respect to a certain entangled state
can detect its entanglement.
Observation 2.—There exist pairs of states ϱ and

witnesses W for which trðWϱÞ ≥ 0, but for which there
is P ≥ 0 such that

trððW ⊗ PÞϱ⊗kÞ < 0: ð7Þ

In short: linear entanglement detection with W fails, but
nonlinear detection with W ⊗ P succeeds.
Consider the n-qudit Greenberger-Horne-Zeilinger state

jGHZi ¼ ð1= ffiffiffi
d

p ÞPd−1
i¼0 jii⊗n affected by white noise,

ϱ ¼ pjGHZihGHZj þ 1 − p
dn

1; ð8Þ

whose experimental generation and detection plays a
central role in quantum computing and communication
tasks [23–25]. Take the n-qudit witness

W ¼ 1 − n!P1n ; ð9Þ

where P1n is the projector onto the fully antisymmetric
subspace of n qudits. The state ϱ has a nonpositive partial
transpose (and thus is entangled) for p > 1=ð1þ dn−1Þ
[26,27].
While trðWϱÞ ≥ 0, given W ¼ ð1 − k!P1kÞ ⊗ P⊗n−1

1k

one verifies that

trðWϱ⊗kÞ < 0 ð10Þ

for a range of values of p (see Fig. 3).
With this perspective, one can generalize Eq. (2) and

evaluate n observables Oi ∈L½ðCdÞ⊗k� on k copies of
ϱ∈L½ðCdÞ⊗n� as

tr½ðO1 ⊗ … ⊗ OnÞϱ⊗k�; ð11Þ

thus certifying that ϱ is entangled if the result is negative
and the operators Oi are either positive semidefinite
operators or witnesses (see Fig. 2 for an example). This
way of combining positive operators and witnesses can be
understood as follows: suppose Alice and Bob share two
copies of an entangled state ϱAB and ϱA0B0 . If Bob measures
1AA0 ⊗ PBB0 , then with probability trðPϱB ⊗ ϱB0 Þ, the state
on Alice’s side reads

ξAA0 ¼ trBB0 ðð1AA0 ⊗ PBB0 ÞðϱAB ⊗ ϱA0B0 ÞÞ
trðPϱB ⊗ ϱB0 Þ ; ð12Þ

where ϱB ¼ trAðϱABÞ. If Alice measures trðWξÞ < 0 for
some witness W, then ϱ is entangled. In this case, Bob’s
measurement has concentrated the entanglement of ϱ⊗2

present in the partition AA0jBB0 into the subsystem AA0.
This procedure is illustrated in Fig. 2.
For most pure states, this procedure of entanglement

concentration on Alice’s side can be understood in terms of
entanglement swapping as follows. Suppose ϱ is a pure
state jψi ¼ 1 ⊗ Sjϕþiwhere the matrix S is invertible with
trðSS†Þ¼1 and jϕþi ¼ P

d−1
i¼0 jiii=

ffiffiffi
d

p
[28]. Then, by pro-

jecting BB0 onto the state jφi ¼ 1 ⊗ S†−1jϕþi, Bob (BB0)
effectively teleports his part of jψi to Alice (AA0) with
nonzero probability using a second copy of the shared state
jψi itself. When then Alice measures a witness W the
protocol reduces to standard linear detection, evaluat-
ing trðWjψihψ jÞ.
Trace polynomial witnesses.—How can one find suitable

nonlinear witnesses that are simple to work with experi-
mentally? Here we focus on trace polynomials, due to the
fact that these are experimentally accessible through the
randomized measurement toolbox [13]. A systematic con-
struction of symmetric trace polynomials arises as follows:
matrix inequalities such as the Hadamard inequality,

Yn
i¼1

Aii ≥ detðAÞ ð13Þ

for any n × n positive semidefinite matrix A, have been a
long-standing topic of investigation [29,30]. In particular,
the so-called immanant inequalities generalize Eq. (13) and
provide a large supply of n-partite linear witnesses of the
form [31]

