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Nonsignaling boxes (NS) are theoretical resources defined by the principle of no-faster-than-light
communication. They generalize quantum correlations and some of them are known to collapse
communication complexity (CC). However, this collapse is strongly believed to be unachievable in
nature, so its study provides intuition on which theories are unrealistic. In the present Letter, we find a better
sufficient condition for a nonlocal box to collapse CC, thus extending the known collapsing region. In some
slices of NS, we show this condition coincides with an area outside of an ellipse.
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Entanglement is a fascinating relation linking pairs of
particles. It was experimentally confirmed in the late 20th
century [1–3], and it has the striking property of “non-
locality”: two entangled particles, although being very
distantly separated, provide strongly correlated results
when their state is measured, yet the result of those
measurements could not be known ahead of time [4,5].
Nevertheless, this powerful nonlocality described by

quantum mechanics is limited by Tsirelson’s famous
bound [6]. It is then natural to wonder if there could exist
amore general theory than quantummechanics to accurately
describe the world, with more powerful nonlocality than
quantumentanglement. To that end, the common framework
is the one of nonlocal boxes (NLBs) [7]. An NLB is a
theoretical tool that generalizes the notions of shared
randomness, quantum correlation, and nonsignaling corre-
lation.As drawn in Fig. 1, anNLBhas two input bits and two
outputs bits. Alice has access only to the left side and Bob to
the right side. Immediately after inputting x in the box, Alice
receives a, whether or not Bob has already input his bit y.
More formally, an NLB is characterized by a conditional
distribution Pða; bjx; yÞ that satisfies the nonsignaling
conditions [7,8]

P
b̃ Pða; b̃jx; 0Þ ¼

P
b̃ Pða; b̃jx; 1Þ andP

ã Pðã; bj0; yÞ ¼
P

ã Pðã; bj1; yÞ for all a;b;x;y∈f0;1g.
Denote by NS the set of all NLBs, which is an eight-
dimensional convex set with finitely many extremal
points [9,10].
Among the most famous boxes, there is the PR box,

introduced by Popescu and Rohrlich [7], taking value 1=2 if
a ⊕ b ¼ xy, and 0 otherwise, where the symbol⊕ denotes
the sum modulo 2. Note that this box is designed to
perfectly win at the Clauser-Horne-Shimony-Holt (CHSH)
game [5]. In this Letter, we will also use the PR0 box, taking
value 1=2 if a ⊕ b ¼ ðx ⊕ 1Þðy ⊕ 1Þ, and 0 otherwise,
which perfectly wins at CHSH0 [11] [same game as CHSH

but with the rule a ⊕ b ¼ ðx ⊕ 1Þðy ⊕ 1Þ]. In addition, we
will use the fully random box I, taking value 1=4 for all
inputs and outputs, and the shared randomness box SR,
taking value 1=2 if a ¼ b, and 0 otherwise, independent of
the entries x and y. Note that SR is nothing more than a
shared random bit. A bar above a box means that the
behavior is the opposite one: P̄ ≔ 1 − P.
The notion of communication complexity (CC) was

introduced by Yao [12] and was widely studied in the late
20th century [13,14]. It can be viewed as a game as
presented in Fig. 1. The communication complexity
CCðfÞ of f is defined as the minimal amount of commu-
nication bits required to win at this game for any question

FIG. 1. Communication complexity game. Lowercase letters
a; a0; b; x; y are bits and capital letters are strings: X∈ f0; 1gn,
Y ∈ f0; 1gm, and B∈ f0; 1gk. Let f∶ f0; 1gn × f0; 1gm → f0; 1g
be known. Once the game starts, Alice and Bob are spacelike
separated and the referee sends them the respective strings X and
Y. The goal is that Alice answers a bit a0 such that a0 ¼ fðX; YÞ.
To achieve it, Bob is allowed to send some communication bits to
Alice, but these bits are costly so he wants to send as few as
possible. They may also use as many copies as they want of
an NLB.
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strings X and Y. One can see that CCðfÞ ≤ m always, and
that CCðfÞ ≥ 1 if f is not constant in Y. There exists also a
probabilistic version of CC [15], in which Alice is allowed
to make some mistakes: CCpðfÞ (for some p∈ ½0; 1�) is
defined as the minimal amount of communication bits
required to win with probability ≥ p, for any X and Y. Note
that CC1=2ðfÞ ¼ 0 for any f, using the strategy in which
Alice always answers a uniformly random bit a0 ∈ f0; 1g.
We say that CC “collapses” (or that it is trivial) when a
single bit of communication is enough and that the error is
bounded, i.e., when there exists p > 1=2 such that for all f
we have CCpðfÞ ≤ 1. This is strongly believed to be
impossible in nature since it would imply the absurdity
that a single bit of communication is sufficient to distantly
compute any f [15–18].
Thus, the study of such a collapse helps one to understand

why some correlations are not allowed in quantummechan-
ics. In the past two decades, some boxes were shown to be
collapsing, i.e., to collapse CC, see Fig. 2. However, there is
still a major open question: do the other NLBs also collapse
communication complexity? In the present Letter, after
generalizing the BBLMTU protocol [15] (named after the
authors’ initials), we find a new sufficient condition that
analytically extends the region of collapsing boxes, thus
partially answering the open question.
Protocols.—We define by induction a sequence of pro-

tocols ðPkÞk≥0 generalizing the BBLMTU protocol [15],
the main difference being that we add local uniformity.
Local uniformization: We say that a box P∈NS

is “locally uniform” if, on each player’s side, the box
always outputs uniformly random bits: PðajxÞ ¼ 1=2
and PðbjyÞ ¼ 1=2 for any a; b; x; y∈ f0; 1g, where
PðajxÞ ≔ P

b Pða; bjx; yÞ is independent of y by non-
signaling and similarly for PðbjyÞ. The local uni-
formity will be useful many times in later computations.
However, some boxes P are not locally uniform, e.g.,
P ¼ ½ðPRþ P0Þ=2�∈NS, where P0 is the box that always

answers (0,0) independent of the entries ðx; yÞ. This is why
Alice and Bob use a “trick”: from P and a shared random
bit r, they simulate another box P̃∈NS by adding r to the
outputs of P. That way, the new box P̃ is indeed locally
uniform, and importantly, it has the same bias ηxy as the
initial box P for all x, y,

Pða ⊕ b ¼ xyjx; yÞ ¼ P̃ða0 ⊕ b0 ¼ xyjx; yÞ ¼ 1þ ηxy
2

;

where ηxy ∈ ½−1; 1� is defined as ηxy ≔ 2Pða ⊕ b ¼
xyjx; yÞ − 1 ¼ 2

P
c Pðc; c ⊕ xyjx; yÞ − 1.

Protocol P0: Fix a Boolean function f∶ f0; 1gn ×
f0; 1gm → f0; 1g and strings X∈ f0; 1gn and Y ∈ f0; 1gm.
The goal of the protocol is to perform a “distributed
computation” of f [16], i.e., to find bits a; b∈ f0; 1g
known by Alice and Bob, respectively, such that

a ⊕ b ¼ fðX; YÞ: ð1Þ

Assume Alice and Bob share uniformly random variables
Z∈ f0; 1gm and r∈ f0; 1g. Upon receiving her string X,
Alice produces a bit a ≔ fðX; ZÞ ⊕ r. As for Bob, if he
receives a string Y that is equal to Z, then he sets b ≔ r;
otherwise, he generates a local random variable rB and sets
b ≔ rB. Now, separating the cases Y ¼ Z and Y ≠ Z, the
distributed computation (1) is achieved with probability

p0 ≔ Pð1Þ ¼ 1

2m
þ 1

2

�
1 −

1

2m

�
¼ 1

2
þ 1

2mþ1
>

1

2
:

Because of the shared random bit r, note that the bit a is
locally uniform: PðajXÞ ¼ 1=2 for all a, X, and similarly
for b. In total, this protocol uses mþ 1 shared random bits.
Protocol P1: As in P0, we fix f, X, and Y, and we try

to obtain the distributed computation (1) with a better
probability p1 > p0. To that end, we realize four steps.