W ¼
X
σ ∈ Sn

aσηdðσÞ; ð14Þ

where aσ ∈C and ηdðσÞ is the representation of σ ∈ Sn
permuting the n tensor factors of ðCdÞ⊗n,

ηdðσÞji1i ⊗ … ⊗ jini ¼ jiσ−1ð1Þi ⊗ … ⊗ jiσ−1ðnÞi: ð15Þ

How to transform matrix inequalities to witnesses in the
symmetric group algebra over the complex numbers,
CSn ¼ fPσ ∈ Sn aσσjaσ ∈Cg, is sketched in [31]. For
example, from Eq. (13) one obtains the n-qudit witness
of Eq. (9). A few standard immanant inequalities and their
corresponding witnesses are listed in Table I.
By recycling linear witnesses or positive operators

Oi ∈CSk arising from immanant inequalities and using
them in the nonlinear way of Eq. (11), the resulting
nonlinear witness W ¼ O1 ⊗ … ⊗ On has interesting
features. Its expectation value hWiϱ⊗k is a homogeneous
polynomial of degree k in ϱ, acting on the copies of
subsystems as trace polynomials [32,33]. Since by the
Schur-Weyl duality the action of the symmetric group Sk
commutes with that of k-fold tensor products X⊗k, the
expression hWiϱ⊗k is a local unitary invariant. Similarly to
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the recently introduced P3-PPT condition and other local
unitary invariant quantities [14,15], trace polynomial wit-
nesses can experimentally be measured using the ran-
domized measurements approach. There local projective
measurements in random bases allow us to estimate the
expectation value of k-copy observables [13,34]. This way,
trace polynomial witnesses can be evaluated with classical
postprocessing by matrix multiplication, thus avoiding
storing large tensor products of matrices.
Insights into the strength of this approach can be

obtained using Haar integration (Theorem 4.3 in [35]).
This allows us to compute the average expectation value of
nonlinear trace polynomial witnesses with respect to Haar
random states jψi∈Cd with d ¼ d1 � � �dn over the Haar
measure dμ,

E½hWiψ � ¼
Z
U∈UðdÞ

trðWUjψihψ jU†ÞdμðUÞ: ð16Þ

For example, entanglement concentration of a Haar-
random n-partite state jψiwith n even and the witnessW ¼
1 − k!P1k in Eq. (9) yields a negative value on average.
This approach also allows us to design separability

criteria based on the spectra of the state and its reductions.
For example, if a state ϱ∈Cd ⊗ Cd with rankðϱÞ < d has a
maximally mixed marginal, then it is entangled.
Testing with Werner states.—The exponential growth of

the Hilbert space with the number of subsystems limits our
capability to numerically test this approach. Using trace
polynomial witnesses W ∈CSk allows us to sample states
and witnesses of nontrivial sizes with a symbolic algebra
package, which is computationally cheaper than computing
the expectation value of exponentially large matrices.
Sampling states and witnesses symbolically relies on group
ring states and can be summarized as follows. On the
symmetric group Sn, a trace can be defined as

τðσÞ ¼
�
n! if σ ¼ id;

0 else:
ð17Þ

Reference [8] showed that given r∈ Sn with support only in
ðker ηdÞ⊥ and b∈CSn, it holds that

n!trðWgðd; nÞηdðrÞηdðbÞÞ ¼ τðrbÞ; ð18Þ

where Wgðd; nÞ is the Weingarten operator [36,37]. This
equality allows us to compute in CSn expectation values of
the form (11) avoiding the exponential growth of the
number of parameters with the local dimension d. Let us
focus on the system size k ¼ n ¼ d ¼ 3. While a desktop
computer cannot evaluate Eq. (11) in the Hilbert space
ðC3Þ⊗9, the fact that the nine-qutrit state factorizes as ϱ⊗3

makes this computation possible in ðCS3Þ×3 symbolically.
For example, the expectation value of hWiϱ⊗3 where W ¼
W⊗2 ⊗ P21 with W ¼ P3 − ðP21=4Þ, evaluated on random
Werner states is shown in Fig. 4. The results suggest that
the detection of random states depends on their component
within each irreducible subspace.
Evaluating positive maps.—Using variations of Eq. (11)

one can detect nonpositive outcomes of positive maps
applied locally. For example one can evaluate the reduction
criteria [38] via purity conditions [16] with Eqs. (9) and
(10), and detect nonpositivity of the partial transpose Γ of a
state ϱ via

trððϕþ ⊗ VÞðϱ ⊗ σÞÞ ¼ trðϱΓσÞ ð19Þ

FIG. 4. Detection of three qutrit random Werner states using
three copies. We represent, in colored dots, a sample of 5000
random Werner states ϱ. The horizontal and vertical axes show
their projections onto the antisymmetric and symmetric sub-
spaces, respectively, p ¼ trðϱP111Þ and q ¼ trðϱP3Þ, such that
trðϱP21Þ ¼ 1 − p − q. States below (above) the analytical dashed
line are detected (not detected) linearly as hWiϱ < 0 (hWiϱ ≥ 0).
The color gradient represents the expectation value hWiϱ⊗3 with
W ¼ W⊗2 ⊗ P21, where W ¼ P3 − ðP21=4Þ is a witness. This
suggests that states with a larger component in the antisymmetric
subspace are better detected by W.

TABLE I. Immanant inequalities and their corresponding wit-
nesses. Listed are immanant inequalities and their corresponding
entanglement witnesses. Here χλ is the character of the irreducible
representation of the symmetric group Sn labeled by the partition
λ⊢n; and Pλ are Young projectors. The Hook inequalities hold for
hook tableaux with shape λ¼ðj;1n−jÞ and then λ0¼ðj−1;1n−jþ1Þ.
The permanent dominance inequality is conjectured but has not
yet been proven [29].

Name Inequality Witness

Hadamard
Q

i Aii ≥ detðAÞ 1 − n!P1n

Schur ½immλðAÞ=χλðidÞ� ≥ detðAÞ ½Pλ=χ2λðidÞ� − P1n

Hook ½immλðAÞ=χλðidÞ� ≥
½immλ0 ðAÞ=χλ0 ðidÞ�

½Pλ=χ2λðidÞ�−
½Pλ0=χ2λ0 ðidÞ�

Marcus perðAÞ ≥ Q
i Aii n!Pn − 1

Permanent perðAÞ ≥ ½immλðAÞ=χλðidÞ� Pn − ½Pλ=χ2λðidÞ�
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if σ lies in a negative eigenspace of ϱΓ. In this sense, our
method relates to the existence problem of nondecompos-
able tensor stable maps, which remain positive under tensor
powers [39,40], as follows: there exists a nondecomposable
tensor stable map, if and only if, there exists a bipartite
witnessW such thatW⊗n cannot detect any pair of n-partite
states ϱ and σ. This is because a nondecomposable mapΦW
is tensor stable if and only if

ΦW
⊗nðρÞ ¼ tr1½W⊗nðρT ⊗ 1dÞ� ≥ 0 ð20Þ

for any n-partite state ϱ, where W is a witness for states
with positive partial transpose (see Chapter 11 of [41]
and references therein); which is true if and only if the
expectation value ofΦW

⊗nðρÞ for any other n-partite state σ
is non-negative.
Conclusions.—Our approach shows how entanglement

witnesses can be recycled in nonlinear fashion, thus
increasing the range of applicability of a given witness.
In particular, this approach is suitable to randomized
measurements [14,42,43], trace polynomials being natu-
rally invariant under local unitaries.
Some open questions remain: How can one tailor non-

linear witnesses to specific states? The Keyl-Werner theo-
rem [44] and subsequent work [45] suggest that it is
possible to choose witnesses according to the spectra of
the reductions of the state in hand. While here we provide a
first step in this direction, a systematic approach is yet
missing. Lastly, it would be interesting to make use of
matrix inequalities involving elementary symmetric poly-
nomials [29], which might be more powerful than the
particular case of immanant inequalities.
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[34] Z. Liu, P. Zeng, Y. Zhou, and M. Gu, Characterizing
correlation within multipartite quantum systems via local
randomized measurements, Phys. Rev. A 105, 022407
(2022).