FIG. 2. Historical overview of collapsing boxes, drawn in the slice ofNS passing through PR and SR and I. Red and purple represent,
respectively, the noncollapsing and the collapsing boxes. In blue is drawn the region of boxes for which we do not know yet if they
collapse communication complexity. See Refs. [22–31] for impossibility results and others.
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(a) We use the protocolP0 independently three times and
obtain three pairs ða1; b1Þ; ða2; b2Þ; ða3; b3Þ such that

ai ⊕ bi ¼
�
fðX; YÞ with prob: p0;

fðX; YÞ ⊕ 1 with prob: 1 − p0;

for i ¼ 1, 2, 3. Note that this is a repetition code that will be
decoded in (b) using a majority vote.
(b) The majority function Maj∶ f0; 1g3 → f0; 1g is the

function that outputs the most-appearing bit in its entries,
i.e., Majðα; β; γÞ ¼ 1αþβþγ≥2, where 1 is the indicator
function. The equality

fðX; YÞ ¼ Majða1 ⊕ b1; a2 ⊕ b2; a3 ⊕ b3Þ ð2Þ

occurs if and only if at least two of the equations fðX; YÞ ¼
ai ⊕ bi (i ¼ 1, 2, 3) hold. Denote ei ≔ ai ⊕ bi ⊕ fðX; YÞ,
and notice that ei ¼ 0 if and only if ai ⊕ bi ¼ fðX; YÞ for
fixed i, so that Eq. (2) is equivalent to Majðe1; e2; e3Þ ¼ 0.
But the ei’s are independent and Pðei¼αÞ¼p1−α

0 ð1−p0Þα
for α ¼ 0, 1, so equality (2) holds with probability

Pð2Þ ¼
X

α;β;γ ∈ f0;1g
such that Majðα;β;γÞ¼0

Pðe1 ¼ αÞPðe2 ¼ βÞPðe3 ¼ γÞ

¼
X

α;β;γ ∈ f0;1g
such that Majðα;β;γÞ¼0

p3−α−β−γ
0 ð1 − p0Þαþβþγ:

(c) Now, we try to distributively compute the majority
function. Observe that

Majða1 ⊕ b1; a2 ⊕ b2; a3 ⊕ b3Þ
¼ Majða1; a2; a3Þ ⊕ Majðb1; b2; b3Þ ⊕ r1s1 ⊕ r2s2;

where r1 ≔ a1 ⊕ a2, s1 ≔ b2 ⊕ b3, r2 ≔ a2 ⊕ a3, and
s2 ≔ b1 ⊕ b2. To distributively compute the two products
rjsj (j ¼ 1, 2), Alice and Bob use two copies of their
locally uniform box P̃, see Fig. 3. They obtain pairs of
bits ða01; b01Þ and ða02; b02Þ such that a0j ⊕ b0j ¼ rjsj with

bias ηrj;sj . Consider the events Eα;β;γ ≔ ðe1 ¼ α, e2 ¼ β,
e3 ¼ γ) and Fδ;ε;ζ;θ ≔ ðr1 ¼ δ, r2 ¼ ε, s1 ¼ ζ, s2 ¼ θ),
where the greek letters are in f0; 1g. On the one hand, under
Eα;β;γ and Fδ;ε;ζ;θ, we see that the equality

r1s1 ⊕ r2s2 ¼ ða01 ⊕ b01Þ ⊕ ða02 ⊕ b02Þ ð3Þ

holds if and only if both of the equations rjsj ¼ a0j ⊕ b0j
hold (j ¼ 1, 2) or if none of them hold (because errors
cancel out: 1 ⊕ 1 ¼ 0). Hence, this equality holds with a
bias ηδ;ζηε;θ,

P
�
Eq: ð1ÞjEαβγ; Fδεζθ

�
¼ 1þ ηδ;ζηε;θ

2
; ð4Þ

(conditional to knowing X and Y as well). On the other
hand, seeing that the definitions of rj and sj lead to the
relations s1 ¼ r2 ⊕ e2 ⊕ e3 and s2 ¼ r1 ⊕ e1 ⊕ e2, and
using the independence of the ai’s and their local uniform
distribution in P0, direct computations yield that

PðFδ;ε;ζ;θjEα;β;γÞ ¼
1

4
1ζ¼β⊕γ⊕ε1θ¼α⊕β⊕δ: ð5Þ

Therefore, summing the products of (4) and (5) over all
δ; ε; ζ; θ∈ f0; 1g, we obtain

P
�
Eq: ð1ÞjEαβγ

�
¼

X
δ;ε∈ f0;1g

1þ ηδ;β⊕γ⊕εηε;α⊕β⊕δ

8
: ð6Þ

Hence, we obtain a distributed computation of the majority
function as follows:

Majða1 ⊕ b1; a2 ⊕ b2; a3 ⊕ b3Þ ¼ ðMajða1; a2; a3Þ ⊕ a01 ⊕ a02Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≕ ã

⊕ ðMajðb1; b2; b3Þ ⊕ b01 ⊕ b02Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≕ b̃

; ð7Þ

with probability
P

δ;εð1þ ηδ;β⊕γ⊕εηε;α⊕β⊕δÞ=8.
(d) Using steps (b) and (c), we obtain that the equality

fðX; YÞ ¼ ã ⊕ b̃ ð8Þ

holds if and only if both (2) and (7) hold or if none of them hold. This happens with probability

FIG. 3. Distributively compute the products r1s1 and r2s2 with
probability bias ηr1;s1 and ηr2;s2 , respectively.
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p1 ≔ Pð9Þ ¼ Pðð2Þ ∧ ð7ÞÞ þ Pð¬ð2Þ ∧ ¬ð7ÞÞ

¼
X

α;β;γ;δ;ε∈ f0;1g
p3−α−β−γ
0 ð1 − p0Þαþβþγ

1þ ð−1ÞMajðα;β;γÞηδ;β⊕γ⊕εηε;α⊕β⊕δ

8
:

where the sign þ from Eq. (6) was changed
here into ð−1ÞMajðα;β;γÞ because Pð¬ð7ÞÞ ¼ P

δ;εð1−
ηδ;β⊕γ⊕εηε;α⊕β⊕δÞ=8, and this case exactly corresponds to
the case where Majðe1; e2; e3Þ ¼ 1. Hence, we constructed
a protocol P1 based on P0, and its probability of achieving
(1) is p1. We will find in the next section a sufficient

condition for which p1 > p0. In total, this protocol uses
3ðmþ 2Þ − 1 shared random bits and two copies of P.
Protocol Pkþ1 (k ≥ 1): We proceed as in P1. We build

Pkþ1 after performing Pk three times. In total, the protocol
Pkþ1 uses 3kþ1ðmþ 2Þ − 1 shared randombits and 3kþ1 − 1
copies ofP, and it distributively computesfwith probability

pkþ1 ¼
X

α;β;γ;δ;ε∈ f0;1g
p3−α−β−γ
k ð1 − pkÞαþβþγ

1þ ð−1ÞMajðα;β;γÞηδ;β⊕γ⊕εηε;α⊕β⊕δ

8
:

Result.—The probability bias associated with pkþ1 is
μkþ1 ≔ 2pkþ1 − 1 and it can be expressed as μkþ1 ¼ FðμkÞ,
with

FðμÞ ≔ μ

16

�
Aþ B − μ2ðA − BÞ

�
;

where A ≔ ðη0;0 þ η0;1 þ η1;0 þ η1;1Þ2 and B ≔ 2η20;0 þ
4η0;1η1;0 þ 2η21;1, where ηxy was introduced above as the
probability bias of the box P. Note that 0 ≤ A ≤ 16 and
−8 ≤ B ≤ 8 because jηx;yj ≤ 1 for all x, y.
Theorem 1: Sufficient condition.—Nonlocal boxes for

which Aþ B > 16 collapse communication complexity.
Proof.—Assume Aþ B > 16; this inequality has three

consequences.
(a) First, it gives A − B > 16 − 2B ≥ 0 so that F admits

exactly three distinct fixed points in R,

�
0;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ B − 16

A − B

r 	
≕ f0;�μ�g:

(b) Second, as ðdF=dμÞðμÞ ¼ ð1=16ÞðAþ B − 3μ2

ðA − BÞÞ, the assumption implies that F is increasing on
½−μmax; μmax�, where μmax ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ðAþ BÞ=3ðA − BÞ�p
> 0.