[35] R. Kueng, Quantum and classical information processing
with tensors, Caltech CMS Lecture Notes 6 (2019).

[36] B. Collins and P. Śniady, Integration with respect to the Haar
measure on unitary, orthogonal and symplectic group,
Commun. Math. Phys. 264, 773 (2006).

[37] C. Procesi, A note on the Formanek Weingarten function,
Note Mat. 41, 69 (2021).

[38] M. Horodecki and P. Horodecki, Reduction criterion of
separability and limits for a class of distillation protocols,
Phys. Rev. A 59, 4206 (1999).

[39] A.Müller-Hermes, D. Reeb, andM.Wolf, Positivity of linear
maps under tensor powers, J. Math. Phys. (N.Y.) 57 (2015).

[40] M. van der Eyden, T. Netzer, and G. D. les Coves, Halos and
undecidability of tensor stable positive maps, J. Phys. A 55,
264006 (2022).

[41] I. Bengtsson and K. Życzkowski, Geometry of
Quantum States: An Introduction to Quantum Entanglement
(Cambridge University Press, Cambridge, England, 2006).

[42] H.-Y. Huang, R. Kueng, and J. Preskill, Predicting many
properties of a quantum system from very few measure-
ments, Nat. Phys. 16, 1050 (2020).

[43] N. Wyderka, A. Ketterer, S. Imai, J. L. Bönsel, D. E. Jones,
B. T. Kirby, X.-D. Yu, and O. Gühne, Complete characteri-
zation of quantum correlations by randomized measure-
ments, Phys. Rev. Lett. 131, 090201 (2023).

[44] M. Keyl and R. F. Werner, Estimating the spectrum of a
density operator, Phys. Rev. A 64, 052311 (2001).

[45] M. Christandl and G. Mitchison, The spectra of quantum
states and the Kronecker coefficients of the symmetric
group, Commun. Math. Phys. 261, 789 (2005).

PHYSICAL REVIEW LETTERS 132, 070202 (2024)

070202-6

https://doi.org/10.1088/2399-6528/ac1df7
https://doi.org/10.1088/1367-2630/12/5/053002
https://doi.org/10.1088/1367-2630/12/5/053002
https://doi.org/10.26421/QIC10.9-10-8
https://doi.org/10.26421/QIC10.9-10-8
https://doi.org/10.2307/1994120
http://www.bjadres.nl/MathQuantWorkshop/Slides/SymmWernerHandout.pdf
http://www.bjadres.nl/MathQuantWorkshop/Slides/SymmWernerHandout.pdf
http://www.bjadres.nl/MathQuantWorkshop/Slides/SymmWernerHandout.pdf
http://www.bjadres.nl/MathQuantWorkshop/Slides/SymmWernerHandout.pdf
https://doi.org/10.1063/5.0028856
https://doi.org/10.1007/s00023-021-01095-4
https://doi.org/10.1007/s00023-021-01095-4
https://doi.org/10.1103/PhysRevA.105.022407
https://doi.org/10.1103/PhysRevA.105.022407
https://doi.org/10.7907/my9r-p178
https://doi.org/10.1007/s00220-006-1554-3
https://doi.org/10.1285/i15900932v41n1p69
https://doi.org/10.1103/PhysRevA.59.4206
https://doi.org/10.1063/1.4927070
https://doi.org/10.1088/1751-8121/ac726e
https://doi.org/10.1088/1751-8121/ac726e
https://doi.org/10.1038/s41567-020-0932-7
https://doi.org/10.1103/PhysRevLett.131.090201
https://doi.org/10.1103/PhysRevA.64.052311
https://doi.org/10.1007/s00220-005-1435-1