Moreover, the assumption gives ð∂F=∂μÞð0Þ > 1, so that
the fixed point 0 is repulsive.
(c) Finally, as Aþ B ≤ 24, we have Aþ B − 16 ≤

½ðAþ BÞ=3�. Therefore, μ� is smaller than or equal to
μmax and

½0; μ�� ⊆ ½−μmax; μmax�:

Now, let P∈NS be a box satisfying Aþ B > 16. We
provide Alice and Bob with as many shared random bits
and as many copies of P as they want. We show that there
exists a constant p > 1=2 such that any arbitrary Boolean

function f∶f0; 1gn × f0; 1gm → f0; 1g can be distribu-
tively computed by Alice and Bob with probability ≥p,
which means that communication complexity collapses.
The protocolP0 defined above enables one to distributively
compute f with probability p0 ¼ ð1þ 1=2mÞ=2, i.e., with
bias μ0 ¼ 1=2m > 0. Up to adding muted variables in the
entries of f, we may assume that m is large enough so that
μ0 ∈ ð0; μ�Þ. Then, combining (a), (b), and (c), we get that
the sequence ðμkÞk converges to the fixed point μ� > 0. We
set p ≔ ð1þ μ�=2Þ=2 > 1=2 [or replace μ�=2 by any
choice of μ∈ ð0; μ�Þ], and we know that there exists a
protocol Pk for some k large enough such that the
probability pk of correctly distributively computing f
satisfies pk > p. Finally, note that p does not depend on
f: it only depends on μ�, which only depends on the ηx;y’s,
which themselves only depend on P. Hence, communica-
tion complexity collapses. ▪
Cases of interest.—Case 1: PR-PR0-I: We consider a

box P that is in the slice of NS passing through both
PR and PR0 and I, studied in [11]. In this case η0;0 ¼ η1;1
and η0;1 ¼ η1;0, and the condition Aþ B > 16 of the
Theorem reads as η20;0 þ η0;0η0;1 þ η20;1 > 2. We make a
change of coordinates using the bias of winning at CHSH
σ ¼ ðη0;0 þ η0;1Þ=2 and the one of winning at CHSH0

σ0 ¼ ð−η0;0 þ η0;1Þ=2, and we obtain

σ2 þ 1

3
σ02 >

2

3
or

1

3
σ2 þ σ02 >

2

3
;

where the second equation holds by changing the role of σ
and σ0 in the first one (indeed, we may do it because
flipping bits x and y allows us to go from CHSH to
CHSH0). These equations give rise to the purple collapsing
area drawn in Fig. 4(a). Interestingly, on the vertical axis,
we find the same result as in [15]: taking σ0 ¼ 0, it is
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enough to have σ >
ffiffiffiffiffiffiffiffi
2=3

p
, i.e., to win at CHSH with

probability ½ð1þ σÞ=2� > ½ð3þ ffiffiffi
6

p Þ=6� ≈ 0.91.
Case 2: PR − SR − I: We consider a box P that

is in the slice of NS passing through both PR and SR and
I, studied in [17]. In this case, η0;0 ¼ η0;1 ¼ η1;0, and the
condition Aþ B > 16 of the Theorem reads as 5η20;0 þ
2η0;0η1;1 þ η21;1 > ð16=3Þ. We make a change of coordinates
using σ ¼ ð3η0;0 þ η1;1Þ=4 and σ0 ¼ ðη0;0 − η1;1Þ=4, and we
obtain

σ2 þ σ02 >
2

3
:

The induced collapsing area is represented in Fig. 4(b). The
same results also hold if we replace SR by any convex
combination of P0 and P1, which are the boxes that always
output, respectively, (0,0) and (1,1) independent of the
entries ðx; yÞ.
Remark.—Even in comparison with previous numerical

results, our protocol finds strictly new collapsing boxes.
Indeed, for instance, consider boxes in the black region of
Fig. 4 that are close to the vertical axis: they are not
distillable by means of the wirings of [17,20], but our result
shows that they are still collapsing.
Conclusion.—After generalizing the BBLMTU protocol,

we found in Theorem 1 a new sufficient condition for a box
to collapse communication complexity, with the following
advantages: (1) it is valid in the whole eight-dimensional
convex setNS, in contrast to the analytical result of [17] (it
holds only in the segment joining PR and SR), and (2) it is
completely analytical, with an explicit formula for the
boundary of the new collapsing area, in contrast to previous
numerical results [17,20] (as far as we know, the boundary
of these two results has not yet been analytically com-
puted). In Fig. 4, we presented two examples of new

collapsing regions. Note that the importance of our result is
emphasized by considering the many known impossibility
results [18,25,26]. According to our present intuition of
nature [15–18], a consequence is that our new collapsing
boxes are unlikely to appear in nature.
Hence, we partially answer the open question, but there

is still a gap to be filled: what other nonlocal boxes collapse
communication complexity?
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